1
|
Yamazaki T, Buqué A, Ames TD, Galluzzi L. PT-112 induces immunogenic cell death and synergizes with immune checkpoint blockers in mouse tumor models. Oncoimmunology 2020; 9:1721810. [PMID: 32117585 PMCID: PMC7028345 DOI: 10.1080/2162402x.2020.1721810] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
PT-112 is a novel platinum-pyrophosphate conjugate under clinical development for cancer therapy. PT-112 mediates cytostatic and cytotoxic effects against a variety of human and mouse cancer cell lines in vitro. The cytotoxic response to PT-112 is associated with the emission of danger signals underpinning the initiation of anticancer immunity, including calreticulin exposure on the surface of dying cells, as well as ATP and HMGB1 secretion. Consistently, mouse cancer cells succumbing to PT-112 in vitro can be used to provide syngeneic, immunocompetent mice with immunological protection against a subsequent challenge with living tumor cells of the same type. Moreover, PT-112 administration synergizes with PD-1 or PD-L1 blockade in the control of mouse cancers in immunologically competent settings, as it simultaneously recruits immune effector cells and depletes immunosuppressive cells in the tumor microenvironment. Finally, PT-112 employed intratumorally in the context of immune checkpoint inhibition initiates a robust immune response that has systemic outreach and limits the growth of untreated, distant lesions. Thus, PT-112 induces the immunogenic demise of cancer cells, and hence stands out as a promising combinatorial partner of immune checkpoint blockers, especially for the treatment of otherwise immunologically cold tumors.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| |
Collapse
|
2
|
Current role of ICP–MS in clinical toxicology and forensic toxicology: a metallic profile. Bioanalysis 2014; 6:2245-59. [DOI: 10.4155/bio.14.190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP–MS. ICP–MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP–MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.
Collapse
|
3
|
Lei Y, Henderson BR, Emmanuel C, Harnett PR, deFazio A. Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncogene 2014; 34:485-95. [PMID: 24531715 DOI: 10.1038/onc.2013.566] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 11/30/2013] [Accepted: 12/07/2013] [Indexed: 02/07/2023]
Abstract
High expression of Ankyrin Repeat Domain 1 (ANKRD1) in ovarian carcinoma is associated with poor survival, and in ovarian cancer cell lines is associated with platinum resistance. Importantly, decreasing ANKRD1 expression using siRNA increases cisplatin sensitivity. In this study, we investigated possible mechanisms underlying the association of ANKRD1 with cisplatin response. We first demonstrated that cisplatin-induced apoptosis in ovarian cancer cell lines was associated with endoplasmic reticulum (ER) stress, evidenced by induction of Glucose-Regulated Protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153) and increased intracellular Ca(2+) release. The level of sensitivity to cisplatin-induced apoptosis was associated with ANKRD1 protein levels and poly (ADP-ribose) polymerase (PARP) cleavage. COLO 316 ovarian cancer cells, which express high ANKRD1 levels, were relatively resistant to cisplatin, and ER stress-induced apoptosis, whereas OAW42 and PEO14 cells, which express lower ANKRD1 levels, are more sensitive to ER stress-induced apoptosis. Furthermore, we show that overexpression of ANKRD1 attenuated cisplatin-induced cytotoxicity, and conversely siRNA knockdown of ANKRD1 sensitized ovarian cancer cells to cisplatin and ER stress-induced apoptosis associated with induction of GADD153, and downregulation of BCL2 and BCL-XL. Taken together, these results suggest that ANKRD1 has a significant role in the regulation of apoptosis in human ovarian cancer cells, and is a potential molecular target to enhance sensitivity of ovarian cancer to chemotherapy.
Collapse
Affiliation(s)
- Y Lei
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - B R Henderson
- Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - C Emmanuel
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - P R Harnett
- 1] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia [2] Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - A deFazio
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia [3] Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 2013; 65:1667-85. [PMID: 24113520 PMCID: PMC4197009 DOI: 10.1016/j.addr.2013.09.014] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022]
Abstract
Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum-polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs.
