1
|
Hori A, Inaba H, Hato T, Tanaka K, Sato S, Okamoto M, Horiuchi Y, Paran FJ, Tabe Y, Mori S, Rosales C, Akamatsu W, Murayama T, Kurebayashi N, Sakurai T, Ai T, Miida T. Carvedilol suppresses ryanodine receptor-dependent Ca2+ bursts in human neurons bearing PSEN1 variants found in early onset Alzheimer's disease. PLoS One 2024; 19:e0291887. [PMID: 39173065 PMCID: PMC11341060 DOI: 10.1371/journal.pone.0291887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/02/2024] [Indexed: 08/24/2024] Open
Abstract
Seizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid β (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the β-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.
Collapse
Affiliation(s)
- Atsushi Hori
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Haruka Inaba
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kimie Tanaka
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shoichi Sato
- Department of Clinical Engineering, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Mizuho Okamoto
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Faith Jessica Paran
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shusuke Mori
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Corina Rosales
- Center for Bioenergetics and the Department of Medicine, Houston Methodist Research Institute, Texas, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Joshi P, Estes S, DeMazumder D, Knollmann BC, Dey S. Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function, and prevents sudden arrhythmic death in failing hearts. eLife 2023; 12:RP88638. [PMID: 38078905 PMCID: PMC10712946 DOI: 10.7554/elife.88638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) is a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)-mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. We tested the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient β-adrenergic challenge, and improved heart rate variability and cardiac function. Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca2+ leak-induced increases in diastolic Ca2+ and ROS-mediated RyR2 oxidation, thereby reducing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.
Collapse
Affiliation(s)
- Pooja Joshi
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shanea Estes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Deeptankar DeMazumder
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Internal Medicine, Veterans Affairs Pittsburgh Health SystemPittsburghUnited States
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Internal Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Surgery, University of Pittsburgh School of MedicinePittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Swati Dey
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
3
|
George SA, Brennan-McLean JA, Trampel KA, Rytkin E, Faye NR, Knollmann BC, Efimov IR. Ryanodine receptor inhibition with acute dantrolene treatment reduces arrhythmia susceptibility in human hearts. Am J Physiol Heart Circ Physiol 2023; 325:H720-H728. [PMID: 37566110 DOI: 10.1152/ajpheart.00103.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Ryanodine receptor 2 (RyR2) hyperactivity is observed in structural heart diseases that are a result of ischemia or heart failure. It causes abnormal calcium handling and calcium leaks that cause metabolic, electrical, and mechanical dysfunction, which can trigger arrhythmias. Here, we tested the antiarrhythmic potential of dantrolene (RyR inhibitor) in human hearts. Human hearts not used in transplantation were obtained, and right ventricular outflow tract (RVOT) wedges and left ventricular (LV) slices were prepared. Pseudo-ECGs were recorded to determine premature ventricular contraction (PVC) incidences. Optical mapping was performed to determine arrhythmogenic substrates. After baseline optical recordings, tissues were treated with 1) isoproterenol (250 nM), 2) caffeine (200 mM), and 3) dantrolene (2 or 10 mM). Optical recordings were obtained after each treatment. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Isoproterenol shortened action potential duration (APD) in the RV, RVOT, and LV regions and shortened calcium transient duration (CaTD) in the LV. Caffeine further shortened APD in the RV, did not modulate APD in the RVOT, and prolonged APD in the LV. In addition, in the LV, CaTD prolongation was also observed. More importantly, adding dantrolene did not alter APD in the RV or RVOT regions but produced a trend toward APD prolongation and significant CaTD prolongation in the LV, restoring these parameters to baseline values. In conclusions, dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates in the human heart and could be a novel antiarrhythmic therapy in patients with structural heart disease.NEW & NOTEWORTHY Ryanodine receptor 2 hyperactivity is observed in structural heart diseases caused by ischemia or heart failure. It causes abnormal calcium leaks, which can trigger arrhythmias. To prevent arrhythmias, we applied dantrolene in human hearts ex vivo. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates and could be a novel antiarrhythmic therapy in patients with structural heart disease.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Jaclyn A Brennan-McLean
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Katy A Trampel
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Eric Rytkin
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - N Rokhaya Faye
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
4
|
Joshi P, Estes S, DeMazumder D, Knollmann BC, Dey S. Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function and prevents sudden arrhythmic death in failing hearts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526151. [PMID: 37662391 PMCID: PMC10473608 DOI: 10.1101/2023.01.29.526151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Introduction Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) are a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca 2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)- mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. Objective To test the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca 2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. Methods We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca 2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. Results DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient β-adrenergic challenge, and improved heart rate variability and cardiac function. Conclusion Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca 2+ leak-induced increases in diastolic Ca 2+ and ROS-mediated RyR2 oxidation, thereby increasing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca 2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.
