1
|
Ghosh N, Matusz-Fisher A, Bose R, Boselli D, Magee G, Chen T, Hu B, Moyo T, Soni A, Park S, Copelan E, Avalos B, Symanowski J, Raghavan D, Jacobs R. Evaluation of the Impact of Monitoring for Tumor Lysis During Venetoclax Ramp-Up in Chronic Lymphocytic Leukemia in Routine Clinical Practice. JCO Oncol Pract 2025; 21:677-682. [PMID: 39556779 DOI: 10.1200/op.24.00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024] Open
Abstract
PURPOSE Venetoclax has made a significant impact in the treatment of chronic lymphocytic leukemia (CLL) due to its ability to induce deep and durable remissions with a finite duration of oral therapy. However, it can lead to tumor lysis syndrome (TLS) which is mitigated with dose escalation strategies. Patients who initiate venetoclax need to follow rigorous, and potentially burdensome, TLS monitoring during dose ramp-up. The frequency with which this rigorous monitoring leads to therapeutic interventions in clinical practice has not been well described. We conducted a study to assess the incidence of TLS and interventions needed after initiation of venetoclax in patients with CLL. METHODS Adult patients with CLL who started treatment with venetoclax between July 2017 and March 2021 at Levine Cancer Institute were included in this study. Adherence to the venetoclax package insert (PI) for tumor lysis monitoring, incidence of laboratory as well as clinical TLS, and interventions resulting from the monitoring of TLS were collected. RESULTS We report outcomes on 73 consecutive patients with CLL who initiated venetoclax. The majority of patients had low (49%) or medium (44%) tumor burden. During venetoclax ramp-up, 66% of patients adhered strictly to TLS monitoring as per the venetoclax PI. One patient developed laboratory TLS, and no patients developed clinical TLS. Six patients received unplanned interventions to treat TLS; all had medium or high tumor burden. There were no unplanned interventions in patients with low tumor burden. CONCLUSION In patients with low and medium tumor burden CLL who start venetoclax, the incidence of TLS is very low, and interventions are uncommonly needed.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Ashley Matusz-Fisher
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Rupali Bose
- Department of Biostatistics and Data Sciences, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Danielle Boselli
- Department of Biostatistics and Data Sciences, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Gray Magee
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Tommy Chen
- Department of Biostatistics and Data Sciences, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Bei Hu
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Tamara Moyo
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Amy Soni
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Steven Park
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Edward Copelan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Belinda Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - James Symanowski
- Department of Biostatistics and Data Sciences, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Derek Raghavan
- Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| | - Ryan Jacobs
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Wake Forest University School of Medicine, Charlotte, NC
| |
Collapse
|
2
|
Saiyin T, Christou G, Sabloff M, Crosbie T, Nguyen-Tham KM, Fulcher J. Incidence of Tumour Lysis Syndrome in Patients with Acute Myeloid Leukemia During Initiation of Therapy with Azacitidine and Venetoclax: A Retrospective Chart Review from a Canadian Single-Centre Perspective. Curr Oncol 2025; 32:213. [PMID: 40277769 PMCID: PMC12026339 DOI: 10.3390/curroncol32040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
Azacitidine and venetoclax (Aza-Ven) are part of a new standard of care for elderly patients with Acute Myeloid Leukemia (AML) [In line with recommendations, patients with AML at our centre were routinely admitted during initiation of Aza-Ven for close monitoring for tumour lysis syndrome (TLS). However, hospitalization impacts patient experience and is a significant resource burden. The objectives of this study were to evaluate the incidence of TLS in this population and identify patients who could safely initiate therapy in our outpatient facility. Of the 48 patients who commenced Aza-Ven as inpatients, the incidence of TLS was 25% using Cairo-Bishop (CB) diagnostic criteria but was mostly due to transient increases in uric acid, phosphate or potassium that remained within the normal laboratory reference range. Using Howard diagnostic criteria, TLS incidence was only 2%. Patients who developed CB TLS had a significantly higher baseline white blood count (WBC; p = 0.01). Patients with WBC of less than 30 × 109/L subsequently completed outpatient initiation of Aza-Ven (n = 15). Only one of these patients developed mild, transient TLS by CB criteria but not by Howard criteria. Our results demonstrate that a significant portion of patients could safely initiate Aza-Ven in our outpatient facility and avoid unnecessary hospitalization.
Collapse
Affiliation(s)
- Tana Saiyin
- Department of Medicine, The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada;
| | - Grace Christou
- The Ottawa Hospital Leukemia Program, Department of Medicine, Division of Hematology, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada (M.S.)
| | - Mitchell Sabloff
- The Ottawa Hospital Leukemia Program, Department of Medicine, Division of Hematology, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada (M.S.)
| | - Tina Crosbie
- Department of Pharmacy, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (T.C.); (K.-M.N.-T.)
| | - Kim-My Nguyen-Tham
- Department of Pharmacy, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (T.C.); (K.-M.N.-T.)
| | - Jill Fulcher
- The Ottawa Hospital Leukemia Program, Department of Medicine, Division of Hematology, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada (M.S.)
| |
Collapse
|
3
|
de Boer A, McCaw C, Ackman M, Leslie T, Peters A, Koshman S. Evaluating the impact of a pharmacist-led venetoclax ramp-up clinic for chronic lymphocytic leukemia patients: A retrospective chart review. J Oncol Pharm Pract 2025:10781552251324522. [PMID: 40116626 DOI: 10.1177/10781552251324522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
IntroductionVenetoclax is a BCL-2 inhibitor, used for both treatment-naive, and relapsed/refractory chronic lymphocytic leukemia (CLL). To mitigate the risk of tumor lysis syndrome (TLS), a 5-week dose ramp-up strategy with frequent assessment is required. Pharmacists are medication experts and skilled in managing adverse effects. They are ideally positioned to manage patients during ramp-up and can reduce hematologist visits. We sought to describe the impact of a pharmacist-led venetoclax ramp-up clinic implemented at our institution.MethodsThe primary objective was to describe pharmacist interventions made during ramp-up to prevent TLS. Key secondary objectives included describing the rates of TLS and rates of venetoclax target dose achievement. The study was a retrospective electronic chart review including CLL patients with ≥1 visit to the pharmacist-led clinic between October 2020-January 2024. Data was collected using a standardized form and descriptive statistics were used for analysis.ResultsEighty-eight patients were included. The median age was 70 years old and 97% of patients were low or moderate risk for TLS. Common interventions made for TLS prevention were education, occurring during all 907 patient visits, and changes to TLS prophylaxis, occurring during 113 (12.5%) patient visits. Two (2.3%) patients experienced laboratory TLS and 0 experienced clinical TLS. Eighty-three (94.3%) patients achieved target dose at the end of the study period.ConclusionsThe results of the study support that a pharmacist-led venetoclax clinic is both safe and effective for patients with CLL. Up-titration, active TLS prophylaxis, education and adverse event management are key components to the clinic.
Collapse
Affiliation(s)
- Adrian de Boer
- Pharmacy Services, Alberta Health Services, Edmonton, Canada
| | - Chris McCaw
- Pharmacy Services, Alberta Health Services, Edmonton, Canada
| | - Margaret Ackman
- Pharmacy Services, Cross Cancer Institute, Alberta Health Services, Edmonton, Canada
| | - Tara Leslie
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Anthea Peters
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sheri Koshman
- Department of Cardiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther 2025; 10:91. [PMID: 40113751 PMCID: PMC11926181 DOI: 10.1038/s41392-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
Collapse
Affiliation(s)
- Meike Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Yannick Braun
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Raquel S Pereira
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Marius Anders
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Manon Callens
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Maha Abbas
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Martin Js Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Soumerai JD, Barrientos J, Ahn I, Coombs C, Gladstone D, Hoffman M, Kittai A, Jacobs R, Lipsky A, Patel K, Rhodes J, Skarbnik A, Thompson M, Ermann D, Reville P, Shah H, Brown JR, Stephens DM. Consensus recommendations from the 2024 Lymphoma Research Foundation workshop on treatment selection and sequencing in CLL or SLL. Blood Adv 2025; 9:1213-1229. [PMID: 39561376 PMCID: PMC11993837 DOI: 10.1182/bloodadvances.2024014474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024] Open
Abstract
ABSTRACT Over the past decade, treatment recommendations for patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) have shifted from traditional chemoimmunotherapy to targeted therapies. Multiple new therapies are commercially available, and, in many cases, a lack of randomized clinical trial data makes selection of the optimal treatment for each patient challenging. Additionally, many patients continue to receive chemoimmunotherapy in the United States, suggesting a gap between guidelines and real-world practice. The Lymphoma Research Foundation convened a workshop comprising a panel of CLL/SLL experts in the United States to develop consensus recommendations for selection and sequencing of therapies for patients with CLL/SLL in the United States. Herein, the recommendations are compiled for use as a practical clinical guide for treating providers caring for patients with CLL/SLL, which complement existing guidelines by providing a nuanced discussion relating how our panel of CLL/SLL experts in the United States care for patients in a real-world environment.
Collapse
Affiliation(s)
- Jacob D. Soumerai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | | | - Inhye Ahn
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Marc Hoffman
- University of Kansas Cancer Center, Overland Park, KS
| | - Adam Kittai
- Mount Sinai Tisch Cancer Center, New York, NY
| | - Ryan Jacobs
- Wake Forest Levine Cancer Institute, Charlotte, NC
| | - Andrew Lipsky
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY
| | | | - Joanna Rhodes
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Daniel Ermann
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Harsh Shah
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Deborah M. Stephens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
6
|
Hallek M. Chronic Lymphocytic Leukemia: 2025 Update on the Epidemiology, Pathogenesis, Diagnosis, and Therapy. Am J Hematol 2025; 100:450-480. [PMID: 39871707 PMCID: PMC11803567 DOI: 10.1002/ajh.27546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/29/2025]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is the most frequent type of leukemia. It typically occurs in older patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that interfere with the regulation of proliferation and apoptosis in clonal B-cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen as well as typical B-cell markers. PROGNOSIS AND STAGING Two clinical staging systems, Rai and Binet, provide prognostic information by using the results of physical examination and blood counts. Various biological and genetic markers provide additional prognostic information. Deletions of the short arm of chromosome 17 (del(17p)) and/or mutations of the TP53 gene predict a shorter time to progression with most targeted therapies. The CLL international prognostic index (CLL-IPI) integrates genetic, biological, and clinical variables to identify distinct risk groups of patients with CLL. The CLL-IPI retains its significance in the era of targeted agents, but the overall prognosis of CLL patients with high-risk stages has improved. THERAPY Only patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. When treatment is indicated, several therapeutic options exist: combinations of the BCL2 inhibitor venetoclax with obinutuzumab, or venetoclax with ibrutinib, or monotherapy with one of the inhibitors of Bruton tyrosine kinase (BTK). At relapse, the initial treatment may be repeated if the treatment-free interval exceeds 3 years. If the leukemia relapses earlier, therapy should be changed using an alternative regimen. FUTURE CHALLENGES Combinations of targeted agents now provide efficient therapies with a fixed duration that generate deep and durable remissions. These fixed-duration therapies have gained territory in the management of CLL, as they are cost-effective, avoid the emergence of resistance, and offer treatment free time to the patient. The cure rate of these novel combination regimens is unknown. Moreover, the optimal sequencing of targeted therapies remains to be determined. A medical challenge is to treat patients who are double-refractory to both BTK and BCL2 inhibitors. These patients need to be treated within experimental protocols using novel drugs.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Prognosis
- Mutation
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine and Medical FacultyUniversity of CologneKölnGermany
- Center for Integrated Oncology Aachen Bonn Köln DüsseldorfKölnGermany
- Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases,” University of CologneKölnGermany
- Center of Cancer Research Cologne EssenKölnGermany
- National Center for Tumor Diseases (NCT) WestKölnGermany
| |
Collapse
|
7
|
Engelmann R, Böttcher S. Flow Cytometric MRD Detection in Selected Mature B-Cell Malignancies. Methods Mol Biol 2025; 2865:145-188. [PMID: 39424724 DOI: 10.1007/978-1-0716-4188-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The quantification of submicroscopic minimal residual disease (MRD) after therapy proved to have independent prognostic significance in many mature B-cell malignancies. With the advent of routine benchtop cytometers capable of simultaneously analyzing ≥8 colors and with improved standardization, flow cytometry has become the method of choice for MRD assessments in some lymphoma entities. Herein we describe general aspects of flow cytometric standardization. Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are used as examples to explain the technical standardization of flow cytometry for MRD detection according to EuroFlow strategies. MRD data acquisition and detailed analysis in MM and CLL is a particular focus of this chapter.
