1
|
Alhusayen R, Dienes S, Lam M, Alavi A, Alikhan A, Aleshin M, Bahashwan E, Daveluy S, Goldfarb N, Garg A, Gulliver W, Jaleel T, Kimball AB, Kirchhof MG, Kirby J, Lenczowski J, Lev-Tov H, Lowes MA, Lara-Corrales I, Micheletti R, Okun M, Orenstein L, Poelman S, Piguet V, Porter M, Resnik B, Sibbald C, Shi V, Sayed C, Wong SM, Zaenglein A, Veillette H, Hsiao JL, Naik HB. North American clinical practice guidelines for the medical management of hidradenitis suppurativa in special patient populations. J Am Acad Dermatol 2025; 92:825-852. [PMID: 39725212 DOI: 10.1016/j.jaad.2024.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) affects different patient populations that require unique considerations in their management. However, no HS guidelines for these populations exist. OBJECTIVE To provide evidence-based consensus recommendations for patients with HS in 7 special patient populations: (i) pregnancy, (ii) breastfeeding, (iii) pediatrics, (iv) malignancy, (v) tuberculosis infection, (vi) hepatitis B or C infection, and (vii) HIV disease. METHODS Recommendations were developed using the Grading of Recommendations Assessment, Development, and Evaluation system to ascertain level of evidence and selected through a modified Delphi consensus process. RESULTS One hundred eighteen expert consensus statements are provided for the management of patients with HS across these 7 special patient populations.
Collapse
Affiliation(s)
- Raed Alhusayen
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Serena Dienes
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Megan Lam
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Afsaneh Alavi
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota
| | - Ali Alikhan
- Sutter Medical Foundation, Sacramento, California
| | - Maria Aleshin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Emad Bahashwan
- Division of Dermatology, Faculty of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Steve Daveluy
- Department of Dermatology, Wayne State University School of Medicine, Detroit, Michigan
| | - Noah Goldfarb
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Amit Garg
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Wayne Gulliver
- Department of Dermatology, Memorial University of Newfoundland, St. John's, Canada
| | - Tarannum Jaleel
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina
| | - Alexa B Kimball
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Mark G Kirchhof
- Division of Dermatology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Dermatology, Department of Medicine, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Joslyn Kirby
- Incyte Corporation, Wilmington, Delaware; Department of Dermatology, Penn State Health, Hershey, Pennsylvania
| | | | - Hadar Lev-Tov
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Michelle A Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Irene Lara-Corrales
- Division of Dermatology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robert Micheletti
- Departments of Dermatology and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Lauren Orenstein
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Susan Poelman
- Division of Dermatology, University of Calgary and Beacon Dermatology, Calgary, Alberta, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto and Women's College Hospital, Toronto, Ontario, Canada
| | - Martina Porter
- Department of Dermatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Barry Resnik
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida; Resnik Skin Institute, Miami, Florida
| | - Cathryn Sibbald
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vivian Shi
- Department of Dermatology, University of Washington, Seattle, Washington
| | - Christopher Sayed
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Se Mang Wong
- Department of Dermatology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Zaenglein
- Department of Dermatology, Penn State Health, Hershey, Pennsylvania; Penn State Children's Hospital, Hershey, Pennsylvania
| | - Helene Veillette
- Division of Dermatology, Department of Medicine, CHU de Québec-Université Laval, Québec, Canada
| | - Jennifer L Hsiao
- Department of Dermatology, University of Southern California, Los Angeles, California
| | - Haley B Naik
- Department of Dermatology, University of California, San Francisco, California
| |
Collapse
|
2
|
Stein-Thoeringer CK, Renz BW, De Castilhos J, von Ehrlich-Treuenstätt V, Wirth U, Tschaidse T, Hofmann FO, Koch DT, Beirith I, Ormanns S, Guba MO, Angele MK, Andrassy J, Niess H, D'Haese JG, Werner J, Ilmer M. Microbiome Dysbiosis With Enterococcus Presence in the Upper Gastrointestinal Tract Is a Risk Factor for Mortality in Patients Undergoing Surgery for Pancreatic Cancer. Ann Surg 2025; 281:615-623. [PMID: 38275104 DOI: 10.1097/sla.0000000000006210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Recent retrospective studies suggest a role for distinct microbiota in the perioperative morbidity and mortality of pancreatic head resections. OBJECTIVE We aimed to prospectively investigate the microbial colonization of critical operative sites of pancreatic head resections to identify microbial stratification factors for surgical and long-term oncologic outcomes. METHODS Prospective biomarker study applying 16S rRNA sequencing and microbial culturing to samples collected from various sites of the gastrointestinal tract and surgical sites of patients during pancreatic head resections at a German single high-volume pancreatic center. RESULTS A total of 101 patients were included {38 noncancer, 63 cancer patients [50 pancreatic ductal adenocarcinoma (PDAC) patients]} in the study. In a first data analysis series, 16S rRNA sequencing data were utilized from 96 patients to assess associations of microbiome profiles with clinical parameters and outcomes. In general, microbiome composition varied according to sampling site, cancer, age or preoperative endoscopic retrograde cholangiopancreatography (ERCP) intervention, notably for the bile microbiome. In the PDAC subcohort, the compositional variance of the bile or periampullary microbiome was significantly associated with postoperative complications such as intensive care unit admission; on a taxonomic level we observed Enterococcus spp. to be significantly more abundant in patients developing deep or organ-space surgical site infections (SSI). Elevated Enterococcus relative abundances in the upper gastrointestinal tract, in turn, were associated with 6 months mortality rates. In a second step, we focused on microbiological cultures collected from bile aspirates during surgery and investigated associations with perioperative complications and long-term survival. Notably, Enterococcus spp. were among the most prevalent pathobiont isolates observed in cancer patient bile specimens that were associated with severe SSIs, and thereby elevated mortality rates up to 24 months. Clinically relevant postoperative pancreatic fistulas or severe SSI were found as other major variables determining short-term mortality in this cancer patient cohort. In the context of adverse microbiological factors, a preoperative ERCP was also observed to segregate long-term survival, and it appeared to interact with the presence of Enterococcus spp. as highest mortality rates were observed in PDAC patients with both preoperative ERCP and presence of E. faecalis in bile aspirates. CONCLUSIONS The presence of Enterococcus spp. in bile ducts of PDAC patients undergoing pancreatic surgery represents a significant risk factor for perioperative infections and, thereby, elevated postoperative and long-term mortality. This finding supports previous data on the use of the antibiotic drug piperacillin-tazobactam as appropriate perioperative antibiotic prophylaxis for preventing adverse outcomes after pancreatoduodenectomy.
Collapse
Affiliation(s)
- Christoph K Stein-Thoeringer
- Laboratory of Translational Microbiome Science, Internal Medicine I, University Clinic Tuebingen, Germany
- CMFI Cluster of Excellence, University of Tuebingen, Germany
- DZIF (Deut. Zentrum für Infektionsforschung), HAARBI Partner Site Tuebingen, Germany
| | - Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliana De Castilhos
- Laboratory of Translational Microbiome Science, Internal Medicine I, University Clinic Tuebingen, Germany
| | - Viktor von Ehrlich-Treuenstätt
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Tengis Tschaidse
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Felix O Hofmann
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik T Koch
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Iris Beirith
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Steffen Ormanns
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Markus O Guba
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Martin K Angele
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Hanno Niess
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Dong J, Su T, Wu J, Xiang Y, Song M, He C, Shao L, Yang Y, Chen S. Drug functional remapping: a new promise for tumor immunotherapy. Front Oncol 2025; 15:1519355. [PMID: 40161377 PMCID: PMC11949826 DOI: 10.3389/fonc.2025.1519355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
The research and development of new anti-cancer drugs face challenges such as high costs, lengthy development cycles, and limited data on side effects. In contrast, the clinical safety and side effects of traditional drugs have been well established through long-term use. The development or repurposing of traditional drugs with potential applications in cancer treatment offers an economical, feasible, and promising strategy for new drug development. This article reviews the novel applications of traditional drugs in tumor immunotherapy, discussing how they can enhance tumor treatment efficacy through functional repositioning, while also reducing development time and costs. Recent advancements in cancer immunotherapy have revolutionized treatment options, but resistance to ICIs remains a significant challenge. Drug repurposing has emerged as a promising strategy to identify novel agents that can enhance the efficacy of immunotherapies by overcoming ICI resistance. A study suggests that drug repositioning has the potential to modulate immune cell activity or alter the tumor microenvironment, thereby circumventing the resistance mechanisms associated with immune checkpoint blockade. This approach provides a rapid and cost-effective pathway for identifying therapeutic candidates that can be quickly transitioned into clinical trials. To improve the effectiveness of tumor immunotherapy, it is crucial to explore systematic methods for identifying repurposed drug candidates. Methods such as high-throughput screening, computational drug repositioning, and bioinformatic analysis have been employed to efficiently identify potential candidates for cancer treatment. Furthermore, leveraging databases related to immunotherapy and drug repurposing can provide valuable resources for drug discovery and facilitate the identification of promising compounds. It focuses on the latest advancements in the use of antidiabetic drugs, antihypertensive agents, weight-loss medications, antifungal agents, and antiviral drugs in tumor immunotherapy, examining their mechanisms of action, clinical application prospects, and associated challenges. In this context, our aim is to explore these strategies and highlight their potential for expanding the therapeutic options available for cancer immunotherapy, providing valuable references for cancer research and treatment.
Collapse
Affiliation(s)
- Jiayi Dong
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Su
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiexiong Wu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Xiang
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghan Song
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
| | - Canfeng He
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijuan Shao
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yubin Yang
- Traditional Chinese Medicine Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Size Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Lee D, Liew MS, Fourlanos S, Choi J. Metformin use and pancreatic ductal adenocarcinoma outcomes: a narrative review. ANZ J Surg 2025; 95:313-320. [PMID: 39840695 DOI: 10.1111/ans.19405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Metformin is a diabetes medication with anti-mitotic properties. A narrative review was performed to investigate people using metformin and the risk of developing pancreatic ductal adenocarcinoma (PDAC) as well as survival outcomes in established PDAC. METHODS Relevant studies on metformin use and PDAC were retrieved from PubMed including observational studies on metformin and the risk of developing PDAC and survival outcomes in PDAC, and randomized controlled trials of metformin as a treatment in PDAC. RESULTS Of the 367 studies searched, 26 studies fulfilled the criteria for this review. Metformin was not consistently associated with a reduced risk of developing PDAC. However, metformin use, especially higher cumulative doses, in some studies was associated with longer survival in patients with established PDAC, especially in the subgroup with resectable PDAC. Metformin use was not associated with longer survival in more advanced (non-resectable metastatic) PDAC. CONCLUSION Metformin was not consistently associated with a reduced risk of developing PDAC. Metformin may be associated with overall survival benefits in patients with PDAC including the resectable PDAC subgroup but not in the metastatic PDAC subgroup. The evidence to date does not support the routine use of metformin as an adjuvant therapy for advanced PDAC.