Collapse
|
5
|
Schmeckpeper J, Kim K, George SA, Blackwell DJ, Brennan JA, Efimov IR, Knollmann BC. RyR2 inhibition with dantrolene is antiarrhythmic, prevents further pathological remodeling, and improves cardiac function in chronic ischemic heart disease. J Mol Cell Cardiol 2023; 181:67-78. [PMID: 37285929 PMCID: PMC10526741 DOI: 10.1016/j.yjmcc.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/30/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Diastolic Ca2+ leak due to cardiac ryanodine receptor (RyR2) hyperactivity has been widely documented in chronic ischemic heart disease (CIHD) and may contribute to ventricular tachycardia (VT) risk and progressive left-ventricular (LV) remodeling. Here we test the hypothesis that targeting RyR2 hyperactivity can suppress VT inducibility and progressive heart failure in CIHD by the RyR2 inhibitor dantrolene. METHODS AND RESULTS: CIHD was induced in C57BL/6 J mice by left coronary artery ligation. Four weeks later, mice were randomized to either acute or chronic (6 weeks via implanted osmotic pump) treatment with dantrolene or vehicle. VT inducibility was assessed by programmed stimulation in vivo and in isolated hearts. Electrical substrate remodeling was assessed by optical mapping. Ca2+ sparks and spontaneous Ca2+ releases were measured in isolated cardiomyocytes. Cardiac remodeling was quantified by histology and qRT-PCR. Cardiac function and contractility were measured using echocardiography. Compared to vehicle, acute dantrolene treatment reduced VT inducibility. Optical mapping demonstrated reentrant VT prevention by dantrolene, which normalized the shortened refractory period (VERP) and prolonged action potential duration (APD), preventing APD alternans. In single CIHD cardiomyocytes, dantrolene normalized RyR2 hyperactivity and prevented spontaneous intracellular Ca2+ release. Chronic dantrolene treatment not only reduced VT inducibility but also reduced peri-infarct fibrosis and prevented further progression of LV dysfunction in CIHD mice. CONCLUSIONS: RyR2 hyperactivity plays a mechanistic role for VT risk, post-infarct remodeling, and contractile dysfunction in CIHD mice. Our data provide proof of concept for the anti-arrhythmic and anti-remodeling efficacy of dantrolene in CIHD.