Collapse
Affiliation(s)
- Robby Engelmann
- Rostock University Medical Center, Division of Internal Medicine, Medical Clinic III - Hematology, Oncology and Palliative Medicine, Special Hematology Laboratory, Rostock, Germany
| | - Sebastian Böttcher
- Rostock University Medical Center, Division of Internal Medicine, Medical Clinic III - Hematology, Oncology and Palliative Medicine, Special Hematology Laboratory, Rostock, Germany.
| |
Collapse
|
8
|
Mirgayazova R, Khadiullina R, Gilyazova E, Davletshin D, Ganeeva I, Zmievskaya E, Chasov V, Valiullina A, Bulatov E. The importance of TP53 status in cancer therapy: The example of chronic lymphocytic leukemia. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:179-198. [PMID: 40321704 PMCID: PMC12046366 DOI: 10.22099/mbrc.2025.51477.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The TP53 gene encodes the tumor suppressor protein p53, which plays a critical role in genomic stability and cell cycle regulation. TP53 mutations are prevalent in approximately half of all human malignancies and are associated with poor clinical outcomes, including increased genomic instability, chemoresistance, and reduced survival rates. However, the prognostic and predictive value of TP53 status remains inconsistent across cancer types. Chronic lymphocytic leukemia (CLL) stands out as a disease where TP53 alterations have a well-established clinical significance, influencing treatment decisions and patient prognosis. In CLL, TP53 mutations and 17p deletions are strongly correlated with advanced disease stages, resistance to chemo-immunotherapy, and poor overall survival. The European Research Initiative for CLL (ERIC) has recognized TP53 status as a crucial prognostic biomarker, advocating for its routine assessment in clinical practice. Given the limitations of traditional therapies in TP53-mutated CLL, novel targeted therapies, including BCL2 and BTK inhibitors, as well as CAR-T cell therapy, are being explored to improve patient outcomes. This review provides an in-depth analysis of the evolving role of TP53 status in CLL, with a particular focus on emerging therapeutic strategies, including CAR-T cell therapy, and their potential to overcome TP53-driven treatment resistance.
Collapse
Affiliation(s)
- Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
9
|
Luo MX, Tan T, Trussart M, Poch A, Nguyen TMH, Speed TP, Hicks DG, Bandala-Sanchez E, Peng H, Chappaz S, Slade C, Utzschneider DT, Koldej RM, Ritchie D, Strasser A, Thijssen R, Ritchie ME, Tam CS, Lindeman GJ, Huang DCS, Lew TE, Anderson MA, Roberts AW, Teh CE, Gray DHD. Venetoclax dose escalation rapidly activates a BAFF/BCL-2 survival axis in chronic lymphocytic leukemia. Blood 2024; 144:2748-2761. [PMID: 39471335 PMCID: PMC11738032 DOI: 10.1182/blood.2024024341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024] Open
Abstract
ABSTRACT Venetoclax, a first-in-class BH3 mimetic drug that targets B-cell lymphoma-2 (BCL-2), has improved the outcomes of patients with chronic lymphocytic leukemia (CLL). Early measurements of the depth of the venetoclax treatment response, assessed by minimal residual disease, are strong predictors of long-term clinical outcomes. However, there are limited data on the early changes induced by venetoclax treatment that might inform strategies to improve responses. To address this gap, we conducted longitudinal mass cytometric profiling of blood cells from patients with CLL during the first 5 weeks of venetoclax monotherapy. At baseline, we resolved CLL heterogeneity at the single-cell level to define multiple subpopulations in all patients based on proliferative, metabolic, and cell survival proteins. Venetoclax induced a significant reduction in all CLL subpopulations and caused rapid upregulation of the prosurvival BCL-2, BCL-extra large, and mantle cell lymphoma-1 proteins in surviving cells, which had reduced sensitivity to the drug. In mouse models, the venetoclax-induced elevation of survival proteins in B cells and CLL-like cells that persisted was recapitulated, and genetic models demonstrated that extensive apoptosis and access to the B-cell cytokine, B-cell activating factor (BAFF), were essential. Accordingly, in patients with CLL who were treated with venetoclax or the anti-CD20 antibody obinutuzumab there was marked elevation in BAFF and an increase in prosurvival proteins in leukemic cells that persisted. Overall, these data highlight the rapid adaptation of CLL cells to targeted therapies through homeostatic factors and support cotargeting of cytokine signals to achieve deeper and more durable long-term responses.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Sulfonamides/therapeutic use
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Animals
- Mice
- B-Cell Activating Factor/metabolism
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/administration & dosage
- Cell Survival/drug effects
- Female
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Meng-Xiao Luo
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tania Tan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marie Trussart
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Annika Poch
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi Minh Hanh Nguyen
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Terence P. Speed
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Damien G. Hicks
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Esther Bandala-Sanchez
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Hongke Peng
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stéphane Chappaz
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Charlotte Slade
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel T. Utzschneider
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rachel M. Koldej
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Australian Cancer Research Foundation Translational Research Laboratory, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - David Ritchie
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Australian Cancer Research Foundation Translational Research Laboratory, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Haematology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rachel Thijssen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew E. Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Constantine S. Tam
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Alfred Hospital, Melbourne, VIC, Australia
| | - Geoffrey J. Lindeman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Thomas E. Lew
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Andrew W. Roberts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Charis E. Teh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H. D. Gray
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Deodato M, Frustaci AM, Zappaterra A, Rapella A, Gambacorti-Passerini C, Cairoli R, Montillo M, Tedeschi A. Advances in the understanding of molecular genetics and therapy of Richter transformation in chronic lymphocytic leukemia. Leuk Lymphoma 2024; 65:2096-2107. [PMID: 39219481 DOI: 10.1080/10428194.2024.2398660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Richter's transformation (RT) is defined as the evolution of chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) into an aggressive lymphoma, most commonly diffuse large B-cell lymphoma. This complication is rare and aggressive, with poor prognosis and dismal survival. Clonal relationship with the underlying CLL/SLL, observed in ∼80% of cases, represents one of the main factors affecting prognosis. Treatment has been historically based on chemoimmunotherapy, but frequent mutations in genes involved in cell survival and proliferation-such as TP53, NOTCH1, MYC, CDKN2A-confer resistance to standard treatments. During the last years, advances in the knowledge of the biological mechanisms underlying RT allowed to identify genetic and molecular lesions that can potentially be targeted by novel selective agents. Pathway and checkpoint inhibitors, bispecific antibodies and CAR T-cell therapy are currently under investigation and represent promising treatment options. This review summarizes current biological evidence and available data on novel therapeutic agents.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Disease Management
- Disease Progression
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Molecular Targeted Therapy/methods
- Mutation
- Prognosis
Collapse
Affiliation(s)
- Marina Deodato
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Anna Maria Frustaci
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Arianna Zappaterra
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- Department of Hematology and Bone Marrow Transplantation Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alberto Rapella
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- Department of Hematology and Bone Marrow Transplantation Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Hematology and Bone Marrow Transplantation Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Roberto Cairoli
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Alessandra Tedeschi
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
11
|
Valtis YK, Nemirovsky D, Derkach A, Sharan S, Kabel C, Ortiz R, Thompson MC, Roeker LE, Geyer MB. Real-world incidence and prevention of tumor lysis syndrome in chronic lymphocytic leukemia treated with venetoclax. Blood Adv 2024; 8:5806-5813. [PMID: 39121368 PMCID: PMC11609363 DOI: 10.1182/bloodadvances.2024013927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024] Open
Abstract
ABSTRACT Venetoclax is a B-cell lymphoma 2 inhibitor used in chronic lymphocytic leukemia (CLL), which can cause tumor lysis syndrome (TLS). We aimed to determine the incidence of, and risk factors for, TLS among patients with CLL/small lymphocytic lymphoma who received treatment with venetoclax at our institution from 1 January 2016 to 31 December 2020. We included 616 venetoclax escalations among 136 patients with CLL. Overall, 74 patients (54%) underwent escalation exclusively outpatient, 35 (26%) had at least 1 planned hospitalization, and 27 (20%) were escalated exclusively inpatient. During venetoclax initiation, 86% of patients received allopurinol, 71% intravenous hydration, 18% phosphate binders, and 10% prophylactic rasburicase. Among the entire cohort, 7 patients (5.1%) developed laboratory TLS by modified Cairo Bishop criteria and none developed clinical TLS. Incidence of laboratory TLS was 15% for those escalated exclusively inpatient, 2.9% for those with any prophylactic hospitalization, and 2.7% for those escalated exclusively outpatient. Those who developed TLS were more likely to have higher TLS risk, and no additional risk factors were identified. In this single institution retrospective cohort study, laboratory TLS was observed, although clinical TLS was not. Prophylactic measures, including use of IV hydration, may have contributed to low rates of observed TLS in the outpatient setting.