Collapse
Affiliation(s)
- Dooyeon Lee
- Department of Surgery, Western Health, St. Albans, Victoria, Australia
| | - Mun Sem Liew
- Victorian Oncology Care, St John of God Specialist Centre, Berwick, Victoria, Australia
| | - Spiros Fourlanos
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Julian Choi
- Department of Surgery, Western Health, St. Albans, Victoria, Australia
- Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
- Clinical Institute General Surgery and Gastroenterology, Epworth Healthcare, Richmond, Victoria, Australia
| |
Collapse
|
5
|
Ligorio F, Vingiani A, Torelli T, Sposetti C, Drufuca L, Iannelli F, Zanenga L, Depretto C, Folli S, Scaperrotta G, Capri G, Bianchi GV, Ferraris C, Martelli G, Maugeri I, Provenzano L, Nichetti F, Agnelli L, Lobefaro R, Fucà G, Fotia G, Mariani L, Morelli D, Ladisa V, De Santis MC, Lozza L, Trecate G, Belfiore A, Brich S, Bertolotti A, Lorenzini D, Ficchì A, Martinetti A, Sottotetti E, Arata A, Corsetto P, Sorrentino L, Rediti M, Salvadori G, Minucci S, Foiani M, Apolone G, Pagani M, Pruneri G, de Braud F, Vernieri C. Early downmodulation of tumor glycolysis predicts response to fasting-mimicking diet in triple-negative breast cancer patients. Cell Metab 2025; 37:330-344.e7. [PMID: 39694040 DOI: 10.1016/j.cmet.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
In preclinical experiments, cyclic fasting-mimicking diets (FMDs) showed broad anticancer effects in combination with chemotherapy. Among different tumor types, triple-negative breast cancer (TNBC) is exquisitely sensitive to FMD. However, the antitumor activity and efficacy of cyclic FMD in TNBC patients remain unclear. Here, we show that a severely calorie-restricted, triweekly, 5-day FMD regimen results in excellent pathologic complete response (pCR) rates (primary endpoint) and long-term clinical outcomes (secondary endpoints) when combined with preoperative chemotherapy in 30 patients with early-stage TNBC enrolled in the phase 2 trial BREAKFAST. Bulk and single-cell RNA sequencing analysis revealed that highly glycolytic cancer cells, myeloid cells, and pericytes from tumors achieving pCR undergo a significant, early downmodulation of pathways related to glycolysis and pyruvate metabolism. Our findings pave the wave for conducting larger clinical trials to investigate the efficacy of cyclic FMD in early-stage TNBC patients and to validate early changes of intratumor glycolysis as a predictor of clinical benefit from nutrient restriction. This study was registered at Clinicaltrials.gov (NCT04248998).
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Vingiani
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Tommaso Torelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Caterina Sposetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Lorenzo Drufuca
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Fabio Iannelli
- Haematopathogy Division, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Lucrezia Zanenga
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Catherine Depretto
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Secondo Folli
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gianfranco Scaperrotta
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giuseppe Capri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giulia V Bianchi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Cristina Ferraris
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gabriele Martelli
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ilaria Maugeri
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Agnelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giuseppe Fotia
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luigi Mariani
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Daniele Morelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Vito Ladisa
- Hospital Pharmacy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Maria Carmen De Santis
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Laura Lozza
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giovanna Trecate
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Antonino Belfiore
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Silvia Brich
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Alessia Bertolotti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Daniele Lorenzini
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Angela Ficchì
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Antonia Martinetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Elisa Sottotetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Alessio Arata
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Paola Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Luca Sorrentino
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Mattia Rediti
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giulia Salvadori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Giovanni Apolone
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Massimiliano Pagani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Giancarlo Pruneri
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
6
|
Ghiglione N, Abbo D, Bushunova A, Costamagna A, Porporato PE, Martini M. Metabolic plasticity in pancreatic cancer: The mitochondrial connection. Mol Metab 2025; 92:102089. [PMID: 39736443 PMCID: PMC11846432 DOI: 10.1016/j.molmet.2024.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity in pancreatic cancer significantly impacts patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. SCOPE OF THE REVIEW This review explores the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC. We discuss the significance of mitophagy dysregulation in PDAC pathogenesis, emphasizing its influence on treatment responses and prognosis. Furthermore, we analyze the impact of mitochondrial dynamics alterations, including fission and fusion processes, on PDAC progression and tumorigenesis. MAJOR CONCLUSION Targeting mitochondrial metabolism holds promise for advancing PDAC therapeutics. Ongoing clinical trials underscore the therapeutic potential of modulating key regulators of mitochondrial dynamics and mitophagy. Despite inherent challenges, these approaches offer diverse strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Noemi Ghiglione
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Damiano Abbo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Anastasia Bushunova
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy.
| |
Collapse
|
7
|
Wu X, Adame-Garcia SR, Koshizuka K, Vo PTT, Hoang TS, Sato K, Izumi H, Goto Y, Allevato MM, Wood KC, Lippman SM, Gutkind JS. Oncogenic HRAS Induces Metformin Resistance in Head and Neck Cancer by Promoting Glycolytic Metabolism. Cancer Prev Res (Phila) 2024; 17:571-583. [PMID: 39463147 PMCID: PMC11969736 DOI: 10.1158/1940-6207.capr-24-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Metformin administration has recently emerged as a candidate strategy for the prevention of head and neck squamous cell carcinoma (HNSCC). However, the intricate relationship between genetic alterations in HNSCC and metformin sensitivity is still poorly understood, which prevents the stratification of patients, harboring oral premalignant lesions that may benefit from the chemopreventive activity of metformin. In this study, we investigate the impact of prevalent mutations in HNSCC on response to metformin. Notably, we found that the expression of oncogenic HRAS mutants confers resistance to metformin in isogenic HNSCC cell systems, and that HNSCC cells harboring endogenous HRAS mutations display limited sensitivity to metformin. Remarkably, we found that metformin fails to reduce activation of the mTOR pathway in HRAS oncogene-expressing HNSCC cells in vitro and in vivo, correlating with reduced tumor suppressive activity. Mechanistically, we found that this process depends on the ability of HRAS to enhance glycolytic metabolism, thereby suppressing the requirement for oxidative phosphorylation to maintain the cellular energetic balance. Overall, our study revealed that HNSCC cells with oncogenic HRAS mutations exhibit diminished metformin sensitivity, thus shedding light on a potential mechanism of treatment resistance. This finding may also help explain the limited clinical responses to metformin in cancers with RAS mutations. Ultimately, our study underscores the importance of understanding the impact of the genetic landscape in tailoring precision cancer-preventive approaches in the context of HNSCC and other cancers that are characterized by the presence of a defined premalignant state, and therefore, are amenable to cancer interception strategies. Prevention Relevance: Our findings highlight the challenges of using metformin for cancer prevention in RAS-mutant cancers, where elevated glycolysis may reduce drug efficacy. This underscores the need to explore metformin's potential in early, premalignant stages, before metabolic shifts render it less effective.
Collapse
Affiliation(s)
- Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sendi Rafael Adame-Garcia
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pham Thuy Tien Vo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Thomas S. Hoang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Kuniaki Sato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Hiroki Izumi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yusuke Goto
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Michael M. Allevato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Scott M. Lippman
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|
9
|
Bhati FK, Bhat MK. An anti-neoplastic tale of metformin through its transport. Life Sci 2024; 357:123060. [PMID: 39278619 DOI: 10.1016/j.lfs.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Metformin is an attractive candidate drug among all the repurposed drugs for cancer. Extensive preclinical and clinical research has evaluated its efficacy in cancer therapy, revealing a mixed outcome in clinical settings. To fully exploit metformin's therapeutic potential, understanding cellular factors relevant to its transport and accumulation in cancer cells needs to be understood. This review highlights the relevance of metformin transporter status towards its anti-cancer potential. Metformin transporters are regulated at pre-transcriptional, transcriptional, and post-translational levels. Moreover, the tumour microenvironment can also influence metformin accumulation in cancer cells. Also, Metformin treatment can regulate its transporters by altering global DNA methylation, protein acetylation, and transcription factors. Importantly, metformin transporters not only influence chemotherapeutic drug toxicity but are also associated with the prognosis and survival of individuals having cancer. Strategic decisions based on the expression and regulation of metformin transporters holds promise for its therapeutic implications and relevance.
Collapse
Affiliation(s)
- Firoz Khan Bhati
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
10
|
Philip PA, Sahai V, Bahary N, Mahipal A, Kasi A, Rocha Lima CMS, Alistar AT, Oberstein PE, Golan T, Metges JP, Lacy J, Fountzilas C, Lopez CD, Ducreux M, Hammel P, Salem M, Bajor D, Benson AB, Luther S, Pardee T, Van Cutsem E. Devimistat (CPI-613) With Modified Fluorouarcil, Oxaliplatin, Irinotecan, and Leucovorin (FFX) Versus FFX for Patients With Metastatic Adenocarcinoma of the Pancreas: The Phase III AVENGER 500 Study. J Clin Oncol 2024; 42:3692-3701. [PMID: 39088774 DOI: 10.1200/jco.23.02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 08/03/2024] Open
Abstract
PURPOSE Metastatic pancreatic adenocarcinoma (mPC) remains a difficult-to-treat disease. Fluorouarcil, oxaliplatin, irinotecan, and leucovorin (FFX) is a standard first-line therapy for mPC for patients with a favorable performance status and good organ function. In a phase I study, devimistat (CPI-613) in combination with modified FFX (mFFX) was deemed safe and exhibited promising efficacy in mPC. METHODS The AVENGER 500 trial (ClinicalTrials.gov identifier: NCT03504423) is a global, randomized phase III trial conducted at 74 sites across six countries to investigate the efficacy and safety of devimistat in combination with mFFX (experimental arm) compared with standard-dose FFX (control arm) in treatment-naïve patients with mPC. Treatment, administered in once-every-2-weeks cycles until disease progression or intolerable toxicity, included intravenous devimistat at 500 mg/m2 total per day on days 1 and 3 in the experimental arm. The primary end point of the study was overall survival (OS). RESULTS Five hundred and twenty-eight patients were randomly assigned (266 in the experimental arm and 262 in the control arm). The median OS was 11.10 months for devimistat plus mFFX versus 11.73 months for FFX (hazard ratio [HR], 0.95 [95% CI, 0.77 to 1.18]; P = .655) and median progression-free survival was 7.8 months versus 8.0 months, respectively (HR, 0.99 [95% CI, 0.76 to 1.29]; P = .94). Grade ≥3 treatment-emergent adverse events with >10% frequency in the devimistat plus mFFX arm versus the FFX arm were neutropenia (29.0% v 34.5%), diarrhea (11.2% v 19.6%), hypokalemia (13.1% v 14.9%), anemia (13.9% v 13.6%), thrombocytopenia (11.6% v 13.6%), and fatigue (10.8% v 11.5%), respectively. CONCLUSION Devimistat in combination with mFFX did not improve long- and short-term mPC patient outcomes compared with standard FFX. There were no new toxicity signals with the addition of devimistat.