Collapse
Affiliation(s)
- Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyungsoo Kim
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sharon A George
- Department of Biomedical Engineering, the George Washington University, Washington DC, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, the George Washington University, Washington DC, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, the George Washington University, Washington DC, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
7
|
Azam MA, Chakraborty P, Bokhari MM, Dadson K, Du B, Massé S, Si D, Niri A, Aggarwal AK, Lai PF, Riazi S, Billia F, Nanthakumar K. Cardioprotective effects of dantrolene in doxorubicin-induced cardiomyopathy in mice. Heart Rhythm O2 2021; 2:733-741. [PMID: 34988524 PMCID: PMC8710625 DOI: 10.1016/j.hroo.2021.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox) is a potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. Intracellular calcium dysregulation has been reported to be involved in doxorubicin-induced cardiomyopathy (DICM). The cardioprotective role of RyR stabilizer dantrolene (Dan) on the calcium dynamics of DICM has not yet been explored. OBJECTIVE To evaluate the effects of dantrolene on intracellular calcium dysregulation and cardiac contractile function in a DICM model. METHODS Adult male C57BL/6 mice were randomized into 4 groups: (1) Control, (2) Dox Only, (3) Dan Only, and (4) Dan + Dox. Fractional shortening (FS) and left ventricular ejection fraction (LVEF) were assessed by echocardiography. In addition, mice were sacrificed 2 weeks after doxorubicin injection for optical mapping of the heart in a Langendorff setup. RESULTS Treatment with Dox was associated with a reduction in both FS and LVEF at 2 weeks (P < .0001) and 4 weeks (P < .006). Dox treatment was also associated with prolongation of calcium transient durations CaTD50 (P = .0005) and CaTD80 (P < .0001) and reduction of calcium amplitude alternans ratio (P < .0001). Concomitant treatment with Dan prevented the Dox-induced decline in FS and LVEF (P < .002 at both 2 and 4 weeks). Dan also prevented Dox-induced prolongation of CaTD50 and CaTD80 and improved the CaT alternans ratio (P < .0001). Finally, calcium transient rise time was increased in the doxorubicin-treated group, indicating RyR2 dyssynchrony, and dantrolene prevented this prolongation (P = .02). CONCLUSION Dantrolene prevents cardiac contractile dysfunction following doxorubicin treatment by mitigating dysregulation of calcium dynamics.
Collapse
Affiliation(s)
- Mohammed Ali Azam
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mahmoud M. Bokhari
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Keith Dadson
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Beibei Du
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Daoyuan Si
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Ahmed Niri
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Arjun K. Aggarwal
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Patrick F.H. Lai
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Filio Billia
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
8
|
Samiotis I, Papakonstantinou NA, Dedeilias P, Vasileiadis I, Papalois A, Deftereos S, Kotanidou A. Dantrolene Induces Mitigation of Myocardial Ischemia-Reperfusion Injury by Ryanodine Receptor Inhibition. Semin Thorac Cardiovasc Surg 2021; 34:123-132. [PMID: 33460764 DOI: 10.1053/j.semtcvs.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 11/11/2022]
Abstract
The impairment of intracellular calcium homeostasis plays an essential role during ischemia-reperfusion injury. Calcium release from sarcoplasmic reticulum which is triggered by myocardial ischemia is mainly mediated by ryanodine receptors. Dantrolene sodium is a ryanodine receptor antagonist. The objective of the present study was to evaluate the in-vivo impact of dantrolene sodium on myocardial ischemia-reperfusion injury in swine models. An in vivo, experimental trial comparing 10 experimental animals which received dantrolene sodium with 9 control swine models was conducted. Their left anterior descending coronary artery was temporarily occluded for 75 minutes via a vessel tourniquet, which was then released. Myocardial reperfusion was allowed for 24 hours. Dantrolene was administered at the onset of the reperfusion period and levels of troponin, creatine phosphokinase and creatine kinase myocardial band between the two groups were compared. Additionally, various other hemodynamic parameters and left ventricular morphology and function were examined. There were significantly lower values of troponin, creatine phosphokinase and creatine kinase myocardial band in the dantrolene group indicating less ischemia-reperfusion injury. Moreover, the postischemic cardiac index was also greater in the dantrolene group, whereas viable myocardium was also better preserved. In conclusion, the in vivo cardioprotective role of dantrolene sodium against ischemia-reperfusion injury in swine models was indicated in this study. Therefore, dantrolene sodium administration could be a promising treatment against ischemia-reperfusion injury in humans. However, large randomized clinical studies should be firstly carried out to prove this hypothesis.