Collapse
Affiliation(s)
- Yannis K. Valtis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David Nemirovsky
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Saumya Sharan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charlene Kabel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ricardo Ortiz
- Department of Medicine, Mount Sinai Morningside-West, New York, NY
| | - Meghan C. Thompson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lindsey E. Roeker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark B. Geyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
12
|
Li WF, Atalla E, Dong J, Konopleva M. BCL2i-Based Therapies and Emerging Resistance in Chronic Lymphocytic Leukemia. Cells 2024; 13:1922. [PMID: 39594670 PMCID: PMC11592612 DOI: 10.3390/cells13221922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Overexpression of the anti-apoptotic protein BCL-2 is a key factor in the pathogenesis of chronic lymphocytic leukemia (CLL) and is associated with poor clinical outcomes. Therapeutic activation of apoptosis in cancer cells using the BCL-2 inhibitor (BCL2i) venetoclax has shown remarkable efficacy in clinical trials, both as monotherapy and combination regimens. However, patients with CLL experience a highly variable clinical course, facing significant challenges in advanced stages due to disease relapse and the emergence of resistant clones. Resistance mechanisms include acquired BCL-2 mutations, alteration of pro-apoptotic and anti-apoptotic proteins, metabolic reprogramming, epigenetic changes, and aberrant signaling pathways. To address this complex disease and improve progression-free survival, strategies targeting multiple signaling pathways and mechanisms have been explored. Randomized clinical trials of venetoclax in combination with Bruton tyrosine kinase (BTK) inhibitors or CD20 monoclonal antibodies have significantly outperformed traditional chemoimmunotherapy in both treatment-naïve and relapsed patients, achieving undetectable minimal residual disease (uMRD) and durable remissions. This review explores the intricate balance between BCL-2 family proteins and their role in the intrinsic apoptosis pathway, discusses venetoclax resistance mechanisms, and highlights the evolving role of venetoclax and other BCL2i-based combination therapies in CLL treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Sulfonamides/therapeutic use
- Sulfonamides/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Wing Fai Li
- Department of Internal Medicine, Jacobi Medical Center, Bronx, NY 10461, USA;
| | - Eleftheria Atalla
- Department of Hematology and Oncology, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Jiaxin Dong
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Marina Konopleva
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
13
|
Handunnetti SM, Anderson MA, Burbury K, Thompson PA, Burke G, Bressel M, Di Iulio J, Hicks RJ, Westerman D, Lade S, Pott C, Agarwal R, Koldej R, Ritchie D, Dreyling M, Dawson MA, Dawson SJ, Seymour JF, Roberts AW, Tam CS. Seven-year outcomes of venetoclax-ibrutinib therapy in mantle cell lymphoma: durable responses and treatment-free remissions. Blood 2024; 144:867-872. [PMID: 38662991 PMCID: PMC11451299 DOI: 10.1182/blood.2023023388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/14/2024] [Indexed: 08/23/2024] Open
Abstract
ABSTRACT In the phase 2 clinical trial (AIM) of venetoclax-ibrutinib, 24 patients with mantle cell lymphoma (MCL; 23 with relapsed/refractory [R/R] disease) received ibrutinib 560 mg and venetoclax 400 mg both once daily. High complete remission (CR) and measurable residual disease negative (MRD-negative) CR rates were previously reported. With median survivor follow-up now exceeding 7 years, we report long-term results. Treatment was initially continuous, with elective treatment interruption (ETI) allowed after protocol amendment for patients in MRD-negative CR. For R/R MCL, the estimated 7-year progression-free survival (PFS) was 30% (95% confidence interval [CI], 14-49; median, 28 months; 95% CI, 13-82) and overall survival (OS) was 43% (95% CI, 23-62; median, 32 months; 95% CI, 15 to not evaluable). Eight patients in MRD-negative CR entered ETI for a median of 58 months (95% CI, 37-79), with 4 experiencing disease recurrence. Two of 3 reattained CR on retreatment. Time-to-treatment failure (TTF), which excluded progression in ETI for those reattaining response, was 39% overall and 68% at 7 years for responders. Beyond 56 weeks, grade ≥3 and serious adverse events were uncommon. Newly emergent or increasing cardiovascular toxicity were not observed beyond 56 weeks. We demonstrate long-term durable responses and acceptable toxicity profile of venetoclax-ibrutinib in R/R MCL and show feasibility of treatment interruption while maintaining ongoing disease control. This trial was registered at www.clinicaltrials.gov as #NCT02471391.
Collapse
Affiliation(s)
- Sasanka M. Handunnetti
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Princess Alexandra Hospital, Brisbane, Australia
| | - Mary Ann Anderson
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Cells and Blood Cancers, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Philip A. Thompson
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Glenda Burke
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mathias Bressel
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Rodney J. Hicks
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Melbourne Theranostic Innovation Centre, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | | | - Stephen Lade
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Rachel Koldej
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Australia
| | - David Ritchie
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Australia
| | | | - Mark A. Dawson
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Sarah-Jane Dawson
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - John F. Seymour
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Andrew W. Roberts
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Cells and Blood Cancers, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Constantine S. Tam
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Alfred Hospital, Melbourne, Australia
- Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Kt MF, Semwal M, Yoosuf BT, Lad D, Bansal D. Venetoclax adverse event monitoring: a safety meta-analysis of randomized controlled trials and a retrospective evaluation of the FAERS. Ann Hematol 2024; 103:3179-3191. [PMID: 38403712 DOI: 10.1007/s00277-024-05676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Concerns persist about venetoclax's long-term safety in larger populations, with limited evidence of infrequent and delayed adverse events (AEs). The study integrated safety data on venetoclax in leukemia patients from randomized controlled trials (RCTs) and FDA adverse event monitoring system (FAERS). We systematically reviewed RCTs reporting safety outcomes of venetoclax in adult leukemia patients of any gender, either monotherapy or in combination, applying advanced search on databases like PubMed, EMBASE, and ClinicalTrial.gov. The quality assessment was done using the Cochrane Risk of Bias Tool. We utilized a random effect meta-analysis to calculate risk ratio (RR) with 95% confidence intervals (CI). The Open Vigil 2.1 MedDRAv24 was used to search the FAERS database, with data available until September 2023. The disproportionality was calculated using the proportional reporting ratio and the reporting odds ratio. The study protocol for meta-analysis was registered with PROSPERO; CRD42022378006. For the safety meta-analysis, seven RCTs with available AEs were examined. A total of 942 AEs were found associated with the venetoclax group; 79% of them were in grade three or above. Venetoclax significantly increased the risk of neutropenia grade three or above (RR = 1.34, 95% CI: 1.10-1.64, p: 0.0033) compared with the control group. In FAERS, 26,436 patients were reported with AEs associated with venetoclax. Significant signal scores were observed in hematological, cardiac, vascular, and gastrointestinal disorders. 11 out of 30 generated signals, failed to meet the signal criteria upon refinement. The current study updated and improved the safety profile of venetoclax in the post-marketing period, assisting in risk evaluation and mitigation for the best possible patient health care.
Collapse
Affiliation(s)
- Muhammed Favas Kt
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Maneesh Semwal
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Beema T Yoosuf
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Deepesh Lad
- Leukemia/BMT Program of British Columbia, Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dipika Bansal
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India.
| |
Collapse
|
15
|
Peng X, Tang F, Li Y, Bai J, Li L, Zhang L. Combination of BCL-2 inhibitors and immunotherapy: a promising therapeutic strategy for hematological malignancies. Discov Oncol 2024; 15:311. [PMID: 39060763 PMCID: PMC11282050 DOI: 10.1007/s12672-024-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The rapid development of high-throughput sequencing in recent years has facilitated great progress in the molecular-targeted therapy of hematological malignancies, including leukemia, lymphoma, and multiple myeloma. BCL-2 inhibitors are among the most important molecular-targeted agents. Immunotherapy for hematologic malignancy has rapidly increased in popularity in recent years and has been proven to improve the overall survival rate. However, few clinical studies have investigated combination therapy with BCL-2 inhibitors and immunotherapies, such as immune molecule-targeted drugs or immune cell adoptive therapy. In this review, we discuss the drug discovery process, current clinical application status, and resistance and tolerance issues associated with BCL-2 inhibitors. We emphasize their important role in regulating the immune system and propose that the combination of BCL-2 inhibitors with immunotherapy may be one of the most promising treatment methods for hematologic malignancies.
Collapse
Affiliation(s)
- Xiaohuan Peng
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive Tumor of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Liansheng Zhang
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Fowler-Shorten DJ, Hellmich C, Markham M, Bowles KM, Rushworth SA. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev 2024; 65:101195. [PMID: 38523032 DOI: 10.1016/j.blre.2024.101195] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
B-cell lymphoma-2 (BCL-2) family proteins are fundamental regulators of the intrinsic apoptotic pathway which modulate cellular fate. In many haematological malignancies, overexpression of anti-apoptotic factors (BCL-2, BCL-XL and MCL-1) circumvent apoptosis. To address this cancer hallmark, a concerted effort has been made to induce apoptosis by inhibiting BCL-2 family proteins. A series of highly selective BCL-2 homology 3 (BH3) domain mimetics are in clinical use and in ongoing clinical trials for acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM). These inhibitors serve as promising candidates, both as single agents or in combination therapy to improve patient outcomes. In other diseases such as follicular lymphoma, efficacy has been notably limited. There are also clinical problems with BCL-2 family inhibition, including drug resistance, disease relapse, tumour lysis syndrome, and clinically relevant cytopenias. Here, we provide a balanced view on both the clinical benefits of BCL-2 inhibition as well as the associated challenges.
Collapse
Affiliation(s)
- Dominic J Fowler-Shorten
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Matthew Markham
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Kristian M Bowles
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
17
|
Salem AH, Menon RM. Clinical pharmacokinetics and pharmacodynamics of venetoclax, a selective B-cell lymphoma-2 inhibitor. Clin Transl Sci 2024; 17:e13807. [PMID: 38778732 PMCID: PMC11112299 DOI: 10.1111/cts.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024] Open
Abstract
Venetoclax, a highly potent BCL-2 inhibitor, is indicated for treatment of some hematologic malignancies as monotherapy, and/or in combination with other agents. Venetoclax pharmacokinetics has been extensively characterized in patients and healthy participants. After oral dosing, the median time to reach maximum plasma concentration ranged from 5 to 8 h and harmonic mean half-life ranged from 14 to 18 h. Food increases venetoclax bioavailability by 3-5-fold and venetoclax should be administered with food to ensure adequate and consistent bioavailability. Venetoclax is eliminated via cytochrome P450 (CYP)3A metabolism, and a negligible amount of unchanged drug is excreted in urine. Strong CYP3A/P-glycoprotein inhibitors increased venetoclax exposures (AUC) by 1.44- to 6.90-fold while a significant decrease (71%) has been observed when dosed with strong CYP3 inducers. Venetoclax does not inhibit or induce CYP enzymes or transporters. Venetoclax pharmacokinetics is not appreciably altered by age, weight, sex, but the exposure is up to twofold higher in participants from Asian countries. Mild-to-severe renal impairment or end-stage renal disease do not alter venetoclax exposures, and venetoclax is not cleared by dialysis. Although mild-to-moderate hepatic impairment does not affect venetoclax exposures, twofold higher exposure was observed in subjects with severe hepatic impairment. Venetoclax exposure is comparable across patients with different hematologic malignancies and healthy participants. Overall, venetoclax exposure is only affected by food and CYP3A modulators and is only higher in Asian subjects and subjects with severe hepatic impairment. Venetoclax exposure-response relationships are malignancy-dependent and can be different between monotherapy and combination therapy.