Collapse
Affiliation(s)
- Philip A Philip
- Department of Oncology and Department of Pharmacology, Henry Ford Cancer Institute, Wayne State University School of Medicine, Detroit, MI
| | - Vaibhav Sahai
- University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Nathan Bahary
- Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | - Amit Mahipal
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Anup Kasi
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS
| | - Caio Max S Rocha Lima
- Division of Hematology and Oncology, Atrium Wake Forest Baptist Medical Center, Winston-Salem, NC
| | | | | | - Talia Golan
- Institute of Oncology, Sheba Medical Center, Faculty of Medicine Tel Avi University, Ramat Gan, Israel
| | - Jean-Philippe Metges
- Institut de Cancérologie et d'Hématologie, ARPEGO Network CHU Morvan, Brest, France
| | - Jill Lacy
- Department of Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Christos Fountzilas
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | - Michel Ducreux
- Gustave Roussy, University Paris Saclay, Inserm, U1279, Villejuif, France
| | - Pascal Hammel
- Department of Digestive and Medical Oncology, University Paris-Saclay, Paul Brousse Hospital (AP-HP), Villejuif, France
| | - Mohamed Salem
- Department of Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - David Bajor
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Al B Benson
- Division of Hematology & Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Timothy Pardee
- Division of Hematology and Oncology, Atrium Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Eric Van Cutsem
- University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Li C, Deng Y, Pan Y, Liao X, Xie H, Xue X, Yu S, Yu W, Yu G. Metformin dampens the progression of cholangiofibrosis induced by thioacetamide using deep learning. Heliyon 2024; 10:e37347. [PMID: 39309781 PMCID: PMC11416239 DOI: 10.1016/j.heliyon.2024.e37347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose The consistent use of metformin has been linked to a reduced incidence of neoplastic diseases among diabetic populations. As a preventive intervention, metformin may offer a more favorable risk-benefit profile. Here, we explored the efficacy of metformin in the primary prevention of cholangiofibrosis, which can precede the carcinogen-induced development of cholangiocarcinoma (CCA). Our objective was to assess the potential of metformin to act as an intervention prior to the onset of these conditions. Methods A rat model of thioacetamide (TAA)-induced cholangiofibrosis was utilized to assess the impact of metformin on the induction process of cholangiocarcinoma (CCA). Liver tissues were harvested and analyzed histologically using light microscopy, complemented by a deep-learning convolutional neural network for enhanced evaluation. Additionally, RNA sequencing (RNA-seq) was performed to investigate the genetic alterations associated with metformin treatment in this TAA-induced cholangiofibrosis model. Results In the rat model, the TAA control group exhibited an increased incidence and average count of cholangiofibrosis cases in the liver, with rates of 100 % and an average of 12.0, compared to the metformin-treated group, which showed an incidence of 70 % and an average of 3.3. Notably, the progression from normal cholangioles to cholangiofibrosis was associated with the upregulation of several proteins critical for metabolic processes and the tumor microenvironment. These alterations were significantly mitigated by metformin treatment. Conclusions Long-term metformin use may offer protective benefits against cholangiofibrosis, partially by regulating metabolic processes and improving the tumor microenvironment.
Collapse
Affiliation(s)
- Chaofu Li
- Department of Oncology, Liuzhou Worker's Hospital, Guangxi, 545005, China
| | - Yating Deng
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yating Pan
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xinyi Liao
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Huadong Xie
- Department of Surgery, Liuzhou Worker's Hospital, Guangxi, 545005, China
| | - Xiaoli Xue
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shaoqing Yu
- Allergy and Cancer Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wenlong Yu
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guanzhen Yu
- Allergy and Cancer Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Medical Artificial Intelligence Laboratory, Zhejiang Institute of Digital Media, Chinese Academy of Science, Shaoxing, 312366, China
| |
Collapse
|
12
|
Kraj L, Chmiel P, Śliwczyński A, Szymański Ł, Woźniak K, Słodkowski M, Stokłosa T, Wyrwicz L. Synergistic effects of calcium channel blockers and renin-angiotensin inhibitors with gemcitabine-based chemotherapy on the survival of patients with pancreatic cancer. J Cancer Res Clin Oncol 2024; 150:434. [PMID: 39340700 PMCID: PMC11438632 DOI: 10.1007/s00432-024-05962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE Pancreatic cancer remains a significant public health challenge, with poor long-term outcomes due to the lack of effective treatment options. Repurposing commonly used clinical drugs, such as ACE inhibitors, ARBs, CCBs, and metformin, may enhance the efficacy of chemotherapy and offer a promising therapeutic strategy for improving patient outcomes. METHODS A retrospective analysis of concomitant treatment with ACE-Is, ARBs, CCBs, and metformin alongside gemcitabine chemotherapy in patients with pancreatic cancer was conducted. Treatment responses were evaluated, with overall survival (OS) estimated using the Kaplan-Meier method. Additionally, the Cox proportional hazards model was employed to assess the impact of these specific agents on patient survival. RESULTS 4628 patients with various stages of pancreatic cancer were identified in the database between 2007 and 2016. The estimated overall survival (OS) in the analyzed group was 6.9 months (95% CI 6.4-7). The use of any of the analyzed drugs was associated with a significant improvement in mOS of 7.5 months (95% CI 6.8-7.8) vs. 6.7 months (95% CI 6.4-7.0) for patients who did not have additional treatment (p < 0.0001). ARBs, ACE-Is, CCBs, and metformin varied in their effectiveness in prolonging mOS among patients. The longest mOS of 8.9 months (95% CI 7.7-11.6) was observed in patients receiving additional therapy with ARBs, while the shortest mOS of 7.7 months (95% CI 6.5-8.9) was achieved by patients receiving metformin. In the adjusted Cox analysis, metformin was associated with a significantly weaker effect on mOS (p = 0.029). A particularly interesting trend in prolonging 5-year survival was demonstrated by ARBs and CCBs with 14.1% (95% CI 9-22%) and 14.8% (95% CI 11.1-19.6%), respectively, compared to patients not taking these drugs, who achieved a 5-year OS of 3.8% (95% CI 3.2-4.4%). CONCLUSION Our results demonstrate a significant positive impact of ARBs, ACE inhibitors, and CCBs on survival in patients with pancreatic cancer treated with gemcitabine. The addition of these inexpensive and relatively safe drugs in patients with additional comorbidities may represent a potential therapeutic option in this indication. However, prospective clinical trials to evaluate the optimal patient population and further studies to determine the potential impact of these agents on chemotherapy are necessary.
Collapse
Affiliation(s)
- Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 02-091, Warsaw, Poland.
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552, Garbatka, Poland.
| | - Paulina Chmiel
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552, Garbatka, Poland
| | - Andrzej Śliwczyński
- National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552, Garbatka, Poland
| | - Krzysztof Woźniak
- Department of Oncology, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Maciej Słodkowski
- Department of General, Gastroenterological and Oncological Surgery, Medical University of Warsaw, 02097, Warsaw, Poland
| | - Tomasz Stokłosa
- Department of Tumor Biology, Genetics Medical University of Warsaw, Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology, Radiotherapy Maria Sklodowska-Curie National Cancer Research Institute, Warsaw, Poland
| |
Collapse
|
13
|
van Eijck CWF, Vadgama D, van Eijck CHJ, Wilmink JW. Metformin boosts antitumor immunity and improves prognosis in upfront resected pancreatic cancer: an observational study. J Natl Cancer Inst 2024; 116:1374-1383. [PMID: 38530777 PMCID: PMC11308183 DOI: 10.1093/jnci/djae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Beyond demographic and immune factors, metabolic considerations, particularly metformin's recognized impact in oncology, warrant exploration in treating pancreatic cancer. This study aimed to investigate the influence of metformin on patient survival and its potential correlation with distinct immune profiles in pancreatic ductal adenocarcinoma (PDAC) tumors. METHODS We included 82 upfront resected and 66 gemcitabine-based neoadjuvant chemoradiotherapy (nCRT)-treated patients from the PREOPANC randomized controlled trial (RCT). Transcriptomic NanoString immunoprofiling was performed for a subset of 96 available resected specimens. RESULTS Disparities in survival outcomes and immune profiles were apparent between metformin and non-metformin users in upfront resected patients but lacking in nCRT-treated patients. Compared to non-metformin users, upfront resected metformin users showed a higher median overall survival (OS) of 29 vs 14 months and a better 5-year OS rate of 19% vs 5%. Furthermore, metformin use was a favorable prognostic factor for OS in the upfront surgery group (HR = 0.56; 95% CI = 0.32 to 0.99). Transcriptomic data revealed that metformin users significantly underexpressed genes related to pro-tumoral immunity, including monocyte to M2 macrophage polarization and activation. Furthermore, the relative abundance of anti-inflammatory CD163+ MRC1+ M2 macrophages in non-metformin users and immune-activating CD1A+ CD1C+ dendritic cells in metformin users was heightened (P < .001). CONCLUSION This study unveils immune profile changes resulting from metformin use in upfront resected pancreatic cancer patients, possibly contributing to prolonged survival outcomes. Specifically, metformin use may decrease the abundance and activity of pro-tumoral M2 macrophages and increase the recruitment and function of tumor-resolving DCs, favoring antitumor immunity.[PREOPANC trial EudraCT: 2012-003181-40].