Collapse
Affiliation(s)
- Hardeep S. Oberoi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia V. Nukolova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Russian State Medical University, Department of Medical Nanobiotechnology, Ostrovityanova 1, Moscow 117997, Russia
| | - Alexander V. Kabanov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Center for Nanotechnology in Drug Delivery and Division of Molecular Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Ohara T, Noma K, Urano S, Watanabe S, Nishitani S, Tomono Y, Kimura F, Kagawa S, Shirakawa Y, Fujiwara T. A novel synergistic effect of iron depletion on antiangiogenic cancer therapy. Int J Cancer 2012; 132:2705-13. [PMID: 23161652 DOI: 10.1002/ijc.27943] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/17/2012] [Indexed: 01/27/2023]
Abstract
Iron is an essential element for both normal and cancer cells in humans. Treatment to reduce iron levels has been shown to suppress tumor growth in vivo. However, iron depletion monotherapy by iron decreased treatment has not been thought to be superior to ordinary chemotherapy and is not part of the standard therapeutic strategy for the treatment of cancer. Iron depletion is also known to reduce serum hemoglobin and oxygen supply to the tissue, which indicates that iron depletion may induce angiogenesis. Therefore, we hypothesized that iron depletion with antiangiogenic therapy can have a novel therapeutic effect in the treatment of cancer. Human nonsmall cell carcinoma cell lines A549 and H1299 were used in our study. An iron-deficient diet and an iron chelator were used to simulate an iron-depleted condition. The antitumor effects of iron depletion and antiangiogenic therapy were determined on A549 xenograft mice. The iron-depleted condition produced by an iron-deficient diet suppressed tumor growth. Tumor tissue from the iron-deficient diet group showed that cancer cell proliferation was suppressed and hypoxia was induced. Microvessel density of this group was increased which suggested that the iron-depleted condition induced angiogenesis. Bevacizumab administration had a synergetic effect on inhibiting the tumor growth on Day 39. An iron-depleted condition inhibited cancer cell proliferation and reciprocally induced angiogenesis. Bevacizumab synergistically enhanced the iron-depleted antitumor effect. Treatment to deplete iron levels combined with anti-angiogenic therapy could induce a novel therapeutic effect in the treatment of cancer.
Collapse
Affiliation(s)
- Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Grande L, Bretones G, Rosa-Garrido M, Garrido-Martin EM, Hernandez T, Fraile S, Botella L, de Alava E, Vidal A, Garcia del Muro X, Villanueva A, Delgado MD, Fernandez-Luna JL. Transcription factors Sp1 and p73 control the expression of the proapoptotic protein NOXA in the response of testicular embryonal carcinoma cells to cisplatin. J Biol Chem 2012; 287:26495-505. [PMID: 22718761 DOI: 10.1074/jbc.m112.376319] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are highly responsive to and curable by cisplatin-based chemotherapy even in advanced stages. We have studied the molecular mechanisms involved in the induction of apoptosis in response to cisplatin, and found that proapoptotic Noxa is transcriptionally up-regulated following cisplatin exposure, even in the absence of p53, in NTERA2 cisplatin-sensitive cells but not in 1411HP-resistant cells. Blockade of Noxa reduced the apoptotic response of embryonal carcinoma (EC) NTERA2 cells to cisplatin. A detailed analysis of the Noxa promoter revealed that p73 and Sp1-like factors, Sp1 and KLF6, played key roles in the transcriptional control of this gene. Overexpression of TAp73 induced Noxa whereas the dominant negative isoform ΔNp73, reduced the levels of Noxa after cisplatin exposure in NTERA2 and 2102EP. Interestingly, down-regulation of Sp1 increased Noxa expression in response to cisplatin. However, blockade of KLF6 decreased cisplatin-induced up-regulation of Noxa in EC cell lines. In addition, tissue microarray analyses of TGCTs revealed that expression of Noxa correlates with good clinical prognosis in patients with embryonal carcinoma. Thus, our data show the transcriptional network that regulates Noxa in EC cells, which is key for their apoptotic response to cisplatin-based chemotherapy, and propose Noxa as a predictive factor of therapeutic response.