Collapse
Affiliation(s)
- Ahmed Hamed Salem
- Faculty of PharmacyAin Shams UniversityCairoEgypt
- AbbVie Inc.North ChicagoIllinoisUSA
| | | |
Collapse
|
18
|
Autore F, Visentin A, Deodato M, Vitale C, Galli E, Fresa A, Fazzi R, Sanna A, Olivieri J, Scortechini I, Del Principe MI, Sportoletti P, Schiattone L, Maschio N, Facchinelli D, Marchesi F, Coscia M, Tedeschi A, Trentin L, Innocenti I, Candoni A, Busca A, Pagano L, Laurenti L. Venetoclax infectious risk score to identify patients with chronic lymphocytic leukemia at high infectious risk during venetoclax treatment: A multicenter SEIFEM study. Am J Hematol 2024; 99:982-984. [PMID: 38343033 DOI: 10.1002/ajh.27247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Francesco Autore
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | | - Marina Deodato
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Candida Vitale
- A.O.U. Città della Salute e della Scienza di Torino e Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Eugenio Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alberto Fresa
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Rita Fazzi
- Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | | | | | | | | | - Nilla Maschio
- Oncoematologia Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | | | | | - Marta Coscia
- A.O.U. Città della Salute e della Scienza di Torino e Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | | | | | - Idanna Innocenti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Anna Candoni
- Clinica Ematologia di Udine, Udine, Italy
- Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Alessandro Busca
- A.O.U. Città della Salute e della Scienza di Torino e Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Livio Pagano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Luca Laurenti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
19
|
Stilgenbauer S, Tausch E, Roberts AW, Davids MS, Eichhorst B, Hallek M, Hillmen P, Schneider C, Schetelig J, Böttcher S, Kater AP, Jiang Y, Boyer M, Popovic R, Ghanim MT, Moran M, Sinai WJ, Wang X, Mukherjee N, Chyla B, Wierda WG, Seymour JF. Six-year follow-up and subgroup analyses of a phase 2 trial of venetoclax for del(17p) chronic lymphocytic leukemia. Blood Adv 2024; 8:1992-2004. [PMID: 38290108 PMCID: PMC11024923 DOI: 10.1182/bloodadvances.2023011741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT Chromosome 17p deletion (del[17p]) is associated with poor prognosis in patients with chronic lymphocytic leukemia (CLL). Venetoclax is approved for treatment of previously untreated and relapsed/refractory (R/R) CLL, including patients with del(17p), based on the open-label, multicenter, phase 2 M13-982 trial (NCT01889186). Here, we detail the 6-year follow-up analysis for M13-982. A total of 158 patients with previously untreated (n = 5) or R/R (n = 153) del(17p) CLL received 400 mg venetoclax daily after initial ramp-up until progressive disease. After a median follow-up of 70 months, the best objective response rate (ORR) was 77% (21% complete remission [CR] and 49% partial remission [PR]), with a median duration of response (DOR) of 39.3 months (95% confidence interval [CI], 31.1-50.5). The median progression-free survival (PFS) was 28.2 months (95% CI, 23.4-37.6), and median overall survival (OS) was 62.5 months (95% CI, 51.7-not reached), with 16% of patients remaining on treatment after 6 years. Multivariable analysis did not identify statistically significant correlation between patient subgroups defined by clinical or laboratory variables and ORR or PFS. The most common grade ≥3 adverse events were neutropenia (42%), infections (33%), anemia (16%), and thrombocytopenia (16%). Post hoc comparative analyses of PFS and OS from treatment initiation, from a 24-month landmark, and by minimal residual disease status were performed between patients with del(17p) in the M13-982 and MURANO studies in the interest of understanding these data in another context. These long-term data show the continued benefits of venetoclax in patients with del(17p) CLL. The trial was registered at www.clinicaltrials.gov as #NCT01889186.
Collapse
Affiliation(s)
| | - Eugen Tausch
- Division of CLL, Internal Medicine III, Ulm University, Ulm, Germany
| | - Andrew W. Roberts
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Australia
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Barbara Eichhorst
- Department of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Michael Hallek
- Department of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Peter Hillmen
- Leeds Teaching Hospitals, NHS Trust, Leeds, United Kingdom
| | | | - Johannes Schetelig
- Medical Clinic I, Department of Hematology, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Böttcher
- Division of Internal Medicine, Medical Clinic III-Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Arnon P. Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John F. Seymour
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Di Pasqua LG, Abdallah MM, Feletti F, Vairetti M, Ferrigno A. Venetoclax-Related Neutropenia in Leukemic Patients: A Comprehensive Review of the Underlying Causes, Risk Factors, and Management. Pharmaceuticals (Basel) 2024; 17:484. [PMID: 38675444 PMCID: PMC11054081 DOI: 10.3390/ph17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Venetoclax is a Bcl-2 homology domain 3 (BH3) mimetic currently approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) that has proven to be highly effective in reinstating apoptosis in leukemic cells through the highly selective inhibition of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2). Clinically, venetoclax has provided lasting remissions through the inhibition of CLL and AML blasts. However, this activity has often come at the cost of grade III/IV neutropenia due to hematopoietic cells' dependence on Bcl-2 for survival. As life-threatening infections are an important complication in these patients, an effective management of neutropenia is indispensable to maximize patient outcomes. While there is general consensus over dose reduction and scheduling modifications to minimize the risk of neutropenia, the impact of these modifications on survival is uncertain. Moreover, guidelines do not yet adequately account for patient-specific and disease-specific risk factors that may predict toxicity, or the role combination treatment plays in exacerbating neutropenia. The objective of this review is to discuss the venetoclax-induced mechanism of hematological toxicity, the potential predictive risk factors that affect patient vulnerability to neutropenia, and the current consensus on practices for management of neutropenia.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
21
|
Ahn IE, Davids MS. Therapeutic targeting of apoptosis in chronic lymphocytic leukemia. Semin Hematol 2024; 61:109-118. [PMID: 38538512 DOI: 10.1053/j.seminhematol.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 06/09/2024]
Abstract
Therapeutic targeting of apoptosis with small molecule B-cell lymphoma 2 (BCL-2) inhibition with venetoclax is highly efficacious in CLL, leading to sustained deep responses, particularly among patients with treatment-naïve disease with favorable prognostic markers. Patients with unfavorable genetic characteristics such as TP53 aberration and unmutated IGHV may also derive durable benefits, but their remission duration after time-limited venetoclax-containing combination therapy is shorter, particularly in patients with relapsed/refractory disease. Emerging data indicate that the context of disease progression after initial treatment with venetoclax may define the success of re-treatment with venetoclax. Specifically, continuous venetoclax exposure may select for resistant disease due to genetic mechanisms such as BCL2 mutations and functional resistance mechanisms such as hyperphosphorylation of BCL-2 family proteins, which decrease the affinity of venetoclax binding to the target or lead to increased MCL-1 dependence and concomitant decrease in BCL-2 dependence. These patients may be best served by switching to a different class of targeted agents at the time of progression. In contrast, relapsed CLL that arises while being off therapy after a period of time-limited venetoclax-based regimens maintains sensitivity to re-treatment with venetoclax for the majority of patients. Novel strategies related to therapeutic targeting of apoptosis include next-generation BCL-2 inhibitors with improved potency and pharmacokinetic profiles, direct targeting of anti-apoptotic BH3 family proteins beyond BCL-2 such as MCL-1, and indirect targeting of MCL-1 through mechanisms such as small molecule cyclin-dependent kinase 9 inhibitors.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Apoptosis/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/therapeutic use
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Molecular Targeted Therapy/methods
- Drug Resistance, Neoplasm/drug effects
Collapse
Affiliation(s)
- Inhye E Ahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.
| |
Collapse
|
22
|
Lew TE, Bennett R, Lin VS, Whitechurch A, Handunnetti SM, Marlton P, Shen Y, Mulligan SP, Casan J, Blombery P, Tam CS, Roberts AW, Seymour JF, Thompson PA, Anderson MA. Venetoclax-rituximab is active in patients with BTKi-exposed CLL, but durable treatment-free remissions are uncommon. Blood Adv 2024; 8:1439-1443. [PMID: 38231032 PMCID: PMC10955641 DOI: 10.1182/bloodadvances.2023011327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Thomas E. Lew
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rory Bennett
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Victor S. Lin
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Ashley Whitechurch
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Paula Marlton
- Department of Hematology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Yandong Shen
- Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Stephen P. Mulligan
- Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia
- Department of Haematology and Flow Cytometry, Laverty Pathology, Sydney, NSW, Australia
| | - Joshua Casan
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Piers Blombery
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Andrew W. Roberts
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - John F. Seymour
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Philip A. Thompson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mary A. Anderson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Kim R, Kin T, Beck WT. Impact of Complex Apoptotic Signaling Pathways on Cancer Cell Sensitivity to Therapy. Cancers (Basel) 2024; 16:984. [PMID: 38473345 DOI: 10.3390/cancers16050984] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Anticancer drugs induce apoptotic and non-apoptotic cell death in various cancer types. The signaling pathways for anticancer drug-induced apoptotic cell death have been shown to differ between drug-sensitive and drug-resistant cells. In atypical multidrug-resistant leukemia cells, the c-Jun/activator protein 1 (AP-1)/p53 signaling pathway leading to apoptotic death is altered. Cancer cells treated with anticancer drugs undergo c-Jun/AP-1-mediated apoptotic death and are involved in c-Jun N-terminal kinase activation and growth arrest- and DNA damage-inducible gene 153 (Gadd153)/CCAAT/enhancer-binding protein homologous protein pathway induction, regardless of the p53 genotype. Gadd153 induction is associated with mitochondrial membrane permeabilization after anticancer drug treatment and involves a coupled endoplasmic reticulum stress response. The induction of apoptosis by anticancer drugs is mediated by the intrinsic pathway (cytochrome c, Cyt c) and subsequent activation of the caspase cascade via proapoptotic genes (e.g., Bax and Bcl-xS) and their interactions. Anticancer drug-induced apoptosis involves caspase-dependent and caspase-independent pathways and occurs via intrinsic and extrinsic pathways. The targeting of antiapoptotic genes such as Bcl-2 enhances anticancer drug efficacy. The modulation of apoptotic signaling by Bcl-xS transduction increases the sensitivity of multidrug resistance-related protein-overexpressing epidermoid carcinoma cells to anticancer drugs. The significance of autophagy in cancer therapy remains to be elucidated. In this review, we summarize current knowledge of cancer cell death-related signaling pathways and their alterations during anticancer drug treatment and discuss potential strategies to enhance treatment efficacy.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
| | - Takanori Kin
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - William T Beck
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
24
|
Bennett R, Seymour JF. Update on the management of relapsed/refractory chronic lymphocytic leukemia. Blood Cancer J 2024; 14:33. [PMID: 38378673 PMCID: PMC10879527 DOI: 10.1038/s41408-024-01001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) predominantly affects older adults, characterized by a relapsing and remitting pattern with sequential treatments available for many patients. Identification of progressive/relapsed CLL should prompt close monitoring and early discussion about the next therapies when treatment indications are present. The intervening period represents an opportunity to optimize patient health, including establishing adequate vaccination and surveillance for second primary malignancies, and treating non-CLL-related comorbidities which may impact well-being and CLL therapy. We now see patients with relapsed/refractory (RR) CLL in the clinic who have been previously treated with chemoimmunotherapy (CIT) and/or one or more novel therapies. Continuous covalent inhibitors of Bruton's tyrosine kinase (cBTKi) and fixed-duration venetoclax (Ven)-anti-CD20 monoclonal antibody (mAb) are preferred over CIT given the survival advantages associated with these therapies, although have never been evaluated head-to-head. While both classes are effective for RR CLL, potential side effects and the logistics of administration differ. Few randomized data demonstrate the sequential use of cBTKi and fixed-duration Ven-anti-CD20 mAb; however, they may be used in either sequence. Newer non-covalent BTKi, active against BTK C481 resistance mutations emerging with continuous cBTKi exposure, and novel approaches such as BTK degraders, bispecific antibodies, and chimeric antigen receptor T-cell therapies demonstrate impressive efficacy. In this review of RR CLL we explore relevant investigations, consideration of broader CLL- and non-CLL-related health needs, and evidence for efficacy and safety of B-cell receptor inhibitors and Ven, including available data to support drug sequencing or switching. We describe novel approaches to RR CLL, including rechallenging with fixed-duration therapies, allogeneic stem cell transplant indications in the novel therapy era, and highlight early data supporting the use of T-cell directing therapies and novel drug targets.
Collapse
Affiliation(s)
- Rory Bennett
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, Melbourne, VIC, 3000, Australia
| | - John F Seymour
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, Melbourne, VIC, 3000, Australia.