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Disha Vadgama
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Rajagopalan A, Aroori S, Russell TB, Labib PL, Ausania F, Pando E, Roberts KJ, Kausar A, Mavroeidis VK, Marangoni G, Thomasset SC, Frampton AE, Lykoudis P, Maglione M, Alhaboob N, Bari H, Smith AM, Spalding D, Srinivasan P, Davidson BR, Bhogal RH, Dominguez I, Thakkar R, Gomez D, Silva MA, Lapolla P, Mingoli A, Porcu A, Shah NS, Hamady ZZR, Al-Sarrieh B, Serrablo A, Croagh D. Five-year recurrence/survival after pancreatoduodenectomy for pancreatic adenocarcinoma: does pre-existing diabetes matter? Results from the Recurrence After Whipple's (RAW) study. HPB (Oxford) 2024; 26:981-989. [PMID: 38755085 DOI: 10.1016/j.hpb.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) has a complex relationship with pancreatic cancer. This study examines the impact of preoperative DM, both recent-onset and pre-existing, on long-term outcomes following pancreatoduodenectomy (PD) for pancreatic ductal adenocarcinoma (PDAC). METHODS Data were extracted from the Recurrence After Whipple's (RAW) study, a multi-centre cohort of PD for pancreatic head malignancy (2012-2015). Recurrence and five-year survival rates of patients with DM were compared to those without, and subgroup analysis performed to compare patients with recent-onset DM (less than one year) to patients with established DM. RESULTS Out of 758 patients included, 187 (24.7%) had DM, of whom, 47 of the 187 (25.1%) had recent-onset DM. There was no difference in the rate of postoperative pancreatic fistula (DM: 5.9% vs no DM 9.8%; p = 0.11), five-year survival (DM: 24.1% vs no DM: 22.9%; p = 0.77) or five-year recurrence (DM: 71.7% vs no DM: 67.4%; p = 0.32). There was also no difference between patients with recent-onset DM and patients with established DM in postoperative outcomes, recurrence, or survival. CONCLUSION We found no difference in five-year recurrence and survival between diabetic patients and those without diabetes. Patients with pre-existing DM should be evaluated for PD on a comparable basis to non-diabetic patients.
Collapse
Affiliation(s)
| | | | | | - Peter L Labib
- University Hospitals Plymouth NHS Trust, Plymouth, UK
| | | | | | - Keith J Roberts
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | | | | | | | | | | | | | - Hassaan Bari
- Shaukat Khanum Memorial Cancer Hospital, Lahore, Pakistan
| | | | | | | | | | | | - Ismael Dominguez
- Salvador Zubiran National Institute of Health Sciences and Nutrition, Mexico City, Mexico
| | - Rohan Thakkar
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Dhanny Gomez
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Michael A Silva
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Andrea Mingoli
- Policlinico Umberto I University Hospital Sapienza, Rome, Italy
| | - Alberto Porcu
- Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| | - Nehal S Shah
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Zaed Z R Hamady
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | | |
Collapse
|
15
|
Zhou S, Ze X, Feng D, Liu L, Shi Y, Yu M, Huang L, Wang Y, Men H, Wu J, Yuan Z, Zhou M, Xu J, Li X, Yao H. Identification of 6-Fluorine-Substituted Coumarin Analogues as POLRMT Inhibitors with High Potency and Safety for Treatment of Pancreatic Cancer. J Med Chem 2024. [PMID: 39049433 DOI: 10.1021/acs.jmedchem.4c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Increasing evidence has demonstrated that oxidative phosphorylation (OXPHOS) is closely associated with the progression of pancreatic cancer (PC). Given its central role in mitochondrial transcription, the human mitochondrial RNA polymerase (POLRMT) is a promising target for developing PC treatments. Herein, structure-activity relationship exploration led to the identification of compound S7, which was the first reported POLRMT inhibitor possessing single-digit nanomolar potency of inhibiting PC cells proliferation. Mechanistic studies showed that compound S7 exerted antiproliferative effects without affecting the cell cycle, apoptosis, mitochondrial membrane potential (MMP), or intracellular reactive oxygen species (ROS) levels specifically in MIA PaCa-2 cells. Notably, compound S7 inhibited tumor growth in MIA PaCa-2 xenograft tumor model with a tumor growth inhibition (TGI) rate of 64.52% demonstrating significant improvement compared to the positive control (44.80%). In conclusion, this work enriched SARs of POLRMT inhibitors, and compound S7 deserved further investigations of drug-likeness as a candidate for PC treatment.
Collapse
Affiliation(s)
- Shengnan Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Dazhi Feng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Lihua Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Yuning Shi
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Minghui Yu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Lijuan Huang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Yunyue Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Hanlu Men
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Zhenwei Yuan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| |
Collapse
|
16
|
Pujalte‐Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, Mazure NM, Bost F. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol 2024; 18:1719-1738. [PMID: 38214418 PMCID: PMC11223609 DOI: 10.1002/1878-0261.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.
Collapse
Affiliation(s)
- Marc Pujalte‐Martin
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Amine Belaïd
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Simon Bost
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Michel Kahi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Pascal Peraldi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Matthieu Rouleau
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
- CNRS UMR7370, LP2MNiceFrance
| | - Nathalie M. Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Frédéric Bost
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| |
Collapse
|
17
|
Liu R, Li J, Liu L, Wang W, Jia J. Tumor-associated macrophages (TAMs): Constructing an immunosuppressive microenvironment bridge for pancreatic ductal adenocarcinoma (PDAC). CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
18
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Sapoor S, Nageh M, Shalma NM, Sharaf R, Haroun N, Salama E, Pratama Umar T, Sharma S, Sayad R. Bidirectional relationship between pancreatic cancer and diabetes mellitus: a comprehensive literature review. Ann Med Surg (Lond) 2024; 86:3522-3529. [PMID: 38846873 PMCID: PMC11152885 DOI: 10.1097/ms9.0000000000002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Pancreatic cancer (PC) is a fatal malignant disease. It is well known that the relationship between PC and type 2 diabetes mellitus (T2DM) is a complicated bidirectional relationship. The most important factors causing increased risks of pancreatic cancer are hyperglycaemia, hyperinsulinemia, pancreatitis, and dyslipidemia. Genetics and the immune system also play an important role in the relationship between diabetes mellitus and pancreatic cancer. The primary contributors to this association involve insulin resistance and inflammatory processes within the tumour microenvironment. The combination of diabetes and obesity can contribute to PC by inducing hyperinsulinemia and influencing leptin and adiponectin levels. Given the heightened incidence of pancreatic cancer in diabetes patients compared to the general population, early screening for pancreatic cancer is recommended. Diabetes negatively impacts the survival of pancreatic cancer patients. Among patients receiving chemotherapy, it reduced their survival. The implementation of a healthy lifestyle, including weight management, serves as an initial preventive measure to mitigate the risk of disease development. The role of anti-diabetic drugs on survival is controversial; however, metformin may have a positive impact, especially in the early stages of cancer, while insulin therapy increases the risk of PC.
Collapse
Affiliation(s)
| | | | | | - Rana Sharaf
- Faculty of Medicine, Alexandria University, Alexandria
| | - Nooran Haroun
- Faculty of Medicine, Alexandria University, Alexandria
| | - Esraa Salama
- Faculty of Medicine, Alexandria University, Alexandria
| | | | | | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
20
|
Banerjee J, Tiwari AK, Banerjee S. Drug repurposing for cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:123-150. [PMID: 38942535 DOI: 10.1016/bs.pmbts.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In the dynamic landscape of cancer therapeutics, the innovative strategy of drug repurposing emerges as a transformative paradigm, heralding a new era in the fight against malignancies. This book chapter aims to embark on the comprehension of the strategic deployment of approved drugs for repurposing and the meticulous journey of drug repurposing from earlier times to the current era. Moreover, the chapter underscores the multifaceted and complex nature of cancer biology, and the evolving field of cancer drug therapeutics while emphasizing the mandate of drug repurposing to advance cancer therapeutics. Importantly, the narrative explores the latest tools, technologies, and cutting-edge methodologies including high-throughput screening, omics technologies, and artificial intelligence-driven approaches, for shaping and accelerating the pace of drug repurposing to uncover novel cancer therapeutic avenues. The chapter critically assesses the breakthroughs, expanding the repertoire of repurposing drug candidates in cancer, and their major categories. Another focal point of this book chapter is that it addresses the emergence of combination therapies involving repurposed drugs, reflecting a shift towards personalized and synergistic treatment approaches. The expert analysis delves into the intricacies of combinatorial regimens, elucidating their potential to target heterogeneous cancer populations and overcome resistance mechanisms, thereby enhancing treatment efficacy. Therefore, this chapter provides in-depth insights into the potential of repurposing towards bringing the much-needed big leap in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Juni Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
21
|
Kawakita E, Kanasaki K. Cancer biology in diabetes update: Focusing on antidiabetic drugs. J Diabetes Investig 2024; 15:525-540. [PMID: 38456597 PMCID: PMC11060166 DOI: 10.1111/jdi.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The association of type 2 diabetes with certain cancer risk has been of great interest for years. However, the effect of diabetic medications on cancer development is not fully understood. Prospective clinical trials have not elucidated the long-term influence of hypoglycemic drugs on cancer incidence and the safety for cancer-bearing patients with diabetes, whereas numerous preclinical studies have shown that antidiabetic drugs could have an impact on carcinogenesis processes beyond the glycemic control effect. Because there is no evidence of the safety profile of antidiabetic agents on cancer biology, careful consideration would be required when prescribing any medicines to patients with diabetes and existing tumor. In this review, we discuss the potential influence of each diabetes therapy in cancer 'initiation', 'promotion' and 'progression'.