Collapse
Affiliation(s)
- Ilias Samiotis
- Cardiovascular and Thoracic Surgery Department, General Hospital of Athens "Evangelismos'', Greece
| | | | - Panagiotis Dedeilias
- Cardiovascular and Thoracic Surgery Department, General Hospital of Athens "Evangelismos'', Greece
| | - Ioannis Vasileiadis
- 1st Respiratory Medicine Department, Hospital for Diseases of the Chest "Sotiria", National and Kapodistrian University of Athens, Greece
| | - Apostolos Papalois
- Experimental, Educational and Research Center, ELPEN Pharmaceuticals, Athens, Greece; School of Medicine European University of Cyprus, Nicosia, Cyprus
| | - Spyridon Deftereos
- 2nd Department of Cardiology, "Attikon" Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine, General Hospital of Athens "Evangelismos'', School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
9
|
Acsai K, Ördög B, Varró A, Nánási PP. Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies? Eur J Pharmacol 2016; 779:91-101. [PMID: 26970182 DOI: 10.1016/j.ejphar.2016.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Abnormal Ca(2+)homeostasis is often associated with chronic cardiovascular diseases, such as hypertension, heart failure or cardiac arrhythmias, and typically contributes to the basic ethiology of the disease. Pharmacological targeting of cardiac Ca(2+)handling has great therapeutic potential offering invaluable options for the prevention, slowing down the progression or suppression of the harmful outcomes like life threatening cardiac arrhythmias. In this review we outline the existing knowledge on the involvement of malfunction of the ryanodine receptor and the Na(+)-Ca(2+)exchanger in disturbances of Ca(2+)homeostasis and discuss important proof of concept pharmacological studies targeting these mechanisms in context of hypertension, heart failure, atrial fibrillation and ventricular arrhythmias. We emphasize the promising results of preclinical studies underpinning the potential benefits of the therapeutic strategies based on ryanodine receptor or Na(+)-Ca(2+)exchanger inhibition.
Collapse
Affiliation(s)
- Károly Acsai
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter P Nánási
- Department of Physiology, University of Debrecen, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
10
|
Zamiri N, Massé S, Ramadeen A, Kusha M, Hu X, Azam MA, Liu J, Lai PFH, Vigmond EJ, Boyle PM, Behradfar E, Al-Hesayen A, Waxman MB, Backx P, Dorian P, Nanthakumar K. Dantrolene improves survival after ventricular fibrillation by mitigating impaired calcium handling in animal models. Circulation 2014; 129:875-85. [PMID: 24403563 DOI: 10.1161/circulationaha.113.005443] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Resistant ventricular fibrillation, refibrillation. and diminished myocardial contractility are important factors leading to poor survival after cardiac arrest. We hypothesized that dantrolene improves survival after ventricular fibrillation (VF) by rectifying the calcium dysregulation caused by VF. METHODS AND RESULTS VF was induced in 26 Yorkshire pigs for 4 minutes. Cardiopulmonary resuscitation was then commenced for 3 minutes, and dantrolene or isotonic saline was infused at the onset of cardiopulmonary resuscitation. Animals were defibrillated and observed for 30 minutes. To study the effect of VF on calcium handling and its modulation by dantrolene, hearts from 14 New Zealand rabbits were Langendorff-perfused. The inducibility of VF after dantrolene administration was documented. Optical mapping was performed to evaluate diastolic spontaneous calcium elevations as a measure of cytosolic calcium leak. The sustained return of spontaneous circulation (systolic blood pressure ≥60 mm Hg) was achieved in 85% of the dantrolene group in comparison with 39% of controls (P=0.02). return of spontaneous circulation was achieved earlier in dantrolene-treated pigs after successful defibrillation (21 ± 6 s versus 181 ± 57 s in controls, P=0.005). The median number of refibrillation episodes was lower in the dantrolene group (0 versus 1, P=0.04). In isolated rabbit hearts, the successful induction of VF was achieved in 83% of attempts in controls versus 41% in dantrolene-treated hearts (P=0.007). VF caused diastolic calcium leaks in the form of spontaneous calcium elevations. Administration of 20 μmol/L dantrolene significantly decreased spontaneous calcium elevation amplitude versus controls. (0.024 ± 0.013 versus 0.12 ± 0.02 arbitrary unit [200-ms cycle length], P=0.001). CONCLUSIONS Dantrolene infusion during cardiopulmonary resuscitation facilitates successful defibrillation, improves hemodynamics postdefibrillation, decreases refibrillation, and thus improves survival after cardiac arrest. The effects are mediated through normalizing VF-induced dysfunctional calcium cycling.