- University of Melbourne, Grattan St, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
25
|
Crassini K, Gibson J. Pathogenesis and management of immune dysfunction secondary to B cell haematological malignancies. Intern Med J 2024; 54:16-25. [PMID: 38066723 DOI: 10.1111/imj.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/15/2023] [Indexed: 01/26/2024]
Abstract
Malignancies of the B-lymphocyte lineage are among the most diagnosed haematological malignancies in clinical practice. In our community, multiple myeloma (MM) and its precursor condition monoclonal gammopathy of undetermined significance are the commonest, accounting for ~12% of diagnoses, followed by chronic lymphocytic leukaemia (CLL) and its precursor condition monoclonal B lymphocytosis, ~9%. Along with diffuse large B cell lymphoma, follicular lymphoma and marginal zone lymphoma, these conditions comprise around a third of all haematological malignancies diagnosed. Infection remains an important cause of mortality and morbidity in the management of patients with these conditions. This is in part treatment-related but also reflective of disease-related immune dysfunction. Infectious complications account for up to 50% of early mortality in patients with myeloma and up to 50% of all mortality in patients with CLL. A variety of strategies are available to decrease the morbidity and mortality of infectious complications; however, practices vary between countries and often between treating physicians. Treatment options have evolved significantly over the last decade, with the introduction of monoclonal antibodies, small molecule inhibitors, second- and third-generation immunomodulatory agents and CAR-T cell therapy. Much of the data that inform clinical practice in infection management predates current therapeutic approaches. This is in part because of the rapid development of new therapies but also reflective of the long natural history of many of these diseases and the need for prolonged periods of observation. In this article, we review the aspects of disease and treatment that contribute to immune dysfunction in MM, CLL and B-cell non-Hodgkin lymphoma and review the current strategies used to manage immune dysfunction and infection.
Collapse
Affiliation(s)
- Kyle Crassini
- MNCCI, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
| | - John Gibson
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Gopalakrishnan S, Menon R, Suleiman AA, Kater AP, Stilgenbauer S, Seymour JF, Chyla B, Lu T, Young Kim S, Roberts AW, Woyach JA, Mensing S, Salem AH. Relationship Between Venetoclax Exposure and Undetectable Minimal Residual Disease Rates in Relapsed/Refractory Patients With Chronic Lymphocytic Leukemia: A Pooled Analysis of Six Clinical Studies. Hemasphere 2023; 7:e983. [PMID: 38026788 PMCID: PMC10659710 DOI: 10.1097/hs9.0000000000000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
| | - Rajeev Menon
- Clinical Pharmacology, AbbVie, North Chicago, IL, USA
| | | | - Arnon P. Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, on behalf of HOVON CLL WG, Amsterdam, The Netherlands
| | - Stephan Stilgenbauer
- Division of CLL, Department III of Internal Medicine, Ulm University, Ulm, Germany
| | - John F. Seymour
- Department of Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, University of Melbourne, Parkville, VIC, Australia
| | - Brenda Chyla
- Precision Medicine Oncology, AbbVie, North Chicago, IL, USA
| | - Tong Lu
- Genentech Inc, South San Francisco, CA, USA
| | - Su Young Kim
- Oncology Development, AbbVie, North Chicago, IL, USA
| | - Andrew W. Roberts
- Department of Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, University of Melbourne, Parkville, VIC, Australia
| | - Jennifer A. Woyach
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sven Mensing
- Clinical Pharmacology, AbbVie, Ludwigshafen, Germany
| | - Ahmed Hamed Salem
- Clinical Pharmacology, AbbVie, North Chicago, IL, USA
- Clinical Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
28
|
Abrisqueta P, Nadeu F, Bosch-Schips J, Iacoboni G, Serna A, Cabirta A, Yáñez L, Quintanilla-Martínez L, Bosch F. From genetics to therapy: Unraveling the complexities of Richter transformation in chronic lymphocytic leukemia. Cancer Treat Rev 2023; 120:102619. [PMID: 37660626 DOI: 10.1016/j.ctrv.2023.102619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Richter transformation (RT) refers to the progression of chronic lymphocytic leukemia, the most prevalent leukemia among adults, into a highly aggressive lymphoproliferative disorder, primarily a diffuse large B-cell lymphoma. This is a severe complication that continues to be a therapeutic challenge and remains an unmet medical need. Over the last five years, significant advances have occurred in uncovering the biological processes leading to the RT, refining criteria for properly diagnose RT from other entities, and exploring new therapeutic options beyond the ineffective chemotherapy. This review summarizes current knowledge in RT, including recent advances in the understanding of the pathogenesis of RT, in the classification of RT, and in the development of novel therapeutic strategies for this grave complication.
Collapse
Affiliation(s)
- Pau Abrisqueta
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jan Bosch-Schips
- Department of Pathology, Hospital Universitari de Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Gloria Iacoboni
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Angel Serna
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alba Cabirta
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lucrecia Yáñez
- Department of Hematology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Leticia Quintanilla-Martínez
- Institute of Pathology and Neuropathology, Tübingen University Hospital and Comprehensive Cancer Center Tübingen-Stuttgart, 72076 Tübingen, Germany
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
29
|
Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel) 2023; 15:4957. [PMID: 37894324 PMCID: PMC10605442 DOI: 10.3390/cancers15204957] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Targeting the intrinsic apoptotic pathway regulated by B-cell lymphoma-2 (BCL-2) antiapoptotic proteins can overcome the evasion of apoptosis in cancer cells. BCL-2 inhibitors have evolved into an important means of treating cancers by inducing tumor cell apoptosis. As the most extensively investigated BCL-2 inhibitor, venetoclax is highly selective for BCL-2 and can effectively inhibit tumor survival. Its emergence and development have significantly influenced the therapeutic landscape of hematological malignancies, especially in chronic lymphocytic leukemia and acute myeloid leukemia, in which it has been clearly incorporated into the recommended treatment regimens. In addition, the considerable efficacy of venetoclax in combination with other agents has been demonstrated in relapsed and refractory multiple myeloma and certain lymphomas. Although venetoclax plays a prominent antitumor role in preclinical experiments and clinical trials, large individual differences in treatment outcomes have been characterized in real-world patient populations, and reduced drug sensitivity will lead to disease recurrence or progression. The therapeutic efficacy may vary widely in patients with different molecular characteristics, and key genetic mutations potentially result in differential sensitivities to venetoclax. The identification and validation of more novel biomarkers are required to accurately predict the effectiveness of BCL-2 inhibition therapy. Furthermore, we summarize the recent research progress relating to the use of BCL-2 inhibitors in solid tumor treatment and demonstrate that a wealth of preclinical models have shown promising results through combination therapies. The applications of venetoclax in solid tumors warrant further clinical investigation to define its prospects.
Collapse
Affiliation(s)
- Jiaxuan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Quan Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW There have been significant advances in the treatment of relapsed/refractory chronic lymphocytic leukemia (CLL) over the past two decades. However, the intention of treatment remains control of the disease and delay of progression rather than a cure which remains largely elusive. Considering that CLL is mostly seen in older patients, there are multiple factors that play a role in the selection of CLL beyond the frontline treatment. Here, we review the concept of relapsed CLL, factors that predispose to relapse, and therapeutic options available to this patient population. We also review investigational therapies and provide a framework for selection of therapies in this setting. RECENT FINDINGS Targeted therapies with continuous BTK inhibitors (BTKi) or fixed duration venetoclax plus anti-CD20 monoclonal antibody therapy have established superiority over chemoimmunotherapy in relapsed CLL and have become the preferred standard of care treatment. The second-generation more selective BTK inhibitors (acalabrutinib and zanubrutinib) have shown improved safety profile compared to ibrutinib. However, resistance to the covalent BTK inhibitors may emerge and is commonly associated with mutations in BTK or other downstream enzymes. The novel non-covalent BTK inhibitors such as pirtobrutinib (Loxo-305) and nemtabrutinib (ARQ 531) are showing promising activities for relapsed CLL refractory to prior covalent BTKi. Other novel therapies such as chimeric antigen receptor (CAR) T cell therapy have also shown significant activities for relapsed and refractory CLL. Measurable residual disease (MRD) assessment has a growing importance in venetoclax-based limited-duration therapy and there is mounting evidence that MRD negativity improves outcomes. However, it remains to be seen if this will become an established clinically significant endpoint. Further, the optimal sequence of various treatment options remains to be determined. Patients with relapsed CLL now have more options for the treatment of the disease. The choice of therapy is best individualized especially in the absence of direct comparisons of targeted therapies, and the coming years will bring more data on the best sequence of use of the therapeutic agents.
Collapse
Affiliation(s)
- Oluwatobi Odetola
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street, Suite 805, Chicago, IL, 60611, USA.
| | - Shuo Ma
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street, Suite 805, Chicago, IL, 60611, USA
| |
Collapse
|
31
|
Van Wagoner CM, Rivera-Escalera F, Delgadillo NJ, Chu CC, Zent CS, Elliott MR. Antibody-mediated phagocytosis in cancer immunotherapy. Immunol Rev 2023; 319:128-141. [PMID: 37602915 PMCID: PMC10615698 DOI: 10.1111/imr.13265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Unconjugated monoclonal antibodies (mAb) have revolutionized the treatment of many types of cancer. Some of these mAbs promote the clearance of malignant cells via direct cytotoxic effects. More recently, antibody-dependent cellular phagocytosis (ADCP) has been appreciated as a major mechanism of action for a number of widely-used mAbs, including anti-CD20 (rituximab, obinutuzumab), anti-HER2 (trazituzumab), and anti-CD38 (daratumumab). However, as a monotherapy these ADCP-inducing mAbs produce insufficient levels of cytotoxicity in vivo and are not curative. As a result, these mAbs are most effectively used in combination therapies. The efficacy of these mAbs is further hampered by the apparent development of drug resistance by many patients. Here we will explore the role of ADCP in cancer immunotherapy and discuss the key factors that could limit the efficacy of ADCP-inducing mAbs in vivo. Finally, we will discuss current insights and approaches being applied to overcome these limitations.
Collapse
Affiliation(s)
- Carly M. Van Wagoner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Fátima Rivera-Escalera
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | | | - Charles C. Chu
- Division of Hematology/Oncology, University of Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, NY, USA
| | - Clive S. Zent
- Division of Hematology/Oncology, University of Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, NY, USA
| | - Michael R. Elliott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
32
|
Alshemmari SH, Siddiqui MA, Pandita R, Osman HY, Cherif H, O'Brien S, Marashi M, Al Farsi K. Evidence-Based Management of Chronic Lymphocytic Leukemia: Consensus Statements from the Gulf Region. Acta Haematol 2023; 147:260-279. [PMID: 37751733 DOI: 10.1159/000531675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/16/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Despite recent advances in diagnosis, prognostication, and treatment options, chronic lymphocytic leukemia (CLL) is still a largely incurable disease. New concepts on diagnosis, staging, treatment, and follow-up on CLL have been incorporated throughout recent years. The lack of regional consensus guidelines has led to varying practices in the management of patients with CLL in the region. This manuscript aims to reach a consensus among expert hematologists regarding the definitions, classifications, and related practices of CLL. The experts developed a set of statements utilizing their personal experience together with the current literature on CLL management. This consensus aims to provide guidance for healthcare professionals involved in the management of CLL and serves as a step in developing regional guidelines. METHODS Eight experts responded to 50 statements regarding the diagnosis, staging, treatment, and prognosis of CLL with three potential answering alternatives ranging between agree, disagree, and abstain. This consensus adopted a modified Delphi consensus methodology. A consensus was reached when at least 75% of the agreement to the answer was reached. This manuscript presents the scientific insights of the participating attendees, panel discussions, and the supporting literature review. RESULTS Of the 50 statements, a consensus was reached on almost all statements. Statements covered CLL-related topics, including diagnostic evaluation, staging, risk assessment, different patient profiles, prognostic evaluation, treatment decisions, therapy sequences, response evaluation, complications, and CLL during the COVID-19 pandemic. CONCLUSION In recent years, CLL management has progressed significantly, with many diagnostic tests and several novel treatments becoming available. This consensus gathers decades of consolidated principles, novel research, and promising prospects for the management of this disease.