Collapse
Affiliation(s)
- Emi Kawakita
- Department of Internal Medicine 1, Faculty of MedicineShimane UniversityIzumoJapan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Faculty of MedicineShimane UniversityIzumoJapan
- The Center for Integrated Kidney Research and Advance, Faculty of MedicineShimane UniversityIzumoJapan
| |
Collapse
|
22
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
23
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
24
|
Benjamin DJ, Haslam A, Prasad V. Cardiovascular/anti-inflammatory drugs repurposed for treating or preventing cancer: A systematic review and meta-analysis of randomized trials. Cancer Med 2024; 13:e7049. [PMID: 38491813 PMCID: PMC10943275 DOI: 10.1002/cam4.7049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Due to encouraging pre-clinical data and supportive observational studies, there has been growing interest in applying cardiovascular drugs (including aspirin, angiotensin-converting enzyme [ACE] inhibitors, statins, and metformin) approved to treat diseases such as hypertension, hyperlipidemia, and diabetes mellitus to the field of oncology. Moreover, given growing costs with cancer care, these medications have offered a potentially more affordable avenue to treat or prevent recurrence of cancer. We sought to investigate the anti-cancer effects of drugs repurposed from cardiology or anti-inflammatories to treat cancer. We specifically evaluated the following drug classes: HMG-CoA reductase inhibitors (statins), cyclo-oxygenase inhibitors, aspirin, metformin, and both angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors. We also included non-steroidal anti-inflammatory drugs (NSAIDs) because they exert a similar mechanism to aspirin by blocking prostaglandins and reducing inflammation that is thought to promote the development of cancer. METHODS We performed a systematic literature review using PubMed and Web of Science with search terms including "aspirin," "NSAID," "statin" (including specific statin drug names), "metformin," "ACE inhibitors," and "ARBs" (including specific anti-hypertensive drug names) in combination with "cancer." Searches were limited to human studies published between 2000 and 2023. MAIN OUTCOMES AND MEASURES The number and percentage of studies reported positive results and pooled estimates of overall survival, progression-free survival, response, and disease-free survival. RESULTS We reviewed 3094 titles and included 67 randomized clinical trials. The most common drugs that were tested were metformin (n = 21; 30.9%), celecoxib (n = 20; 29.4%), and simvastatin (n = 8; 11.8%). There was only one study that tested cardiac glycosides and none that studied ACE inhibitors. The most common tumor types were non-small-cell lung cancer (n = 19; 27.9%); breast (n = 8; 20.6%), colorectal (n = 7; 10.3%), and hepatocellular (n = 6; 8.8%). Most studies were conducted in a phase II trial (n = 38; 55.9%). Most studies were tested in metastatic cancers (n = 49; 72.1%) and in the first-line setting (n = 36; 521.9%). Four studies (5.9%) were stopped early because of difficulty with accrual. The majority of studies did not demonstrate an improvement in either progression-free survival (86.1% of studies testing progression-free survival) or in overall survival (94.3% of studies testing overall survival). Progression-free survival was improved in five studies (7.4%), and overall survival was improved in three studies (4.4%). Overall survival was significantly worse in two studies (3.8% of studies testing overall survival), and progression-free survival was worse in one study (2.8% of studies testing progression-free survival). CONCLUSIONS AND RELEVANCE Despite promising pre-clinical and population-based data, cardiovascular drugs and anti-inflammatory medications have overall not demonstrated benefit in the treatment or preventing recurrence of cancer. These findings may help guide future potential clinical trials involving these medications when applied in oncology.
Collapse
Affiliation(s)
| | - Alyson Haslam
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUnited States
| | - Vinay Prasad
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUnited States
| |
Collapse
|
25
|
Gaertner F, Preissner S, Heiland M, Preissner R, Wüster J. Beneficial Effect of Metformin on the Five-Year Survival in about 40,000 Patients with Head and Neck Cancer. Cancers (Basel) 2024; 16:982. [PMID: 38473343 DOI: 10.3390/cancers16050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Even in times of new therapy regimes, the overall survival of patients with head and neck cancer remains low. Since the previous studies showed the beneficial effect of metformin medication on the survival of patients with cancer, our objective was to investigate if-and in which way-metformin medication affects the overall survival of patients with head and neck cancer. METHODS Clinical data pertaining to patients diagnosed with head and neck cancer (International Classification of Diseases 10 codes C00-C14, C31, and C32) were retrospectively retrieved from the TriNetX network (TriNetX, Cambridge, MA, USA). The initial cohort extracted from the network was stratified into two groups: patients on metformin medication (cohort I), and individuals not on metformin medication (cohort II). The matching criteria included age, gender, BMI, type 2 diabetes, and risk factors, such as nicotine and alcohol abuse/dependence. Kaplan-Meier analysis, risk analysis, and the calculation of odds and hazard ratios were conducted. Additionally, the Hemoglobin A1c values were subject to analysis. RESULTS Following matching, each cohort comprised 20,416 patients. Cohort I exhibited a higher five-year survival rate at 75.3%, in contrast to cohort II, which registered a rate of 69.8%. The odds ratio was 0.79 (95% CI = 0.75-0.83), and the hazard ratio was 0.78 (95% CI = 0.75-0.82). CONCLUSION Metformin medication may correlate with improved five-year survival rates in patients with head and neck cancer. Since potentially influencing factors such as comorbidities and the initial tumor stage were not available, the results of our retrospectively conducted study must be interpreted with caution.
Collapse
Affiliation(s)
- Florian Gaertner
- Department of Oral and Maxillofacial Surgery, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Saskia Preissner
- Department of Oral and Maxillofacial Surgery, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Philippstr. 12, 10115 Berlin, Germany
| | - Jonas Wüster
- Department of Oral and Maxillofacial Surgery, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
26
|
Zhang J, Wang Y, Wang L, You L, Zhang T. Pancreatic ductal adenocarcinoma chemoresistance: From metabolism reprogramming to novel treatment. Chin Med J (Engl) 2024; 137:408-420. [PMID: 37545027 PMCID: PMC10876258 DOI: 10.1097/cm9.0000000000002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 08/08/2023] Open
Abstract
ABSTRACT As pancreatic cancer (PC) is highly malignant, its patients tend to develop metastasis at an early stage and show a poor response to conventional chemotherapies. First-line chemotherapies for PC, according to current guidelines, include fluoropyrimidine- and gemcitabine-based regimens. Accumulating research on drug resistance has shown that biochemical metabolic aberrations in PC, especially those involving glycolysis and glutamine metabolism, are highly associated with chemoresistance. Additionally, lipid metabolism is a major factor in chemoresistance. However, emerging compounds that target these key metabolic pathways have the potential to overcome chemoresistance. This review summarizes how PC develops chemoresistance through aberrations in biochemical metabolism and discusses novel critical targets and pathways within cancer metabolism for new drug research.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yutong Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lejunzi Wang
- Department of Anaesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Immunology Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
27
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Gong R, Hu Y, Yu Q, Fang L, Ren H. Metabolic signatures in pancreatic ductal adenocarcinoma: diagnostic and therapeutic implications. JOURNAL OF PANCREATOLOGY 2023; 6:185-195. [DOI: 10.1097/jp9.0000000000000146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the prototypical aggressive cancer that develops in nutrient-deficient and hypoxic microenvironment. PDAC overcomes these restrictions by employing unconventional tactics for the procurement and usage of fuel sources. The substantial reprogramming of PDAC cell metabolism is driven by oncogene-mediated cell-autonomous pathways. PDAC cells use glucose, glutamine, and lipids for energy and depend on autophagy and macropinocytosis for survival and growth. They also interact metabolically with non-cancerous cells, aiding tumor progression. Many clinical trials focusing on altered metabolism are ongoing. Understanding the metabolic regulation of PDAC cells will not only help to increase understanding of the mechanisms of disease progression but also provide insights for the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Ruining Gong
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yonglu Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Yu
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - He Ren
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
29
|
Huang Y, Gong P, Su L, Zhang M. Cuproptosis-related lncRNA scoring system to predict the clinical outcome and immune landscape in pancreatic adenocarcinoma. Sci Rep 2023; 13:20870. [PMID: 38012210 PMCID: PMC10682027 DOI: 10.1038/s41598-023-47223-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
Cuproptosis is a recently discovered novel programmed cell death pathway that differs from traditional programmed cell death and has an important role in cancer and immune regulation. Long noncoding RNA (lncRNA) is considered new potential prognostic biomarkers in pancreatic adenocarcinoma (PAAD). However, the prognostic role and immune landscape of cuproptosis-related lncRNA in PAAD remain unclear. The transcriptome and clinical data of PAAD were obtained from The Cancer Genome Atlas (TCGA) database. Cuproptosis-related lncRNA was identified using Pearson correlation analysis. The optimal lncRNA was screened by Cox and the Least Absolute Shrinkage and Selection Operator (LASSO) regression mode, and for the construction of risk scoring system. PAAD patients were divided into high- and low-risk groups according to the risk score. Clinicopathological parameter correlation analysis, univariate and multivariate Cox regression, time-dependent receiver operating characteristic (ROC) curves, and nomogram were performed to evaluate the model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore differences in biological function between different risk groups. Single-sample gene set enrichment analysis (ssGSEA) and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm were used to analyze the differences in tumor immune microenvironment (TIME) in different risk groups of PAAD. Additionally, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to predict immunotherapy response and identify potential immune beneficiaries. Immune checkpoints and tumor mutation burden (TMB) were also systematically analyzed. Finally, drug sensitivity analysis was used to explore the reactivity of different drugs in high- and low-risk groups to provide a reference for the selection of precise therapeutic drugs. Six cuproptosis-related lncRNAs (AL117335.1, AC044849.1, AL358944.1, ZNF236-DT, Z97832.2, and CASC8) were used to construct risk model. Survival analysis showed that overall survival and progression-free survival in the low-risk group were better than those in the high-risk group, and it is suitable for PAAD patients with different clinical characteristics. Univariate and multifactorial Cox regression analysis showed that risk score was an independent prognostic factor in PAAD patients. ROC analysis showed that the AUC values of the risk score in 1 year, 3 years and 5 years were 0.707,0.762 and 0.880, respectively. Nomogram showed that the total points of PAAD patients at 1 year, 3 years, and 5 years were 0.914,0.648, and 0.543. GO and KEGG analyses indicated that the differential genes in the high- and low-risk groups were associated with tumor proliferation and metastasis and immune regulatory pathway. Immune correlation analysis showed that the amount of pro-inflammatory cells, including CD8+ T cells, was significantly higher in the low-risk group than in the high-risk group, and the expression of immune checkpoint genes, including PD-1 and CTLA-4, was increased in the low-risk group. TIDE analysis suggests that patients in the low-risk group may benefit from immunotherapy. Finally, there was significant variability in multiple chemotherapeutic and targeted drugs across the risk groups, which informs our clinical drug selection. Our cuproptosis-related lncRNA scoring system (CRLss) could predict the clinical outcome and immune landscape of PAAD patients, identify the potential beneficiaries of immunotherapy, and provide a reference for precise therapeutic drug selection.