Collapse
Affiliation(s)
- Nima Zamiri
- From The Hull Family Cardiac Fibrillation Management Laboratory, University Health Network, University of Toronto, Toronto, ON, Canada (A.M., N.Z., S.M., M.K., M.A.A, P.F.H.L., M.B.W., K.N.); Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada (A.R., X.H., A.A.-H., P.D.); Institute of Medical Science, University of Toronto, Toronto, ON, Canada (N.Z.); Department of Physiology, University of Toronto, Toronto, ON, Canada (J.L., P.B.); Institute LIRYC, Université Bordeaux 1, Bordeaux, France (E.J.V.); Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD (P.M.B.); and Department of Electrical Engineering, University of Calgary, Calgary, AB, Canada (E.B.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmia, and is responsible for substantial morbidity and mortality in the general population. Current treatments have moderate efficacy and considerable risks, especially of pro-arrhythmia, highlighting the need for new therapeutic strategies. In recent years, substantial efforts have been invested in developing novel treatments that target the underlying molecular determinants of atrial fibrillation, and several new compounds are under development. This Review focuses on the mechanistic rationale for the development of new anti-atrial fibrillation drugs, on the molecular and structural motifs that they target and on the results obtained so far in experimental and clinical studies.
Collapse
|
12
|
Abstract
Antiarrhythmic drugs are a group of pharmaceuticals that suppress or prevent abnormal heart rhythms, which are often associated with substantial morbidity and mortality. Current antiarrhythmic drugs that typically target plasma membrane ion channels have limited clinical success and in some cases have been described as being pro-arrhythmic. However, recent studies suggest that pathological release of calcium (Ca(2+)) from the sarcoplasmic reticulum via cardiac ryanodine receptors (RyR2) could represent a promising target for antiarrhythmic therapy. Diastolic SR Ca(2+) release has been linked to arrhythmogenesis in both the inherited arrhythmia syndrome 'catecholaminergic polymorphic ventricular tachycardia' and acquired forms of heart disease (eg, atrial fibrillation, heart failure). Several classes of pharmaceuticals have been shown to reduce abnormal RyR2 activity and may confer protection against triggered arrhythmias through reduction of SR Ca(2+) leak. In this review, we will evaluate the current pharmacological methods for stabilizing RyR2 and suggest treatment modalities based on current evidence of molecular mechanisms.
Collapse
|
13
|
Shannon TR, Lew WYW. Diastolic release of calcium from the sarcoplasmic reticulum: a potential target for treating triggered arrhythmias and heart failure. J Am Coll Cardiol 2009; 53:2006-8. [PMID: 19460615 DOI: 10.1016/j.jacc.2009.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/17/2009] [Indexed: 10/20/2022]
|
14
|
Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, Xu X, Uchinoumi H, Okuda S, Yamamoto T, Koseki N, Kyushiki H, Ikemoto N, Matsuzaki M. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol 2009; 53:1993-2005. [PMID: 19460614 PMCID: PMC2764410 DOI: 10.1016/j.jacc.2009.01.065] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 01/12/2009] [Accepted: 01/19/2009] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We sought to investigate the effect of dantrolene, a drug generally used to treat malignant hyperthermia, on the Ca2+ release and cardiomyocyte function in failing hearts. BACKGROUND The N-terminal (N: 1-600) and central (C: 2000-2500) domains of the ryanodine receptor (RyR) harbor many mutations associated with malignant hyperthermia in skeletal muscle RyR (RyR1) and polymorphic ventricular tachycardia in cardiac RyR (RyR2). There is strong evidence that interdomain interaction between these regions plays an important role in the mechanism of channel regulation. METHODS Sarcoplasmic reticulum vesicles and cardiomyocytes were isolated from the left ventricular muscles of dogs (normal or rapid ventricular pacing for 4 weeks), for Ca2+ leak, transient, and spark assays. To assess the zipped or unzipped state of the interacting domains, the RyR was labeled fluorescently with methylcoumarin acetate in a site-directed manner. We used a quartz-crystal microbalance technique to identify the dantrolene binding site within the RyR2. RESULTS Dantrolene specifically bound to domain 601-620 in RyR2. In the sarcoplasmic reticulum isolated from pacing-induced failing dog hearts, the defective interdomain interaction (domain unzipping) had already occurred, causing spontaneous Ca2+ leak. Dantrolene suppressed both domain unzipping and the Ca2+ leak, demonstrating identical drug concentration-dependence (IC50 = 0.3 micromol/l). In failing cardiomyocytes, both diastolic Ca2+ sparks and delayed afterdepolarization were observed frequently, but 1 micromol/l dantrolene inhibited both events. CONCLUSIONS Dantrolene corrects defective interdomain interactions within RyR2 in failing hearts, inhibits spontaneous Ca2+ leak, and in turn improves cardiomyocyte function in failing hearts. Thus, dantrolene may have a potential to treat heart failure, specifically targeting the RyR2.