Collapse
Affiliation(s)
- Lara Grande
- Molecular Genetics Unit, Hospital Valdecilla, and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Av. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Poth KJ, Guminski AD, Thomas GP, Leo PJ, Jabbar IA, Saunders NA. Cisplatin treatment induces a transient increase in tumorigenic potential associated with high interleukin-6 expression in head and neck squamous cell carcinoma. Mol Cancer Ther 2010; 9:2430-9. [PMID: 20682658 DOI: 10.1158/1535-7163.mct-10-0258] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by the 5-year survival rate of approximately 50%. Despite aggressive surgical, radiation, and chemotherapeutic interventions, 30% to 40% of patients die from the development of recurrent or disseminated disease that is resistant to chemotherapy. As a model of recurrence, we examined the effects of cisplatin on the ability of head and neck cancer cells to initiate tumors in a xenotransplant model. HNSCC cells were treated in vitro with cisplatin at a concentration that elicited >99% cytotoxicity and assessed for tumorigenic potential in nonobese diabetic/severe combined immunodeficient mice. HNSCC cells that survived cisplatin treatment formed tumors in nonobese diabetic/severe combined immunodeficient mice more efficiently than nontreated cells. Cisplatin-resistant cells were characterized using clonal analysis, in vivo imaging, and transcriptomic profiling. Preliminary functional assessment of a gene, interleukin-6 (IL-6), highly upregulated in cisplatin-treated cells was carried out using clonogenicity and tumorigenicity assays. We show that cisplatin-induced IL-6 expression can contribute to the increase in tumorigenic potential of head and neck cancer cells but does not contribute to cisplatin resistance. Finally, through clonal analysis, we show that cisplatin-induced IL-6 expression and cisplatin-induced tumorigenicity are stochastically derived. We report that cisplatin treatment of head and neck cancer cells results in a transient accumulation of cisplatin-resistant, small, and IL-6-positive cells that are highly tumorigenic. These data also suggest that therapies that reduce IL-6 action may reduce recurrence rates and/or increase disease-free survival times in head and neck cancer patients, and thus, IL-6 represents a promising new target in HNSCC treatment.
Collapse
Affiliation(s)
- Kim J Poth
- Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Ipswich Road, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Nowotnik DP, Cvitkovic E. ProLindac (AP5346): a review of the development of an HPMA DACH platinum Polymer Therapeutic. Adv Drug Deliv Rev 2009; 61:1214-9. [PMID: 19671439 DOI: 10.1016/j.addr.2009.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/20/2009] [Indexed: 11/19/2022]
Abstract
ProLindac (AP5346) is DACH (diaminocyclohexane) platinum polymer prodrug currently in phase II clinical development. It uses a 25 kDa polymer delivery vehicle based on hydroxypropylmethacrylamide (HPMA) to target the active form of the approved drug oxaliplatin to tumors. The pH-sensitive linker that binds platinum to the polymer releases platinum more rapidly in low pH environments, as found typically in many tumors. This review summarizes the development of ProLindac to date, including preclinical efficacy studies, the phase I monotherapy clinical study in patients with solid tumors, and the phase I/II monotherapy study in patients with recurrent ovarian cancer. Both preclinical and clinical study data indicate that ProLindac exhibits efficacy at least equal to, and likely superior to oxaliplatin, while demonstrating excellent tolerability. Additional clinical studies of ProLindac used in combination with other chemotherapeutic agents are planned.
Collapse
Affiliation(s)
- David P Nowotnik
- Access Pharmaceuticals, Inc., 2600 Stemmons Freeway, Suite 176, Dallas, TX 75207, USA.
| | | |
Collapse
|
10
|
Scurr LL, Guminski AD, Chiew YE, Balleine RL, Sharma R, Lei Y, Pryor K, Wain GV, Brand A, Byth K, Kennedy C, Rizos H, Harnett PR, deFazio A. Ankyrin repeat domain 1, ANKRD1, a novel determinant of cisplatin sensitivity expressed in ovarian cancer. Clin Cancer Res 2008; 14:6924-32. [PMID: 18980987 DOI: 10.1158/1078-0432.ccr-07-5189] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The standard of care for ovarian cancer includes platinum-based chemotherapy. It is not possible, however, to predict clinical platinum sensitivity or to design rational strategies to overcome resistance. We used a novel approach to identify altered gene expression associated with high sensitivity to cisplatin, to define novel targets to sensitize tumor cells to platins and ultimately improve the effectiveness of this widely used class of chemotherapeutics. EXPERIMENTAL DESIGN Using differential display PCR, we identified genes differentially expressed in a mutagenized cell line with unusual sensitivity to cisplatin. The most highly differentially expressed gene was selected, and its role in determining cisplatin sensitivity was validated by gene transfection and small interfering RNA (siRNA) approaches, by association of expression levels with cisplatin sensitivity in cell lines, and by association of tumor expression levels with survival in a retrospective cohort of 71 patients with serous ovarian adenocarcinoma. RESULTS The most highly differently expressed gene identified was ANKRD1, ankyrin repeat domain 1 (cardiac muscle). ANKRD1 mRNA levels were correlated with platinum sensitivity in cell lines, and most significantly, decreasing ANKRD1 using siRNA increased cisplatin sensitivity >2-fold. ANKRD1 was expressed in the majority of ovarian adenocarcinomas tested (62/71, 87%), and higher tumor levels of ANKRD1 were found in patients with worse outcome (overall survival, P=0.013). CONCLUSIONS These findings suggest that ANKRD1, a gene not previously associated with ovarian cancer or with response to chemotherapy, is associated with treatment outcome, and decreasing ANKRD1 expression, or function, is a potential strategy to sensitize tumors to platinum-based drugs.