Collapse
Affiliation(s)
- Yi Huang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping Gong
- Internal Medicine Department of Oncology, Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, China
| | - Li Su
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
30
|
Chen M, Li Y, Liu Y, Jia B, Liu X, Ma T. Carbonized polymer dots derived from metformin and L-arginine for tumor cell membrane- and mitochondria-dual targeting therapy. NANOSCALE 2023; 15:17922-17935. [PMID: 37902070 DOI: 10.1039/d3nr04145j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Metformin has demonstrated antitumor potential in clinical studies; however, achieving optimal antitumor effects requires administering an extremely safe medication dose. To enhance the efficacy and reduce dosage requirements, we propose the creation of large-molecule drugs through the combination of small-molecule drugs. In this study, we developed novel polymer dots, referred to as MA-dots, with sizes of approximately 5 nm, featuring dual targeting capabilities for tumor cell membranes and mitochondria. MA-dots were synthesized using metformin and L-arginine via a rapid microwave-assisted method. Notably, the resulting MA-dots (with a half maximal inhibitory concentration (IC50) of 93.60 μg mL-1) exhibited more than a 12-fold increase in antitumor activity compared to the raw metformin material (IC50 = 1159.00 μg mL-1) over a 24-hour period. In addition, our MA-dots outperformed most metformin-derived nanodrugs in terms of antitumor efficacy. Furthermore, oral gavage treatment with MA-dots led to the suppression of A549 (lung cancer cell lines) tumor growth in vivo. Mechanistic investigations revealed that MA-dots bound to the large neutral amino acid transporter 1 (LAT1) proteins, which are overexpressed in malignant tumor cell membranes. Moreover, these MA-dots accumulated within the mitochondria, leading to increased production of reactive oxygen species (ROS), mitochondrial damage, and disruption of energy metabolism by modulating the 5'-adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in tumor cells. This cascade of events triggers cell-cycle arrest and apoptosis. In summary, this study presented a rapid method for fabricating a novel nanoderivative, MA-dots, capable of both tumor targeting and exerting tumor-suppressive effects.
Collapse
Affiliation(s)
- Manling Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, P. R. China.
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, P. R. China
| | - Yangcheng Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, Liaoning, P. R. China
| | - Baohua Jia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Xue Liu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, P. R. China.
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
31
|
Alfaro I, Vega M, Romero C, Garrido MP. Mechanisms of Regulation of the Expression of miRNAs and lncRNAs by Metformin in Ovarian Cancer. Pharmaceuticals (Basel) 2023; 16:1515. [PMID: 38004379 PMCID: PMC10674581 DOI: 10.3390/ph16111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecological malignancies. The use of biological compounds such as non-coding RNAs (ncRNAs) is being considered as a therapeutic option to improve or complement current treatments since the deregulation of ncRNAs has been implicated in the pathogenesis and progression of OC. Old drugs with antitumoral properties have also been studied in the context of cancer, although their antitumor mechanisms are not fully clear. For instance, the antidiabetic drug metformin has shown pleiotropic effects in several in vitro models of cancer, including OC. Interestingly, metformin has been reported to regulate ncRNAs, which could explain its diverse effects on tumor cells. In this review, we discuss the mechanism of epigenetic regulation described for metformin, with a focus on the evidence of metformin-dependent microRNA (miRNAs) and long non-coding RNA (lncRNAs) regulation in OC.
Collapse
Affiliation(s)
- Ignacio Alfaro
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Maritza P. Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
32
|
Mohammad AH, Jatana S, Ruiz-Barerra MA, Khalaf R, Al-Saadi T, Diaz RJ. Metformin use is associated with longer survival in glioblastoma patients with MGMT gene silencing. J Neurooncol 2023; 165:209-218. [PMID: 37889443 DOI: 10.1007/s11060-023-04485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE New treatments are needed to improve the overall survival of patients with glioblastoma Metformin is known for anti-tumorigenic effects in cancers, including breast and pancreas cancers. In this study, we assessed the association between metformin use and overall survival in glioblastoma patients. METHODS We retrospectively studied 241 patients who underwent surgery at diagnosis of glioblastoma between 2014 and 2018. Metformin was used for pre-existing type 2 diabetes mellitus or in the prevention or management of glucocorticoid induced hyperglycemia. Kaplan-Meier curves and log-rank p test were used for univariate analysis. Cox-proportional hazards model was used to generate adjusted hazard ratios for multivariate analysis. RESULTS Metformin use was associated with longer survival in patients with tumors that had a methylated O6-methylguanine DNA methyltransferase gene (MGMT) promoter (484 days 95% CI: 56-911 vs. 394 days 95% CI: 249-538, Log-Rank test: 6.5, p = 0.01). Cox regression analysis shows that metformin associates with lower risk of death at 2 years in patients with glioblastoma containing a methylated MGMT promoter (aHR = 0.497, 95% CI 0.26-0.93, p = 0.028). CONCLUSION Our findings suggest a survival benefit with metformin use in patients with glioblastomas having methylation of the MGMT promoter.
Collapse
Affiliation(s)
| | | | - Miguel Angel Ruiz-Barerra
- Neuro-Oncology Research Group, National Institute of Cancer, Bogotá, Colombia
- Department of Neurosurgery, National Institute of Cancer, Bogotá, Colombia
| | - Roy Khalaf
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Tariq Al-Saadi
- Faculty of Medicine, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute - McGill University Health Centre, Montreal, Canada
| | - Roberto J Diaz
- Faculty of Medicine, McGill University, Montreal, Canada.
- Department of Neurology and Neurosurgery, Montreal Neurological Institute - McGill University Health Centre, Montreal, Canada.
- Neurosurgical Oncology, Department of Neurology and Neurosurgery, Montreal Neurological Hospital - McGill University Health Centre, Montreal, Canada.
- Neurosurgical Oncology, Department of Neurology and Neurosurgery, Montreal Neurological Hospital, Faculty of Medicine, Faculty of Medicine, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
33
|
Elebo N, Abdel-Shafy EA, Cacciatore S, Nweke EE. Exploiting the molecular subtypes and genetic landscape in pancreatic cancer: the quest to find effective drugs. Front Genet 2023; 14:1170571. [PMID: 37790705 PMCID: PMC10544984 DOI: 10.3389/fgene.2023.1170571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a very lethal disease that typically presents at an advanced stage and is non-compliant with most treatments. Recent technologies have helped delineate associated molecular subtypes and genetic variations yielding important insights into the pathophysiology of this disease and having implications for the identification of new therapeutic targets. Drug repurposing has been evaluated as a new paradigm in oncology to accelerate the application of approved or failed target-specific molecules for the treatment of cancer patients. This review focuses on the impact of molecular subtypes on key genomic alterations in PDAC, and the progress made thus far. Importantly, these alterations are discussed in light of the potential role of drug repurposing in PDAC.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ebtesam A. Abdel-Shafy
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- National Research Centre, Cairo, Egypt
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
34
|
Pîrvu EE, Severin E, Pătru RI, Niță I, Toma SA, Macarie RR, Cocioabă CE, Florescu I, Coniac S. Correlations between Demographic, Clinical, and Paraclinical Variables and Outcomes in Patients with KRAS-Mutant or KRAS Wild-Type Metastatic Colorectal Cancer-A Retrospective Study from a Tertiary-Level Center in Romania. Diagnostics (Basel) 2023; 13:2930. [PMID: 37761297 PMCID: PMC10528401 DOI: 10.3390/diagnostics13182930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a significant global public health concern and its characteristics in Eastern Europe are underexplored. In this retrospective study, data of 225 patients with metastatic colorectal cancer (mCRC) from the Colțea Clinical Hospital's Oncology Department in Bucharest were analyzed between 2015 and 2023. They were divided into two groups based on the presence of KRAS mutation. The primary objective of the study was to investigate whether the presence of KRAS mutations influenced the prognosis of mCRC and to identify any demographic, clinical, or paraclinical factors associated with KRAS mutations in stage IV CRC. The overall survival for the entire study population was 29 months. There was a trend towards increased survival in the KRAS wild-type group (31 months) compared to the KRAS-mutant group (26 months), but this difference did not reach statistical significance. We found that lower levels of education, advanced T stage, advanced N stage, and M1 stage at diagnosis negatively impacted prognosis. Real-world data are crucial in shaping public policy strategies to better support patients with metastatic CRC. Understanding the correlations between the demographic, clinical, and paraclinical variables and the outcomes in mCRC patients with KRAS-mutant and KRAS wild-type colorectal cancer is essential for improving patient care and treatment strategies in Romania and beyond.
Collapse
Affiliation(s)
- Edvina Elena Pîrvu
- Department of Genetics, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Medical Oncology, “Coltea” Clinical Hospital, 030167 Bucharest, Romania
| | - Emilia Severin
- Department of Genetics, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Raluca Ileana Pătru
- Department of Medical Oncology, “Coltea” Clinical Hospital, 030167 Bucharest, Romania
| | - Irina Niță
- Department of Medical Oncology, Medicover Hospital, 020331 Bucharest, Romania
| | - Stefania Andreea Toma
- Department of Medical Oncology, Ponderas Academic Hospital, 014142 Bucharest, Romania
| | - Roxana Rodica Macarie
- Department of Medical Oncology, “Coltea” Clinical Hospital, 030167 Bucharest, Romania
| | | | - Ioana Florescu
- Department of Medical Oncology, “Coltea” Clinical Hospital, 030167 Bucharest, Romania
| | - Simona Coniac
- Department of Medical Oncology, “Coltea” Clinical Hospital, 030167 Bucharest, Romania
| |
Collapse
|
35
|
Abdelmoneim M, Aboalela MA, Naoe Y, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Takido Y, Kodera Y, Kasuya H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:13353. [PMID: 37686159 PMCID: PMC10487782 DOI: 10.3390/ijms241713353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Mona Alhussein Aboalela
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Patricia Angela Sibal
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yuhei Takido
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| |
Collapse
|
36
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
37
|
Tavares-Valente D, Cannone S, Greco MR, Carvalho TMA, Baltazar F, Queirós O, Agrimi G, Reshkin SJ, Cardone RA. Extracellular Matrix Collagen I Differentially Regulates the Metabolic Plasticity of Pancreatic Ductal Adenocarcinoma Parenchymal Cell and Cancer Stem Cell. Cancers (Basel) 2023; 15:3868. [PMID: 37568684 PMCID: PMC10417137 DOI: 10.3390/cancers15153868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate of less than 10 percent largely due to the intense fibrotic desmoplastic reaction, characterized by high levels of extracellular matrix (ECM) collagen I that constitutes a niche for a subset of cancer cells, the cancer stem cells (CSCs). Cancer cells undergo a complex metabolic adaptation characterized by changes in metabolic pathways and biosynthetic processes. The use of the 3D organotypic model in this study allowed us to manipulate the ECM constituents and mimic the progression of PDAC from an early tumor to an ever more advanced tumor stage. To understand the role of desmoplasia on the metabolism of PDAC parenchymal (CPC) and CSC populations, we studied their basic metabolic parameters in organotypic cultures of increasing collagen content to mimic in vivo conditions. We further measured the ability of the bioenergetic modulators (BMs), 2-deoxyglucose, dichloroacetate and phenformin, to modify their metabolic dependence and the therapeutic activity of paclitaxel albumin nanoparticles (NAB-PTX). While all the BMs decreased cell viability and increased cell death in all ECM types, a distinct, collagen I-dependent profile was observed in CSCs. As ECM collagen I content increased (e.g., more aggressive conditions), the CSCs switched from glucose to mostly glutamine metabolism. All three BMs synergistically potentiated the cytotoxicity of NAB-PTX in both cell lines, which, in CSCs, was collagen I-dependent and the strongest when treated with phenformin + NAB-PTX. Metabolic disruption in PDAC can be useful both as monotherapy or combined with conventional drugs to more efficiently block tumor growth.