Collapse
Affiliation(s)
- Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takeshi Suetomi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Makoto Ono
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroki Tateishi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Mamoru Mochizuki
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Xiaojuan Xu
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinichi Okuda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takeshi Yamamoto
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | | | | | | | - Masunori Matsuzaki
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
15
|
Paul-Pletzer K, Yamamoto T, Ikemoto N, Jimenez L, Morimoto H, Williams P, Ma J, Parness J. Probing a putative dantrolene-binding site on the cardiac ryanodine receptor. Biochem J 2006; 387:905-9. [PMID: 15656791 PMCID: PMC1135024 DOI: 10.1042/bj20041336] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dantrolene is an inhibitor of intracellular Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). Direct photoaffinity labelling experiments using [3H]azidodantrolene and synthetic domain peptides have demonstrated that this drug targets amino acids 590-609 [termed DP1 (domain peptide 1)] of RyR1 (ryanodine receptor 1), the skeletal muscle RyR isoform. Although the identical sequence exists in the cardiac isoform, RyR2 (residues 601-620), specific labelling of RyR2 by dantrolene has not been demonstrated, even though some functional studies show protective effects of dantrolene on heart function. Here we test whether dantrolene-active domains exist within RyR2 and if so, whether this domain can be modulated. We show that elongated DP1 sequences from RyR1 (DP1-2s; residues 590-628) and RyR2 (DP1-2c; residues 601-639) can be specifically photolabelled by [3H]azidodantrolene. Monoclonal anti-RyR1 antibody, whose epitope is the DP1 region, can recognize RyR1 but not RyR2 in Western blot and immunoprecipitation assays, yet it recognizes both DP1-2c and DP1-2s. This suggests that although the RyR2 sequence has an intrinsic capacity to bind dantrolene in vitro, this site may be poorly accessible in the native channel protein. To examine whether it is possible to modulate this site, we measured binding of [3H]dantrolene to cardiac SR as a function of free Ca2+. We found that > or =10 mM EGTA increased [3H]dantrolene binding to RyR2 by approximately 2-fold. The data suggest that the dantrolene-binding site on RyR2 is conformationally sensitive. This site may be a potential therapeutic target in cardiovascular diseases sensitive to dysfunctional intracellular Ca2+ release.