Collapse
Affiliation(s)
- Salem H Alshemmari
- Department of Medicine, Faculty of Medicine and Department of Hematology, Kuwait Cancer Control Centre, Shuwaikh, Kuwait
| | - Mustaqeem A Siddiqui
- Hematology and Oncology Division, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
- Mayo Clinic Division of Hematology, Rochester, Minnesota, USA
| | - Ramesh Pandita
- Department of Hematology, Kuwait Cancer Control Centre, Shuwaikh, Kuwait
| | - Hani Y Osman
- Oncology Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Honar Cherif
- Departmant of Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Susan O'Brien
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Mahmoud Marashi
- Department of Hematology, Dubai Healthcare Authority, Dubai, United Arab Emirates
| | - Khalil Al Farsi
- Department of Hematology, Sultan Qaboos University Hospital Muscat, Seeb, Oman
| |
Collapse
|
33
|
Neely V, Manchikalapudi A, Nguyen K, Dalton K, Hu B, Koblinski JE, Faber AC, Deb S, Harada H. Targeting Oncogenic Mutant p53 and BCL-2 for Small Cell Lung Cancer Treatment. Int J Mol Sci 2023; 24:13082. [PMID: 37685889 PMCID: PMC10487506 DOI: 10.3390/ijms241713082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Through a unique genomics and drug screening platform with ~800 solid tumor cell lines, we have found a subset of SCLC cell lines are hypersensitive to venetoclax, an FDA-approved inhibitor of BCL-2. SCLC-A (ASCL1 positive) and SCLC-P (POU2F3 positive), which make up almost 80% of SCLC, frequently express high levels of BCL-2. We found that a subset of SCLC-A and SCLC-P showed high BCL-2 expression but were venetoclax-resistant. In addition, most of these SCLC cell lines have TP53 missense mutations, which make a single amino acid change. These mutants not only lose wild-type (WT) p53 tumor suppressor functions, but also acquire novel cancer-promoting activities (oncogenic, gain-of-function). A recent study with oncogenic mutant (Onc)-p53 knock-in mouse models of SCLC suggests gain-of-function activity can attenuate chemotherapeutic efficacy. Based on these observations, we hypothesize that Onc-p53 confers venetoclax resistance and that simultaneous inhibition of BCL-2 and Onc-p53 induces synergistic anticancer activity in a subset of SCLC-A and SCLC-P. We show here that (1) down-regulation of Onc-p53 increases the expression of a BH3-only pro-apoptotic BIM and sensitizes to venetoclax in SCLC-P cells; (2) targeting Onc-p53 by the HSP90 inhibitor, ganetespib, increases BIM expression and sensitizes to venetoclax in SCLC-P and SCLC-A cells. Although there are currently many combination studies for venetoclax proposed, the concept of simultaneous targeting of BCL-2 and Onc-p53 by the combination of venetoclax and HSP90 inhibitors would be a promising approach for SCLC treatment.
Collapse
Affiliation(s)
- Victoria Neely
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Alekhya Manchikalapudi
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Khanh Nguyen
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Krista Dalton
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Bin Hu
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.H.); (J.E.K.)
| | - Jennifer E. Koblinski
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.H.); (J.E.K.)
| | - Anthony C. Faber
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Sumitra Deb
- Department of Biochemistry & Molecular Biology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| |
Collapse
|
34
|
Bennett R, Anderson MA, Seymour JF. Unresolved questions in selection of therapies for treatment-naïve chronic lymphocytic leukemia. J Hematol Oncol 2023; 16:72. [PMID: 37422670 PMCID: PMC10329329 DOI: 10.1186/s13045-023-01469-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The treatment landscape for chronic lymphocytic leukemia (CLL) continues to undergo considerable evolution. Optimal selection of initial therapy from multiple effective options provides a major challenge for clinicians, who need to consider both disease and patient factors in conjunction with a view to sequencing available therapies in event of disease relapse. REVIEW We explore the most topical clinically relevant unresolved questions through discussion of important available pertinent literature and propose expert opinion based on these data. (1) Shrinking role of chemoimmunotherapy (CIT); while novel therapies are generally superior, we highlight the utility of FCR for IGHV-mutated CLL. (2) Choosing between inhibitors of Bruton's tyrosine kinase (BTKi); while efficacy between agents is likely similar there are important differences in toxicity profiles, including the incidence of cardiac arrhythmia and hypertension. (3) BTKi with or without anti-CD20 monoclonal antibodies (mAb); while obinutuzumab-acalabrutinib (AO) may confer superior progression-free survival to acalabrutinib (Acala), this is not true of rituximab (Ritux) to ibrutinib (Ib)-we highlight that potential for increased side effects should be carefully considered. (4) Continuous BTKi versus time-limited venetoclax-obinutuzumab (VenO); we propose that venetoclax (Ven)-based therapy is generally preferable to BTKi with exception of TP53 aberrant disease. (5) BTKi-Ven versus VenO as preferred time-limited therapy; we discuss comparable efficacies and the concerns about simultaneous 1L exposure to both BTKi and Ven drug classes. (6) Utility of triplet therapy (BTKi-Ven-antiCD20 mAb) versus VenO; similar rates of complete response are observed yet with greater potential for adverse events. (7) Optimal therapy for TP53 aberrant CLL; while limited data are available, there are likely effective novel therapy combinations for TP53 aberrant disease including BTKi, BTKi-Ven ± antiCD20 mAb. CONCLUSION Frontline therapy for CLL should be selected based on efficacy considering the patient specific biologic profile of their disease and potential toxicities, considering patient comorbidities and preferences. With the present paradigm of sequencing effective agents, 1L combinations of novel therapies should be used with caution in view of potential adverse events and theoretical resistance mechanism concerns in the absence of compelling randomized data to support augmented efficacy.
Collapse
Affiliation(s)
- Rory Bennett
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, Melbourne, VIC, 3000, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, Melbourne, VIC, 3000, Australia
- Division of Blood Cells and Blood Cancer, The Walter and Eliza Hall Institute, 1G, Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- University of Melbourne, Grattan St, Parkville, Melbourne, VIC, 3010, Australia
| | - John F Seymour
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, Melbourne, VIC, 3000, Australia.
- University of Melbourne, Grattan St, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
35
|
Ailawadhi S, Chen Z, Huang B, Paulus A, Collins MC, Fu L(T, Li M, Ahmad M, Men L, Wang H, Davids MS, Liang E, Mekala DJ, He Z, Lasica M, Yannakou CK, Parrondo R, Glass L, Yang D, Chanan-Khan A, Zhai Y. Novel BCL-2 Inhibitor Lisaftoclax in Relapsed or Refractory Chronic Lymphocytic Leukemia and Other Hematologic Malignancies: First-in-Human Open-Label Trial. Clin Cancer Res 2023; 29:2385-2393. [PMID: 37074726 PMCID: PMC10330157 DOI: 10.1158/1078-0432.ccr-22-3321] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE This global phase I trial investigated the safety, efficacy, pharmacokinetics, and pharmacodynamics of lisaftoclax (APG-2575), a novel, orally active, potent selective B-cell lymphoma 2 (BCL-2) inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma (R/R CLL/SLL) and other hematologic malignancies (HMs). PATIENTS AND METHODS Maximum tolerated dose (MTD) and recommended phase II dose were evaluated. Outcome measures were safety and tolerability (primary) and pharmacokinetic variables and antitumor effects (secondary). Pharmacodynamics in patient tumor cells were explored. RESULTS Among 52 patients receiving lisaftoclax, MTD was not reached. Treatment-emergent adverse events (TEAEs) included diarrhea (48.1%), fatigue (34.6%), nausea (30.8%), anemia and thrombocytopenia (28.8% each), neutropenia (26.9%), constipation (25.0%), vomiting (23.1%), headache (21.2%), peripheral edema and hypokalemia (17.3% each), and arthralgia (15.4%). Grade ≥ 3 hematologic TEAEs included neutropenia (21.2%), thrombocytopenia (13.5%), and anemia (9.6%), none resulting in treatment discontinuation. Clinical pharmacokinetic and pharmacodynamic results demonstrated that lisaftoclax had a limited plasma residence and systemic exposure and elicited rapid clearance of malignant cells. With a median treatment of 15 (range, 6-43) cycles, 14 of 22 efficacy-evaluable patients with R/R CLL/SLL experienced partial responses, for an objective response rate of 63.6% and median time to response of 2 (range, 2-8) cycles. CONCLUSIONS Lisaftoclax was well tolerated, with no evidence of tumor lysis syndrome. Dose-limiting toxicity was not reached at the highest dose level. Lisaftoclax has a unique pharmacokinetic profile compatible with a potentially more convenient daily (vs. weekly) dose ramp-up schedule and induced rapid clinical responses in patients with CLL/SLL, warranting continued clinical investigation.
Collapse
Affiliation(s)
| | - Zi Chen
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
| | - Bo Huang
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
| | - Aneel Paulus
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL USA
| | - Mary C. Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | | | - Mingyu Li
- Ascentage Pharma Group Inc, Rockville, MD USA
| | | | - Lichuang Men
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
| | - Hengbang Wang
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Eric Liang
- Ascentage Pharma Group Inc, Rockville, MD USA
| | | | - Zhicong He
- Ascentage Pharma Pty Ltd, Sydney, Australia
| | - Masa Lasica
- Department of Hematology, St Vincent’s Hospital Melbourne, Victoria, Australia
| | - Costas K. Yannakou
- Epworth Healthcare, Freemasons Hospital and University of Melbourne, Victoria, Australia
| | - Ricardo Parrondo
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL USA
| | - Laura Glass
- Ascentage Pharma Group Inc, Rockville, MD USA
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
- Ascentage Pharma Group Inc, Rockville, MD USA
- Sun-Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Asher Chanan-Khan
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL USA
- Mayo Clinic Cancer Center, Jacksonville, FL USA
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
- Ascentage Pharma Group Inc, Rockville, MD USA
| |
Collapse
|
36
|
Seymour JF. Approach to relapsed CLL including Richter Transformation. Hematol Oncol 2023; 41 Suppl 1:136-143. [PMID: 37294971 DOI: 10.1002/hon.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Affiliation(s)
- John F Seymour
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Lovell AR, Sawyers J, Bose P. An update on the efficacy of Venetoclax for chronic lymphocytic leukemia. Expert Opin Pharmacother 2023; 24:1307-1316. [PMID: 37226798 PMCID: PMC11253904 DOI: 10.1080/14656566.2023.2218545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION The BCL2 inhibitor venetoclax has dramatically changed the treatment of chronic lymphocytic leukemia (CLL) and has introduced the concept of time-limited therapy with targeted agents. AREAS COVERED This review discusses the mechanism of action of venetoclax, adverse effects, and the clinical data with this agent as identified by a selective search of clinical trials in the PubMed database. Venetoclax is FDA-approved with anti-CD20 monoclonal antibodies; however, research is ongoing evaluating its efficacy when given in combination with other agents, such as the Bruton's Tyrosine Kinase (BTK) inhibitors. EXPERT OPINION Venetoclax-based therapy is an excellent treatment option for patients interested in time-limited therapy and can be offered in both the front-line and relapsed/refractory settings. Tumor lysis syndrome (TLS) risk evaluation, preventative measures, and strict monitoring should be conducted, while these patients ramp up to target dose. Venetoclax-based therapies produce deep and durable responses with patients often achieving undetectable measurable residual disease (uMRD). This has led to a discussion of MRD-driven, finite-duration treatment approaches, although longer term data is still needed. While many patients eventually lose uMRD status, re-treatment with venetoclax remains an area of interest with promising results. Mechanisms of resistance to venetoclax are being elucidated, and research is ongoing.