Collapse
Affiliation(s)
- Diana Tavares-Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga, Portugal
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Stefania Cannone
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Tiago Miguel Amaral Carvalho
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| |
Collapse
|
38
|
Goodarzi MO, Petrov MS. Diabetes of the Exocrine Pancreas: Implications for Pharmacological Management. Drugs 2023:10.1007/s40265-023-01913-5. [PMID: 37410209 PMCID: PMC10361873 DOI: 10.1007/s40265-023-01913-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Post-pancreatitis diabetes mellitus, pancreatic cancer-related diabetes, and cystic fibrosis-related diabetes are often underappreciated. As a result, a substantial proportion of people with these sub-types of diabetes receive antidiabetic medications that may be suboptimal, if not harmful, in the context of their underlying disease of the exocrine pancreas. The present article delineates both classical (biguanides, insulin, sulfonylureas, α-glucosidase inhibitors, thiazolidinediones, and meglitinides) and newer (glucagon-like peptide-1 receptor agonists, amylin analogs, dipeptidyl peptidase-4 inhibitors, sodium-glucose co-transporter-2 inhibitors, D2 receptor agonists, bile acid sequestrants, and dual glucagon-like peptide-1 receptor and glucose-dependent insulinotropic polypeptide receptor co-agonists) therapies and provides recommendations for managing people with diabetes of the exocrine pancreas based on the most up-to-date clinical evidence. Also, several emerging directions (lipid-enriched pathways, Y4 receptor agonism, glucagon-like peptide-1 and glucagon receptor co-agonism) are presented with a view to informing the process of new drug discovery and development.
Collapse
Affiliation(s)
- Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
39
|
Hua Y, Zheng Y, Yao Y, Jia R, Ge S, Zhuang A. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. J Transl Med 2023; 21:403. [PMID: 37344841 DOI: 10.1186/s12967-023-04263-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Metformin is a well-known anti-diabetic drug that has been repurposed for several emerging applications, including as an anti-cancer agent. It boasts the distinct advantages of an excellent safety and tolerability profile and high cost-effectiveness at less than one US dollar per daily dose. Epidemiological evidence reveals that metformin reduces the risk of cancer and decreases cancer-related mortality in patients with diabetes; however, the exact mechanisms are not well understood. Energy metabolism may be central to the mechanism of action. Based on altering whole-body energy metabolism or cellular state, metformin's modes of action can be divided into two broad, non-mutually exclusive categories: "direct effects", which induce a direct effect on cancer cells, independent of blood glucose and insulin levels, and "indirect effects" that arise from systemic metabolic changes depending on blood glucose and insulin levels. In this review, we summarize an updated account of the current knowledge on metformin antitumor action, elaborate on the underlying mechanisms in terms of the hallmarks of cancer, and propose potential applications for repurposing metformin for cancer therapeutics.
Collapse
Affiliation(s)
- Yu Hua
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
40
|
Han R, Li J, Wang Y, He T, Zheng J, He Y. Low BMI patients with advanced EGFR mutation-positive NSCLC can get a better outcome from metformin plus EGFR-TKI as first-line therapy: A secondary analysis of a phase 2 randomized clinical trial. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:119-124. [PMID: 39170825 PMCID: PMC11332817 DOI: 10.1016/j.pccm.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 08/23/2024]
Abstract
Background The synergistic association between metformin and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has been confirmed in in vitro studies. It is still controversial which patients can benefit from metformin plus EGFR-TKIs treatment. Body mass index (BMI) was proved to be independently associated with prolonged progression-free survival (PFS) and overall survival (OS). This study aimed to investigate whether BMI is associated with the synergistic effect of metformin and EGFR-TKIs in advanced EGFR mutation (EGFRm)-positive non-small cell lung cancer (NSCLC) among nondiabetic Asian population. Methods We performed a post hoc analysis of a prospective, double-blind phase II randomized clinical trial (COAST, NCT01864681), which enrolled 224 patients without diabetes with treatment-naïve stage IIIB-IV EGFRm NSCLC. We stratified patients into those with a high BMI (≥24 kg/m2) and those with a low BMI (<24 kg/m2) to allow an analysis of the difference in PFS and OS between the two groups. The PFS and OS were analyzed using Kaplan-Meier curves, and the differences between groups were compared using log-rank test. Results In the univariate analysis, patients who had a high BMI (n = 56) in the gefitinib + metformin group (n = 28) did not have a better PFS (8.84 months vs. 11.67 months; P = 0.351) or OS (15.58 months vs. 24.36 months; P = 0.095) than those in the gefitinib + placebo group (n = 28). Similar results were also observed in the low-BMI groups. Strikingly, in the metformin plus gefitinib group, patients who had low BMI (n = 69) showed significantly better OS than those with high BMI (24.89 months [95% CI, 20.68 months-not reached] vs. 15.58 months [95% CI, 13.78-31.53 months]; P = 0.007), but this difference was not observed in PFS (10.78 months vs. 8.84 months; P = 0.285). Conclusions Our study showed that nondiabetic Asian advanced NSCLC patients with EGFR mutations who have low BMI seem to get better OS from metformin plus EGFR-TKI treatment.
Collapse
Affiliation(s)
| | | | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Tingting He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
41
|
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E, Vicente-Romero J. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers (Basel) 2023; 15:cancers15112972. [PMID: 37296934 DOI: 10.3390/cancers15112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Quality pharmacological treatment can improve survival in many types of cancer. Drug repurposing offers advantages in comparison with traditional drug development procedures, reducing time and risk. This systematic review identified the most recent randomized controlled clinical trials that focus on drug repurposing in oncology. We found that only a few clinical trials were placebo-controlled or standard-of-care-alone-controlled. Metformin has been studied for potential use in various types of cancer, including prostate, lung, and pancreatic cancer. Other studies assessed the possible use of the antiparasitic agent mebendazole in colorectal cancer and of propranolol in multiple myeloma or, when combined with etodolac, in breast cancer. We were able to identify trials that study the potential use of known antineoplastics in other non-oncological conditions, such as imatinib for severe coronavirus disease in 2019 or a study protocol aiming to assess the possible repurposing of leuprolide for Alzheimer's disease. Major limitations of these clinical trials were the small sample size, the high clinical heterogeneity of the participants regarding the stage of the neoplastic disease, and the lack of accounting for multimorbidity and other baseline clinical characteristics. Drug repurposing possibilities in oncology must be carefully examined with well-designed trials, considering factors that could influence prognosis.
Collapse
Affiliation(s)
- Ignatios Ioakeim-Skoufa
- WHO Collaborating Centre for Drug Statistics Methodology, Department of Drug Statistics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, NO-0213 Oslo, Norway
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Natalia Tobajas-Ramos
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Enrica Menditto
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Mercedes Aza-Pascual-Salcedo
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Primary Care Pharmacy Service Zaragoza III, Aragon Health Service (SALUD), ES-50017 Zaragoza, Spain
| | - Antonio Gimeno-Miguel
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
| | - Valentina Orlando
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Francisca González-Rubio
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
| | - Ana Fanlo-Villacampa
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Carmen Lasala-Aza
- Pharmacy Service, Virgen de la Victoria University Hospital, ES-29010 Malaga, Spain
| | - Ewelina Ostasz
- Rehabilitation Centre Vikersund Bad AS, NO-3370 Vikersund, Norway
| | - Jorge Vicente-Romero
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| |
Collapse
|
42
|
Duan X, Liao B, Liu X, Chen R. Efficacy of metformin adjunctive therapy as the treatment for non-diabetic patients with advanced non-small cell lung cancer: A Systematic review and Meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:45. [PMID: 37405073 PMCID: PMC10315409 DOI: 10.4103/jrms.jrms_792_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/19/2023] [Indexed: 07/06/2023]
Abstract
Background Currently, the anticancer effects of metformin on different types of lung cancer have been frequently studied. However, the relationship between metformin and prognosis in nondiabetic patients with lung cancer remains controversial. To systematically evaluate the efficacy of metformin adjunctive therapy as the treatment for nondiabetic patients with advanced non-small cell lung cancer (NSCLC) to provide an evidence-based reference for clinical medication. Materials and Methods The literatures related to Phase II or III randomized controlled trials (RCTs) of metformin adjunctive therapy in nondiabetic patients with advanced NSCLC, including EMBASE, PubMed, the Cochrane Library, and Scopus database, were retrieved by computer, and the search time ranged from January 2017 to August 2022. The risk of bias assessment tool recommended by Cochrane Systematic Evaluator Manual 5.1.0 was used to evaluate the quality of the RCTs included. Rev Man 5.3 software and STATA15.0 were used for meta-analysis. Results A total of 8 studies were included (925 patients). Meta-analysis results showed that there were no significant differences in progression-free survival (PFS) (hazard ratio [HR] = 0.95, 95% confidence interval [CI]: 0.66-1.36, P = 0.77), overall survival (OS) (HR = 0.89, 95% CI: 0.61-1.30, P = 0.55, n =7), objective response rate (ORR) (odds ratio [OR] = 1.37, 95% CI: 0.76-2.46, P = 0.30), and 1-year PFS rate (OR = 0.87, 95% CI: 0.39-1.94, P = 0.73, n = 3). Sensitivity analysis showed that PFS and OS indexes were stable. Conclusion Metformin adjunctive therapy can improve the DCR of nondiabetic patients with advanced NSCLC. In addition, the patients cannot obtain a prolonged PFS, OS, 1-year PFS rate, and higher ORR rate.