Collapse
Affiliation(s)
- Kalanethee Paul-Pletzer
- *Department of Anesthesia, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, U.S.A
| | - Takeshi Yamamoto
- †Boston Biomedical Research Institute, Watertown, MA 02472, U.S.A
| | - Noriaki Ikemoto
- †Boston Biomedical Research Institute, Watertown, MA 02472, U.S.A
| | - Leslie S. Jimenez
- ‡Department of Chemistry, Rutgers University, Piscataway, NJ 08854, U.S.A
| | - Hiromi Morimoto
- §National Tritium Labelling Facility and Physical Biosciences Division, E.O. Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, U.S.A
| | - Philip G. Williams
- §National Tritium Labelling Facility and Physical Biosciences Division, E.O. Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, U.S.A
| | - Jianjie Ma
- ∥Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, U.S.A
| | - Jerome Parness
- *Department of Anesthesia, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, U.S.A
- ∥Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, U.S.A
- ¶Departments of Pharmacology and Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, U.S.A
- To whom correspondence should be sent: Department of Anesthesia, UMDNJ-Robert Wood Johnson Medical School, Staged Research Annex II, Room 108, Piscataway, NJ 08854, U.S.A. (email )
| |
Collapse
|
16
|
Acikel M, Buyukokuroglu ME, Erdogan F, Aksoy H, Bozkurt E, Senocak H. Protective effects of dantrolene against myocardial injury induced by isoproterenol in rats: biochemical and histological findings. Int J Cardiol 2005; 98:389-94. [PMID: 15708169 DOI: 10.1016/j.ijcard.2003.10.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 10/17/2003] [Accepted: 10/25/2003] [Indexed: 11/29/2022]
Abstract
PURPOSE We investigated whether dantrolene might protect the heart against myocardial injury (MI) induced by isoproterenol (ISO), using an experimental model in rats. METHODS Twenty-eight rats were randomized to treatment with saline only (control group, n=8), ISO only (ISO group, n=8), low-dose dantrolene (LDD)+ISO (LDD group, n=6) and high-dose dantrolene (HDD)+ISO (HDD group, n=6). ISO (150 mg/kg/day, s.c.), LDD (5 mg/kg/day, i.p.) and HDD (10 mg/kg/day, i.p.) were given once a day for two consecutive days. At the end of the second day, blood samples were taken from abdominal aorta shortly after the rats were anesthetised for cardiac troponins T (cTnT) and I (cTnI) assay, and the hearts were removed and observed microscopically. RESULTS cTnT and cTnI levels were increased in the ISO group when compared with the control group (p<0.001). LDD and HDD significantly reduced cTnT and cTnI levels when compared with the ISO group. Elevations of cTnT and cTnI appeared to relate to the severity of histological changes. The rate of animals that exhibited marked MI was higher in the ISO group than in the control group (p<0.001). The rats in both LDD and HDD groups showed less histological changes when compared to the ISO group (p<0.01). There was no significant difference between the control group and both LDD and HDD groups. CONCLUSIONS This study shows that dantrolene has a significant effect in the protection of the heart against MI induced by ISO. We believe that pretreatment with dantrolene may contribute to developing novel strategies in the cardiotoxicity animal models and in the prevention of the cardiotoxic effects of elevated levels of catecholamines.
Collapse
Affiliation(s)
- Mahmut Acikel
- Department of Cardiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey.
| | | | | | | | | | | |
Collapse
|
17
|
Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS. Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 2001; 276:21482-8. [PMID: 11297554 DOI: 10.1074/jbc.m101486200] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have shown that, in a wide variety of cells, mitochondria respond dynamically to physiological changes in cytosolic Ca(2+) concentrations ([Ca(2+)](c)). Mitochondrial Ca(2+) uptake occurs via a ruthenium red-sensitive calcium uniporter and a rapid mode of Ca(2+) uptake. Surprisingly, the molecular identity of these Ca(2+) transport proteins is still unknown. Using electron microscopy and Western blotting, we identified a ryanodine receptor in the inner mitochondrial membrane with a molecular mass of approximately 600 kDa in mitochondria isolated from the rat heart. [(3)H]Ryanodine binds to this mitochondrial ryanodine receptor with high affinity. This binding is modulated by Ca(2+) but not caffeine and is inhibited by Mg(2+) and ruthenium red in the assay medium. In the presence of ryanodine, Ca(2+) uptake into isolated heart mitochondria is suppressed. In addition, ryanodine inhibited mitochondrial swelling induced by Ca(2+) overload. This swelling effect was not observed when Ca(2+) was applied to the cytosolic fraction containing sarcoplasmic reticulum. These results are the first to identify a mitochondrial Ca(2+) transport protein that has characteristics similar to the ryanodine receptor. This mitochondrial ryanodine receptor is likely to play an essential role in the dynamic uptake of Ca(2+) into mitochondria during Ca(2+) oscillations.
Collapse
Affiliation(s)
- G Beutner
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|