Collapse
Affiliation(s)
- Alexandra R. Lovell
- MD Anderson Cancer Center, Division of Pharmacy, Houston, Texas, United States
| | - Jacki Sawyers
- MD Anderson Cancer Center, Division of Pharmacy, Houston, Texas, United States
| | - Prithviraj Bose
- MD Anderson Cancer Center, Department of Leukemia, Division of Cancer Medicine, Houston, Texas, United States
| |
Collapse
|
38
|
El-Cheikh J, Bidaoui G, Saleh M, Moukalled N, Abou Dalle I, Bazarbachi A. Venetoclax: A New Partner in the Novel Treatment Era for Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clin Hematol Int 2023:10.1007/s44228-023-00041-x. [PMID: 37071328 DOI: 10.1007/s44228-023-00041-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS) are two closely related blood cancers that are more frequent in older adults. AML is the most common type of adult acute leukemia, and MDS is characterized by ineffective blood cell production and abnormalities in the bone marrow and blood. Both can be resistant to treatment, often due to dysfunction in the process of apoptosis, the body's natural mechanism for cell death. Venetoclax, an orally-administered medication that selectively targets the BCL-2 protein, has shown promise in enhancing treatment sensitivity in some hematological malignancies by reducing the apoptotic threshold. This review aims to evaluate the effectiveness of venetoclax in treating AML and MDS, as well as potential mechanisms of resistance to the medication. METHODS A literature search was conducted utilizing PUBMED to capture all relevant research articles on the use of venetoclax as a therapy for both diseases. The MeSH terms "acute myeloid leukemia", "myelodysplastic syndrome" and "venetoclax" were searched. Furthermore, Clinicaltrials.gov was accessed to ensure the inclusion of all ongoing clinical trials. RESULTS Although Venetoclax showed modest results as a single-agent therapy in AML, venetoclax-based combination therapies? mainly with hypomethylating agents or low-dose cytarabine? yielded significantly positive results. Preliminary results oN the use of venetoclax-based combination therapy with HMA, mainly azacitidine, in unfit high-risk MDS also yielded optimistic results. Identification of mutations for which various drugs have been approved has spurred active investigation of venetoclax in combination trials. CONCLUSION Venetoclax-based combination therapies have been shown to induce rapid responses and increase overall survival in AML patients unfit for intensive chemotherapy. These therapies are also yielding positive preliminary results in high-risk MDS patients in phase I trials. Resistance to venetoclax and drug-related toxicity are two main obstacles that need to be overcome to reap the full benefits of this therapy.
Collapse
Affiliation(s)
- Jean El-Cheikh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
- Department of Internal Medicine, Medical Center, Bone Marrow Transplantation Program, American University of Beirut, P.O. Box 113-6044, Beirut, Lebanon.
| | - Ghassan Bidaoui
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mustafa Saleh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Nour Moukalled
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Iman Abou Dalle
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Bazarbachi
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
39
|
Iyer P, Wang L. Emerging Therapies in CLL in the Era of Precision Medicine. Cancers (Basel) 2023; 15:1583. [PMID: 36900373 PMCID: PMC10000606 DOI: 10.3390/cancers15051583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Over the past decade, the treatment landscape of CLL has vastly changed from the conventional FC (fludarabine and cyclophosphamide) and FCR (FC with rituximab) chemotherapies to targeted therapies, including inhibitors of Bruton tyrosine kinase (BTK) and phosphatidylinositol 3-kinase (PI3K) as well as inhibitors of BCL2. These treatment options dramatically improved clinical outcomes; however, not all patients respond well to these therapies, especially high-risk patients. Clinical trials of immune checkpoint inhibitors (PD-1, CTLA4) and chimeric antigen receptor T (CAR T) or NK (CAR NK) cell treatment have shown some efficacy; still, long-term outcomes and safety issues have yet to be determined. CLL remains an incurable disease. Thus, there are unmet needs to discover new molecular pathways with targeted or combination therapies to cure the disease. Large-scale genome-wide whole-exome and whole-genome sequencing studies have discovered genetic alterations associated with disease progression, refined the prognostic markers in CLL, identified mutations underlying drug resistance, and pointed out critical targets to treat the disease. More recently, transcriptome and proteome landscape characterization further stratified the disease and revealed novel therapeutic targets in CLL. In this review, we briefly summarize the past and present available single or combination therapies, focusing on potential emerging therapies to address the unmet clinical needs in CLL.
Collapse
Affiliation(s)
- Prajish Iyer
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91007, USA
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91007, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Duarte, CA 91016, USA
| |
Collapse
|
40
|
Smyth E, Eyre TA, Cheah CY. Emerging Therapies for the Management of Richter Transformation. J Clin Oncol 2023; 41:395-409. [PMID: 36130148 DOI: 10.1200/jco.22.01028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Richter transformation (RT) refers to the development of an aggressive lymphoma in patients with underlying chronic lymphocytic leukemia/small lymphocytic lymphoma. Aside from a small subgroup of patients with clonally unrelated and previously untreated chronic lymphocytic leukemia, the disease responds poorly to standard therapies and prognosis is dismal. Recent developments in the understanding of the biology of RT and the advent of several targeted agents may result in improved outcomes for these patients. The purpose of this review is to analyze recent data on the pathogenesis and treatment of RT. We reviewed studies addressing the pathophysiology of RT and analyzed the data for frontline chemoimmunotherapy and emerging targeted therapies likely to play a significant role in the future management of RT. Several biologic and clinical factors may help identify those who are unlikely to respond to conventional chemoimmunotherapy; where possible, these patients should be managed with a novel approach. Emerging therapies for the management of RT include chimeric antigen receptor T-cell therapy, noncovalent Bruton tyrosine kinase inhibitors, and T-cell-engaging bispecific antibodies. The use of less toxic and more effective targeted therapies may result in improved outcomes. Larger, prospective clinical trials are required to confirm efficacy and safety of novel agents for the management of RT, particularly when used in combination with other targeted therapies and in addition to chemoimmunotherapy regimens.
Collapse
Affiliation(s)
- Elizabeth Smyth
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Toby A Eyre
- Haematology and Cancer Centre, Oxford University Hospitals NHS Foundation Trust Oxford, Oxford, United Kingdom
| | - Chan Y Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
41
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
42
|
Sarapura Martinez VJ, Buonincontro B, Cassarino C, Bernatowiez J, Colado A, Cordini G, Custidiano MDR, Mahuad C, Pavlovsky MA, Bezares RF, Favale NO, Vermeulen M, Borge M, Giordano M, Gamberale R. Venetoclax resistance induced by activated T cells can be counteracted by sphingosine kinase inhibitors in chronic lymphocytic leukemia. Front Oncol 2023; 13:1143881. [PMID: 37020867 PMCID: PMC10067719 DOI: 10.3389/fonc.2023.1143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) patients with venetoclax-based regimens has demonstrated efficacy and a safety profile, but the emergence of resistant cells and disease progression is a current complication. Therapeutic target of sphingosine kinases (SPHK) 1 and 2 has opened new opportunities in the treatment combinations of cancer patients. We previously reported that the dual SPHK1/2 inhibitor, SKI-II enhanced the in vitro cell death triggered by fludarabine, bendamustine or ibrutinib and reduced the activation and proliferation of chronic lymphocytic leukemia (CLL) cells. Since we previously showed that autologous activated T cells from CLL patients favor the activation of CLL cells and the generation of venetoclax resistance due to the upregulation of BCL-XL and MCL-1, we here aim to determine whether SPHK inhibitors affect this process. To this aim we employed the dual SPHK1/2 inhibitor SKI-II and opaganib, a SPHK2 inhibitor that is being studied in clinical trials. We found that SPHK inhibitors reduce the activation of CLL cells and the generation of venetoclax resistance induced by activated T cells mainly due to a reduced upregulation of BCL-XL. We also found that SPHK2 expression was enhanced in CLL cells by activated T cells of the same patient and the presence of venetoclax selects resistant cells with high levels of SPHK2. Of note, SPHK inhibitors were able to re-sensitize already resistant CLL cells to a second venetoclax treatment. Our results highlight the therapeutic potential of SPHK inhibitors in combination with venetoclax as a promising treatment option for the patients.
Collapse
Affiliation(s)
- Valeria J. Sarapura Martinez
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Brenda Buonincontro
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Chiara Cassarino
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Juliana Bernatowiez
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Gregorio Cordini
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Servicio de Hematología, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Maria del Rosario Custidiano
- Departamento de Hematología y Unidad de Trasplante Hematopoyético, Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Carolina Mahuad
- Servicio de Hematología, Hospital Alemán, Buenos Aires, Argentina
| | | | | | - Nicolás O. Favale
- Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas “Profesor Dr. Alejandro C. Paladini” (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Células Presentadoras de Antígeno y Respuesta Inflamatoria, IMEX-CONICET-ANM, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
- *Correspondence: Romina Gamberale,
| |
Collapse
|
43
|
Maitre E, Paillassa J, Troussard X. Novel targeted treatments in hairy cell leukemia and other hairy cell-like disorders. Front Oncol 2022; 12:1068981. [PMID: 36620555 PMCID: PMC9815161 DOI: 10.3389/fonc.2022.1068981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the category of mature B-cell neoplasms, splenic B-cell lymphoma and leukemia were clearly identified and include four distinct entities: hairy cell leukemia (HCL), splenic marginal zone lymphoma (SMZL), splenic diffuse red pulp lymphoma (SDRPL) and the new entity named splenic B-cell lymphoma/leukemia with prominent nucleoli (SBLPN). The BRAFV600E mutation is detected in nearly all HCL cases and offers a possibility of targeted therapy. BRAF inhibitors (BRAFi) represent effective and promising therapeutic approaches in patients with relapsed/refractory HCL. Vemurafenib and dabrafenib were assessed in clinical trials. The BRAFV600E mutation is missing in SDRPL and SBLPN: mitogen-activated protein kinase 1 (MAP2K1) mutations were found in 40% of SBLPN and VH4-34+ HCL patients, making possible to use MEK inhibitors (MEKi) such as trametinib, cobimetinib or binimetinib in monotherapy or associated with BRAFi. Other mutations may be associated and other signaling pathways involved, including the B-cell receptor signaling (BCR), cell cycle, epigenetic regulation and/or chromatin remodeling. In SDRPL, cyclin D3 (CCND3) mutations were found in 24% of patients, offering the possibility of using cell cycle inhibitors. Even if new emerging drugs, particularly those involved in the epigenetic regulation, have recently been added to the therapeutic armamentarium in HCL and HCL-like disorders, purine nucleoside analogs more and more associated with anti-CD20 monoclonal antibodies, are still used in the frontline setting. Thanks to the recent discoveries in genetics and signaling pathways in HCL and HCL-like disorders, new targeted therapies have been developed, have proven their efficacy and safety in several clinical trials and become essential in real life: BRAFi, MEKi, Bruton Tyrosine Kinase inhibitors (BTKi) and anti-CD22 immunotoxins. New other drugs emerged and have to be assessed in the future. In this article, we will discuss the main mutations identified in HCL and HCL-like disorders and the signaling pathways potentially involved in the pathogenesis of the different hairy cell disorders. We will discuss the results of the recent clinical trials, which will help us to propose an algorithm useful in clinical practice and we will highlight the different new drugs that may be used in the near future.