Collapse
Affiliation(s)
- Xueyu Duan
- College of Pharmacy, Dali University, Dali, China
- Department of Pharmacy, The Third People's Hospital of Yunnan, Kunming, Yunnan Province, China
| | - Binbin Liao
- College of Pharmacy, Dali University, Dali, China
| | - Xiaobo Liu
- College of Pharmacy, Dali University, Dali, China
| | - Ruixiang Chen
- Department of Pharmacy, The Third People's Hospital of Yunnan, Kunming, Yunnan Province, China
| |
Collapse
|
43
|
Lord SR, Harris AL. Is it still worth pursuing the repurposing of metformin as a cancer therapeutic? Br J Cancer 2023; 128:958-966. [PMID: 36823364 PMCID: PMC10006178 DOI: 10.1038/s41416-023-02204-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Over the past 15 years, there has been great interest in the potential to repurpose the diabetes drug, metformin, as a cancer treatment. However, despite considerable efforts being made to investigate its efficacy in a number of large randomised clinical trials in different tumour types, results have been disappointing to date. This perspective article summarises how interest initially developed in the oncological potential of metformin and the diverse clinical programme of work to date including our contribution to establishing the intra-tumoral pharmacodynamic effects of metformin in the clinic. We also discuss the lessons that can be learnt from this experience and whether a further clinical investigation of metformin in cancer is warranted.
Collapse
Affiliation(s)
- Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
44
|
Wang Z, Wu B, Nie G, Wei J, Li Y. Regulation of metabolism in pancreatic ductal adenocarcinoma via nanotechnology-enabled strategies. Cancer Lett 2023; 560:216138. [PMID: 36934836 DOI: 10.1016/j.canlet.2023.216138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with insidious onset and early distal metastasis. Metabolic reprogramming, the autonomous changes in cellular bioenergetics driven by aberrant genetic events and crosstalk between cancer and non-cancer cells in the desmoplastic microenvironment, is pivotal for the rapid progression of PDAC. As an attractive therapeutic target, nucleoside metabolism is regulated by various anti-metabolic drugs for the clinical treatment of PDAC. Despite various challenges, such as poor drug delivery efficiency and off-target side effects, metabolic modification and intervention are emerging as promising strategies for PDAC therapy, enabled by the rapid development of nanotechnology-based drug delivery strategies. In this review, we discuss the metabolic characteristics of PDAC and highlight how the development of nanomedicine has boosted the development of new therapeutics for PDAC by modulating critical targets in metabolic reprogramming.
Collapse
Affiliation(s)
- Zhiqin Wang
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Bowen Wu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Guangjun Nie
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, 510530, PR China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, PR China.
| | - Yiye Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| |
Collapse
|
45
|
Micha JP, Rettenmaier MA, Bohart RD, Goldstein BH. A phase II, open-label, non-randomized, prospective study assessing paclitaxel, carboplatin and metformin in the treatment of advanced stage ovarian carcinoma. J Gynecol Oncol 2023; 34:e15. [PMID: 36509462 PMCID: PMC9995875 DOI: 10.3802/jgo.2023.34.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The purpose of this study was to assess the efficacy and tolerability of a paclitaxel, carboplatin and metformin regimen in the first-line treatment of advanced-stage ovarian, fallopian tube, and primary peritoneal carcinoma. METHODS Eligible subjects underwent surgery and 6 cycles of neoadjuvant or adjuvant dose-dense intravenous paclitaxel (80 mg/m²), carboplatin (area under the curve 5 or 6 on Day 1), and oral metformin (850 mg daily). Study participants who completed their primary therapy and attained a clinically defined complete or partial response (PR) were treated with a planned 12 cycles of paclitaxel (135 mg/m² every 21 days) and metformin (850 mg twice daily) maintenance therapy. RESULTS Thirty subjects received a median of 6 cycles (range, 5-6) of primary induction chemotherapy and were eligible for response evaluation; twenty-three patients exhibited a complete response, while 3 study patients obtained a PR (an overall response rate of 86.7%). Grade 3-4 hematological toxicity included neutropenia (43.3%), thrombocytopenia (10%) and anemia (36.7%). There was no incidence of grade 3-4 neuropathy although 15 patients (50%) developed grade ≤2 neurotoxicity. Additionally, we observed grade ≤2 diarrhea in 20 (66.7%) subjects. The median progression-free survival was 21 months (range, 3-52) and overall median survival was 35 months (range, 15-61). The subjects also received an aggregate 103 cycles (median, 12; range, 6-12) of maintenance chemotherapy. CONCLUSION The study results suggest that the combination of paclitaxel, carboplatin and metformin is associated with moderate efficacy and a reasonable toxicity profile.
Collapse
Affiliation(s)
- John P Micha
- Women's Cancer Research Foundation, Laguna Beach, CA, USA
| | | | | | | |
Collapse
|
46
|
Nowicka Z, Matyjek A, Płoszka K, Łaszczych M, Fendler W. Metanalyses on metformin's role in pancreatic cancer suffer from severe bias and low data quality - An umbrella review. Pancreatology 2023; 23:192-200. [PMID: 36697348 DOI: 10.1016/j.pan.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
AIMS Discrepancies in the preclinical evidence, retrospective studies, and randomized trials evaluating metformin's role in pancreatic cancer are difficult to disentangle. We aimed to critically and systematically examine the quality and sources of heterogeneity between meta-analyses investigating the association between metformin intake and the prognosis of patients with pancreatic cancer. MATERIALS AND METHODS We performed a literature search on PubMed, MEDLINE, Embase, and Scopus on October 31, 2021 to identify meta-analyses investigating the impact of metformin treatment on the prognosis of patients with pancreatic cancer. Meta-analyses quality was assessed using according to the AMSTAR 2 criteria. We assessed bias in individual studies included in the meta-analyses, with particular attention to immortal time bias and quality of reporting. RESULTS Eleven meta-analyses describing 24 individual studies were included. All meta-analyses were rated low (n = 5) or critically low (n = 6) quality. Only 4 followed PRISMA reporting guidelines and only in 5 presented data were sufficient to replicate the analyses. Most meta-analyses combined results from clinical trials and retrospective studies (n = 6); patients with different cancer stages (resectable vs advanced) and from studies with different control group definitions. Immortal time bias was present and not accounted for in most (65.2%) of the individual retrospective studies; almost all (n = 9) meta-analyses failed to identify and correct for this source of bias. CONCLUSIONS Meta-analyses describing the association of metformin use in patients with pancreatic cancer are plagued by various types of bias inherent in retrospective studies. The quality of evidence linking metformin to decreased pancreatic cancer mortality is generally low.
Collapse
Affiliation(s)
- Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland
| | - Anna Matyjek
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland; Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, 04-141, Warsaw, Poland
| | - Katarzyna Płoszka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland
| | - Mateusz Łaszczych
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
47
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
48
|
Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 2023; 379:351-357. [PMID: 36701435 PMCID: PMC7614227 DOI: 10.1126/science.ade3332] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.
Collapse
Affiliation(s)
- Hannah R. Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - James N. Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, YO10 5DD, UK
| | - Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Michael N. Pollak
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
49
|
Giugliano F, Boldrini L, Uliano J, Crimini E, Minchella I, Curigliano G. Fast Mimicking Diets and Other Innovative Nutritional Interventions to Treat Patients with Breast Cancer. Cancer Treat Res 2023; 188:199-218. [PMID: 38175347 DOI: 10.1007/978-3-031-33602-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The impact of nutritional patterns on the risk of breast cancer (BC) is well investigated in the oncology literature, including the type of diets and caloric intake. While obesity and elevated body mass index are well-reported critical risk factors of BC occurrence, there is an expanding area of oncology assessing the impact of caloric intake and nutritional patterns in patients with cancer. Caloric restriction and fast mimicking alimentary regimens have been consistently reported to improve survival outcomes based on preclinical models. Moreover, emerging clinical evidence has paved the way for new metabolic approaches for the treatment of BC, in addition to the established therapeutic arsenal or as alternative options. In this chapter, our aim is to discuss the principal strategies of metabolic manipulation through nutritional interventions for patients with BC as an innovative area of cancer therapy.
Collapse
Affiliation(s)
- Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Jacopo Uliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Ida Minchella
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
50
|
Yan C, Gao R, Gao C, Hong K, Cheng M, Liu X, Zhang Q, Zhang J. FDXR drives primary and endocrine-resistant tumor cell growth in ER+ breast cancer via CPT1A-mediated fatty acid oxidation. Front Oncol 2023; 13:1105117. [PMID: 37207154 PMCID: PMC10189134 DOI: 10.3389/fonc.2023.1105117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Background The majority of breast cancers (BCs) expressing estrogen receptor (ER) have shown endocrine resistance. Our previous study demonstrated that ferredoxin reductase (FDXR) promoted mitochondrial function and ER+ breast tumorigenesis. But the underlying mechanism is not clear. Methods Liquid chromatography (LC) tandem mass spectrometry (MS/MS)-based metabolite profiling was utilized to reveal the metabolites regulated by FDXR. RNA microarray was utilized to determine the potential downstream targets of FDXR. Seahorse XF24 analyzer was performed to analyze the FAO-mediated oxygen consumption rate (OCR). Q-PCR and western blotting assays were used to measure expression levels of FDXR and CPT1A. MTS, 2D colony formation and anchorage-independent growth assays were used to evaluate the effects of FDXR or drug treatments on tumor cell growth of primary or endocrine-resistant breast cancer cells. Results We found that depletion of FDXR inhibited fatty acid oxidation (FAO) by suppressing CPT1A expression. Endocrine treatment increased the expression levels of both FDXR and CPT1A. Further, we showed that depletion of FDXR or FAO inhibitor etomoxir treatment reduced primary and endocrine-resistant breast cancer cell growth. Therapeutically, combining endocrine therapy with FAO inhibitor etomoxir synergistically inhibits primary and endocrine-resistant breast cancer cell growth. Discussion We reveal that the FDXR-CPT1A-FAO signaling axis is essential for primary and endocrine-resistant breast cancer cell growth, thus providing a potential combinatory therapy against endocrine resistance in ER+ breast cancer.
Collapse
Affiliation(s)
- Chaojun Yan
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ronghui Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chuan Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Jing Zhang, ; Qing Zhang,
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Jing Zhang, ; Qing Zhang,
| |
Collapse
|