Collapse
Affiliation(s)
- Lyndee L Scurr
- Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead Hospital, Westmead, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Smith S, Su D, Rigault de la Longrais IA, Schwartz P, Puopolo M, Rutherford TJ, Mor G, Yu H, Katsaros D. ERCC1 Genotype and Phenotype in Epithelial Ovarian Cancer Identify Patients Likely to Benefit From Paclitaxel Treatment in Addition to Platinum-Based Therapy. J Clin Oncol 2007; 25:5172-9. [DOI: 10.1200/jco.2007.11.8547] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose To investigate the effect of excision repair cross-complementation group 1 (ERCC1) on treatment response and survival of patients treated with platinum chemotherapy with or without paclitaxel. Patients and Methods Tumor samples from epithelial ovarian cancer patients were evaluated for ERCC1 mRNA expression and a single nucleotide polymorphism at codon 118 (C>T). Of 178 patients treated with postoperative platinum-based chemotherapy, 75 were also given paclitaxel. For all of these patients, ERCC1 expression and genotype were analyzed for associations with treatment response and survival. Results Among the 103 patients treated with platinum without paclitaxel, the C/C genotype, compared with C/T and T/T, was associated with greater risk of disease progression and death (hazard ratio [HR], 1.95, P = .051; HR, 2.01, P = .033, respectively); high levels of ERCC1 mRNA, compared with low levels, were associated with greater risk of disease progression (HR, 2.41; P = .014). Similarly, when the ERCC1 data were combined, patients with the C/C genotype and high ERCC1 expression had greater risk for disease progression (HR, 3.73; P = .003) compared with those with low expression and non-C/C genotype. However, for the 75 patients treated with platinum plus paclitaxel, the C/C genotype and high ERCC1 expression were not associated with poor prognosis, suggesting that paclitaxel may help to alleviate ERCC1-related platinum resistance. Conclusion Ovarian cancer patients with high ERCC1 expression or the C/C genotype at codon 118 may benefit from the combination of platinum and paclitaxel, while those with low ERCC1 expression or the C/T or T/T genotype may respond well to platinum without paclitaxel.
Collapse
Affiliation(s)
- Stephanie Smith
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| | - Dan Su
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| | - Irene A. Rigault de la Longrais
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| | - Peter Schwartz
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| | - Manuela Puopolo
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| | - Thomas J. Rutherford
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| | - Gil Mor
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| | - Herbert Yu
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| | - Dionyssios Katsaros
- From the Departments of Epidemiology and Public Health and Obstetrics and Gynecology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; and the Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer Unit, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Guminski AD, Balleine RL, Chiew YE, Webster LR, Tapner M, Farrell GC, Harnett PR, Defazio A. MRP2 (ABCC2) and cisplatin sensitivity in hepatocytes and human ovarian carcinoma. Gynecol Oncol 2006; 100:239-46. [PMID: 16213010 DOI: 10.1016/j.ygyno.2005.08.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 08/26/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The ABC transporter MRP2 (ABCC2) can mediate cisplatin efflux, and over-expression of MRP2 has been associated with cisplatin resistance in cancer cell lines. The aim of this study was to determine the role of MRP2 in modulating cisplatin cytotoxicity in normal cells as well as the relationship between MRP2 expression and clinical response to platinum-based agents in ovarian cancer. METHODS The effect of absence of MRP2 expression on cisplatin sensitivity was investigated using primary hepatocyte cultures from the TR- rat strain, which is deficient in Mrp2. We also examined MRP2 expression immunohistochemically in human ovarian tumors exhibiting extremes of clinical response to platinum-based chemotherapy, either absolute platin resistance or patients with residual disease after surgery who experienced extremely long complete response to primary platinum-based chemotherapy. RESULTS Primary hepatocyte cultures from Mrp2-deficient TR- rats were over threefold more sensitive to cisplatin and accumulated a twofold greater amount of platinum on DNA that wild-type rat hepatocytes. In human ovarian carcinomas, MRP2 was detected by immunohistochemistry in 3/13 (23%) tumors from patients with absolute platin resistance compared with 5/9 (56%) tumors from patients with prolonged survival following treatment including a platinum-based agent. CONCLUSION These studies indicate that MRP2 may play an important role in modulating normal tissue response to cisplatin. However, MRP2 expression occurred only in a subset of primary ovarian cancers, was frequently aberrant in location and was not correlated with clinical response to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Alexander D Guminski