Collapse
Affiliation(s)
- Elsa Maitre
- Hématologie, Centre Hospitalier Universitaire Caen Normandie, Avenue Côte de Nacre, Caen, France
| | - Jerome Paillassa
- Service des Maladies du Sang, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - Xavier Troussard
- Hématologie, Centre Hospitalier Universitaire Caen Normandie, Avenue Côte de Nacre, Caen, France,*Correspondence: Xavier Troussard,
| |
Collapse
|
44
|
Deng J, Paulus A, Fang DD, Manna A, Wang G, Wang H, Zhu S, Chen J, Min P, Yin Y, Dutta N, Halder N, Ciccio G, Copland JA, Miller J, Han B, Bai L, Liu L, Wang M, McEachern D, Przybranowski S, Yang CY, Stuckey JA, Wu D, Li C, Ryan J, Letai A, Ailawadhi S, Yang D, Wang S, Chanan-Khan A, Zhai Y. Lisaftoclax (APG-2575) Is a Novel BCL-2 Inhibitor with Robust Antitumor Activity in Preclinical Models of Hematologic Malignancy. Clin Cancer Res 2022; 28:5455-5468. [PMID: 36048524 DOI: 10.1158/1078-0432.ccr-21-4037] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/01/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). EXPERIMENTAL DESIGN Computational modeling was used to design "lead" compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. RESULTS Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nmol/L), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. CONCLUSIONS These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.
Collapse
Affiliation(s)
- Jing Deng
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Douglas D Fang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Alak Manna
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Guangfeng Wang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Hengbang Wang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Saijie Zhu
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Jianyong Chen
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Ping Min
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Yan Yin
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Navnita Dutta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Nabanita Halder
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Gina Ciccio
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - James Miller
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Bing Han
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Longchuan Bai
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Liu Liu
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Mi Wang
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Donna McEachern
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Sally Przybranowski
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Chao-Yie Yang
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jeanne A Stuckey
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caixia Li
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Dajun Yang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Ascentage Pharma Group, Rockville, Maryland
| | - Shaomeng Wang
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Asher Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Cancer Center at St. Vincent's Medical Center Riverside, Jacksonville, Florida
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
- Ascentage Pharma Group, Rockville, Maryland
| |
Collapse
|
45
|
Minimal residual disease-driven treatment intensification with sequential addition of ibrutinib to venetoclax in R/R CLL. Blood 2022; 140:2348-2357. [PMID: 35921541 DOI: 10.1182/blood.2022016901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022] Open
Abstract
Undetectable measurable residual disease (uMRD) is achievable in patients with chronic lymphocytic leukemia (CLL) with the BCL2-inhibitor venetoclax alone or combined with the Bruton's tyrosine kinase inhibitor ibrutinib. This phase 2, multicenter, MRD-driven study was designed to discontinue treatment upon reaching uMRD4 (<10-4) in patients with relapsed/refractory CLL receiving venetoclax monotherapy or after the addition of ibrutinib. Primary end point of the study was proportion of uMRD4 with venetoclax ± ibrutinib. Secondary end points were overall response rate, partial response, complete response, progression-free survival, duration of response, overall survival, and safety of venetoclax ± ibrutinib. Patients with uMRD4 at Cycle 12 Day 1 discontinued venetoclax. MRD+ patients added ibrutinib and continued both drugs up to Cycle 24 Day 28/uMRD4/progression/toxicity. After Cycle 24 Day 28, MRD+ patients continued ibrutinib. Thirty-eight patients (29% with TP53 aberrations; 79% with unmutated IGHV) started venetoclax. Overall response rate with venetoclax was 36 (95%) of 38 patients (20 complete; 16 partial response). Seventeen patients (45%) with uMRD4 at Cycle 12 Day 1 discontinued venetoclax. Nineteen (55%) MRD+ subjects added ibrutinib. After a median of 7 months (range, 3-10 months) of combined treatment, 16 (84%) of 19 achieved uMRD4, thus stopping both drugs. Two MRD+ patients at Cycle 24 Day 28 continued ibrutinib until progression/toxicity. After a median follow-up of 36.5 months, median progression-free survival was not reached; 10 patients progressed (4 restarted venetoclax, 3 without treatment need, 2 developed Richter transformation, and 1 dropped out). Seven (22%) of 32 patients remain uMRD4 after 3 years of follow-up. Neutropenia was the most frequent grade 3 to 4 adverse event; no grade 5 events occurred on study. This sequential MRD-guided approach led to uMRD4 in 33 (87%) of 38 patients, with venetoclax monotherapy or combined with ibrutinib, delivering treatment combination only in a fraction, and ultimately identifying the few patients benefiting from continuous therapy. This trial was registered at www.clinicaltrials.gov as # NCT04754035.
Collapse
|
46
|
Wierda WG, Kipps TJ, Al-Sawaf O, Chyla B, Biondo JML, Mun Y, Jiang Y, Seymour JF. Utility of measurable residual disease for predicting treatment outcomes with BCR- and BCL2-Targeted therapies in patients with CLL. Leuk Lymphoma 2022; 63:2765-2784. [PMID: 35983732 DOI: 10.1080/10428194.2022.2098291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022]
Abstract
Inhibitors targeting B-cell receptor (BCR) signaling pathway proteins and B-cell lymphoma-2 (BCL2) in chronic lymphocytic leukemia (CLL) are recommended in the first-line and relapsed/refractory disease settings. Measurable residual disease (MRD) is an important prognostic tool in patients treated with the BCL2-targeted agent, venetoclax. We explored the relationship between MRD status and progression-free (PFS)/overall survival (OS) in patients with CLL, following treatment with novel BCR- and BCL2-targeted agents. Compared with chemoimmunotherapy, higher rates of undetectable (u)MRD were achieved with BCL2-targeted therapies; achieving uMRD status was associated with longer PFS and OS than MRD-positivity. Continuous treatment with BCR-targeted agents did not achieve uMRD status in many patients, and outcomes were not correlated with uMRD status. Future clinical trials of targeted treatment combinations could be designed to demonstrate uMRD as a treatment objective, and allow a response-driven, personalized strategy to optimize treatment and improve OS outcomes.
Collapse
Affiliation(s)
| | | | - Othman Al-Sawaf
- Department I of Internal Medicine and Center of Integrated Oncology Cologne Aachen Cologne Bonn Düsseldorf, German CLL Study Group, University Hospital, University of Cologne, Cologne, Germany
| | | | | | - Yong Mun
- Genentech, Inc., South San Francisco, CA, USA
| | | | - John F Seymour
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital & University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Bennett R, Thompson E, Tam C. SOHO State of the Art Updates and Next Questions | Mechanisms of Resistance to BCL2 Inhibitor Therapy in Chronic Lymphocytic Leukemia and Potential Future Therapeutic Directions. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:795-804. [PMID: 35970756 DOI: 10.1016/j.clml.2022.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) constitutively overexpresses B-cell lymphoma 2 (BCL2) with consequent dysregulation of intrinsic apoptosis leading to abnormal cellular survival. Therapeutic use of BCL2 inhibitors (BCL2i, eg, venetoclax) in CLL, as both continuous monotherapy or in fixed duration combination, has translated scientific rationale into clinical benefit with significant rates of complete responses, including those without detectable minimal residual disease. Unlike with chemotherapy, response rates to venetoclax do not appear to be influenced by pre-existing chromosomal abnormalities or somatic mutations present, although the duration of response observed remains shorter for those with traditional higher risk genetic aberrations. This review seeks to describe both the disease factors that influence primary venetoclax sensitivity/resistance and those resistance mechanisms that may be acquired secondary to BCL2i therapy in CLL. Baseline venetoclax-sensitivity or -resistance is influenced by the expression of BCL2 relative to other BCL2 family member proteins, microenvironmental factors including nodal T-cell stimulation, and tumoral heterogeneity. With selection pressure applied by continuous venetoclax exposure, secondary resistance mechanisms develop in oligoclonal fashion. Those mechanisms described include acquisition of BCL2 variants, dynamic aberrations of alternative BCL2 family proteins, and mutations affecting both BAX and other BH3 proteins. In view of the resistance described, this review also proposes future applications of BCL2i therapy in CLL and potential means by which BCL2i-resistance may be abrogated.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- bcl-2-Associated X Protein/pharmacology
- Drug Resistance, Neoplasm
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Rory Bennett
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Ella Thompson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; University of Melbourne, Parkville, Victoria, Australia
| | - Constantine Tam
- Alfred Health and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Venetoclax-induced vitiligo in a patient with chronic lymphocytic leukemia. Anticancer Drugs 2022; 33:1167-1170. [DOI: 10.1097/cad.0000000000001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Ryan CE, Davids MS, Hermann R, Shahkarami M, Biondo J, Abhyankar S, Alhasani H, Sharman JP, Mato AR, Roeker LE. MAJIC: a phase III trial of acalabrutinib + venetoclax versus venetoclax + obinutuzumab in previously untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Future Oncol 2022; 18:3689-3699. [PMID: 36102212 DOI: 10.2217/fon-2022-0456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here we describe the rationale and design of MAJIC, a phase III, prospective, multicenter, randomized trial comparing the combination of the BTK inhibitor acalabrutinib plus the BCL2 inhibitor venetoclax versus the combination of venetoclax plus obinutuzumab as frontline treatment for chronic lymphocytic leukemia or small lymphocytic lymphoma. In both treatment arms, disease response (assessed by International Workshop on Chronic Lymphocytic Leukemia criteria) and minimal residual disease will be used to guide therapy duration, with all patients ultimately discontinuing treatment after a maximum of 2 years. The primary end point is progression-free survival. Key secondary end points include rates of undetectable minimal residual disease, overall response and overall survival. This study will address key unanswered questions in frontline chronic lymphocytic leukemia/small lymphocytic lymphoma therapy by investigating the optimal duration of finite treatment and identifying the optimal venetoclax doublet regimen.
Collapse
Affiliation(s)
- Christine E Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | - Jeff P Sharman
- Willamette Valley Cancer Institute & Research Center/US Oncology, Eugene, OR, USA
| | - Anthony R Mato
- CLL Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lindsey E Roeker
- CLL Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
50
|
Venetoclax enhances the efficacy of therapeutic antibodies in B-cell malignancies by augmenting tumor cell phagocytosis. Blood Adv 2022; 6:4847-4858. [PMID: 35820018 PMCID: PMC9631674 DOI: 10.1182/bloodadvances.2022007364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Immunotherapy has evolved as a powerful tool for the treatment of B-cell malignancies, and patient outcomes have improved by combining therapeutic antibodies with conventional chemotherapy. Overexpression of antiapoptotic B-cell lymphoma 2 (Bcl-2) is associated with a poor prognosis, and increased levels have been described in patients with "double-hit" diffuse large B-cell lymphoma, a subgroup of Burkitt's lymphoma, and patients with pediatric acute lymphoblastic leukemia harboring a t(17;19) translocation. Here, we show that the addition of venetoclax (VEN), a specific Bcl-2 inhibitor, potently enhanced the efficacy of the therapeutic anti-CD20 antibody rituximab, anti-CD38 daratumumab, and anti-CD19-DE, a proprietary version of tafasitamab. This was because of an increase in antibody-dependent cellular phagocytosis by macrophages as shown in vitro and in vivo in cell lines and patient-derived xenograft models. Mechanistically, double-hit lymphoma cells subjected to VEN triggered phagocytosis in an apoptosis-independent manner. Our study identifies the combination of VEN and therapeutic antibodies as a promising novel strategy for the treatment of B-cell malignancies.
Collapse
|