- Department of Gynaecological Oncology, Westmead Hospital, University of Sydney at Westmead Millennium Institute, WESTMEAD, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Synthesis, characterization and cytotoxicity of some palladium(II), platinum(II), rhodium(I) and iridium(I) complexes of ferrocenylpyridine and related ligands. Crystal and molecular structure of trans-dichlorobis(3-ferrocenylpyridine)palladium(II). J Organomet Chem 2004. [DOI: 10.1016/j.jorganchem.2004.01.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Rodrigues EG, Silva LS, Fausto DM, Hayashi MS, Dreher S, Santos EL, Pesquero JB, Travassos LR, Caires ACF. Cyclopalladated compounds as chemotherapeutic agents: antitumor activity against a murine melanoma cell line. Int J Cancer 2003; 107:498-504. [PMID: 14506753 DOI: 10.1002/ijc.11434] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Palladacycle compounds obtained from N, N-dimethyl-1-phenethylamine (dmpa), phenyl-2-pyridinyl-acetylene and 1-phenyl-3-N, N-dimethylamine-propine, respectively, were complexed to 1, 2 ethanebis (diphenylphosphine) (dppe) ligand to synthesize antitumor cyclopalladated complexes that were tested in vitro and in vivo against syngeneic B16F10-Nex2 murine melanoma cells of low immunogenicity implanted subcutaneously in mice. Complexes were not toxic to mice injected 3 times i.p. with as much as 60 microM/animal/week. Of 3 cyclopalladated complexes that were inhibitory in vitro at low concentrations (<1.25 microM), complex 7a was the most active in vivo, delaying tumor growth and prolonging animal survival. In vitro, binucleate complex 7a caused a collapse of respiratory activity with an abrupt decrease of extracellular acidification on short incubation (up to 100 min), followed by DNA degradation after 24 hr. The apoptosis-like reaction to this Pd-complex was not accompanied by increased levels of caspases 1 and 3. Complex 7a bound to a bacterial plasmid DNA, causing late conformational changes after 24 hr. Two other complexes with different C, N-cycles were also apoptotic and 2 binucleated ones were inactive. These results introduce the palladacycle-dppe complexes as promising antitumor drugs with exquisite structural specificities and for action in vivo and in vitro.
Collapse
Affiliation(s)
- Elaine G Rodrigues
- Unidade de Oncologia Experimental, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Säo Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rosell R, Taron M, Barnadas A, Scagliotti G, Sarries C, Roig B. Nucleotide excision repair pathways involved in Cisplatin resistance in non-small-cell lung cancer. Cancer Control 2003; 10:297-305. [PMID: 12915808 DOI: 10.1177/107327480301000404] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In spite of the growing list of genetic abnormalities identified as being involved in DNA repair pathways that alter chemosensitivity in non-small-cell lung cancer (NSCLC) patients, translational assays have not yet been developed for use in individualized chemotherapy. METHODS In metastatic NSCLC, no single cisplatin-based chemotherapy regimen has been shown to be superior to any other. Although these studies show a small survival tail at 3 years, the majority of patients had a median survival of 8 to 10 months. We review the principal mechanisms of cisplatin resistance, particularly those involved in the nucleotide excision repair (NER) pathways (transcription-coupled repair and global genomic repair). RESULTS ERCC1 is a single-stranded DNA endonuclease that forms a tight heterodimer with xeroderma pigmentosum complementation group F. It incises DNA on the 5' side of a lesion such as cisplatin-DNA adduct. Therefore, overexpression of ERCC1 and other NER enzymes during ovarian cancer chemotherapy with cisplatin appears to be implicated in the formation of cellular and clinical drug resistance. Recently, baseline ERCC1 mRNA overexpression has been related to poor response and survival in cisplatin-treated NSCLC patients. CONCLUSIONS The level of evidence for many assays is limited, and only ERCC1 mRNA levels have been analyzed extensively. The impact of ERCC1 should be fully validated in prospective clinical trials.
Collapse
Affiliation(s)
- Rafael Rosell
- Medical Oncology Service, Hospital Germans Trias i Pujol, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
|