1
|
Sakai D, Kadowaki S, Kawabata R, Hara H, Satake H, Takahashi M, Takeno A, Imai H, Minashi K, Kawakami T, Boku S, Matsuyama J, Sakamoto Y, Sawada K, Kataoka M, Kawakami H, Shimokawa T, Boku N, Satoh T. Randomized Phase III Trial of Ramucirumab Beyond Progression Plus Irinotecan in Patients With Ramucirumab-Refractory Advanced Gastric Cancer: RINDBeRG Trial. J Clin Oncol 2025:JCO2401119. [PMID: 40408613 DOI: 10.1200/jco.24.01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 05/25/2025] Open
Abstract
PURPOSE Continuous use of antiangiogenic agents has demonstrated survival benefits in various cancers. This trial aimed to compare the efficacy and safety of ramucirumab plus irinotecan with irinotecan monotherapy as a third- or later-line treatment for patients with advanced or recurrent gastric or gastroesophageal cancer (AGC) that has progressed on previous ramucirumab-based chemotherapy. METHODS Patients age 20 years and older with AGC, who had experienced disease progression during ramucirumab-based chemotherapy, were randomly assigned to receive either ramucirumab plus irinotecan or irinotecan monotherapy. The primary end point was overall survival (OS) expecting a hazard ratio (HR) of 0.77 (a power of 80% and a significance level of one-sided 0.05). Secondary end points included progression-free survival (PFS), response rate, disease control rate (DCR), and safety. RESULTS Between February 2017 and August 2022, 402 patients in Japan were randomly assigned to receive ramucirumab plus irinotecan (n = 202) or irinotecan monotherapy (n = 200). The median OS was 9.4 months in the combination arm and 8.5 months in the monotherapy arm, with an adjusted HR of 0.91 (95% CI, 0.74 to 1.12; P = .49). PFS was improved (median, 3.8 v 2.8 months; HR, 0.72 [95% CI, 0.59 to 0.89]; P = .002), while the DCR was significantly better (64.4% v 52.1%; P = .03) with the combination therapy. The adverse events of the combination therapy were manageable. CONCLUSION Adding ramucirumab to irinotecan does not provide a significant advantage in OS over irinotecan alone in patients with AGC who have progressed during ramucirumab-containing chemotherapy.
Collapse
Affiliation(s)
- Daisuke Sakai
- Osaka International Cancer Institute, Osaka, Japan
- Osaka University Hospital, Suita, Japan
| | | | | | | | | | | | - Atsushi Takeno
- National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Hiroo Imai
- Tohoku University Hospital, Sendai, Japan
| | | | | | - Shogen Boku
- Kansai Medical University Hospital, Hirakata, Japan
| | - Jin Matsuyama
- Higashiosaka City Medical Center, Higashi-Osaka, Japan
| | | | | | - Masato Kataoka
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hisato Kawakami
- Tohoku University Hospital, Sendai, Japan
- Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | | | - Narikazu Boku
- IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
2
|
Chen P, Li K, Chen J, Hei H, Geng J, Huang N, Lei M, Jia H, Ren J, Jin C. Enhanced effect of radiofrequency ablation on HCC by siRNA-PD-L1-endostatin Co-expression plasmid delivered. Transl Oncol 2025; 53:102319. [PMID: 39938403 PMCID: PMC11869540 DOI: 10.1016/j.tranon.2025.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/07/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant clinical challenge due to high mortality and limited treatment options. Radiofrequency ablation (RFA) is commonly used but can be limited by tumor recurrence. This study explores the potential of combining RFA with an attenuated Salmonella strain carrying siRNA-PD-L1 and endostatin to enhance HCC treatment. In this study, an H22 subcutaneous tumor mouse model was used, with animals divided into five groups for treatment with a blank control, a blank Salmonella plasmid, RFA alone, siRNA-PD-L1-endostatin, or a combination of RFA and siRNA-PD-L1-endostatin. The combination therapy significantly reduced tumor growth, angiogenesis, and PD-L1/VEGF expression in tumor tissues post-RFA. Additionally, it induced tumor cell apoptosis, inhibited proliferation and migration, and increased the infiltration of T lymphocytes, granzyme B+T cells, and CD86+macrophages within tumors. There was also a notable rise in T and NK cell populations in the spleen. In conclusion, combining RFA with siRNA-PD-L1-endostatin delivered by attenuated Salmonella synergistically enhances anti-tumor effects, boosts the anti-tumor immune response, and improves RFA efficacy for HCC.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kun Li
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jinwei Chen
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - He Hei
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Jiaxin Geng
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Nannan Huang
- Department of Orthopedics, Zhengyang county traditional Chinese medicine hospital, Zhumadian, Henan, PR China
| | - Mengyu Lei
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Huijie Jia
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jianzhuang Ren
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chenwang Jin
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
3
|
Cheng Y, Zhang P, Lu M, Chen Z, Song L, Shi S, Ye F, Zhang X, Liu B, Ji D, Zhang Y, Su W, Shi M, Fan S, Tan P, Zhong C. Efficacy and safety of surufatinib plus toripalimab in treatment-naive, PD-L1-positive, advanced or metastatic non-small-cell lung cancer and previously treated small-cell lung cancer: an open-label, single-arm, multicenter, multi-cohort phase II trial. Cancer Immunol Immunother 2025; 74:83. [PMID: 39891720 PMCID: PMC11787074 DOI: 10.1007/s00262-024-03932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/26/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND Combining the programmed death-1 inhibitor toripalimab and the angio-immuno kinase inhibitor surufatinib showed preliminary antitumor activity in patients with advanced solid tumors in a phase I study. Here, we report the efficacy and safety of this combination regimen in treatment-naive advanced or metastatic non-small-cell lung cancer (NSCLC) patients with a programmed death-ligand 1 (PD-L1) tumor proportion score (TPS) of 1% or greater (PD-L1-positive) and patients with previously treated small-cell lung cancer (SCLC). METHODS This open-label, single-arm phase II study included patients with treatment-naive advanced or metastatic PD-L1-positive NSCLC or previously treated SCLC in China. Patients received surufatinib (250 mg orally, once daily) plus toripalimab (240 mg intravenously, once every 3 weeks). Primary endpoint was investigator-assessed objective response rate (ORR) per RECIST v1.1. Secondary endpoints included duration of response (DoR), disease control rate, progression-free survival (PFS), overall survival (OS), and safety. RESULTS Forty-three patients were treated (NSCLC cohort, n = 23; SCLC cohort, n = 20). ORRs (95% CIs) were 57.1% (34.0-78.2) in the NSCLC cohort and 15.8% (3.4-39.6) in the SCLC cohort. Median duration of response was not reached (NR) in both cohorts. Median PFS was 9.6 (5.5-NR) and 3.0 months (2.8-4.1), respectively, and median OS was 24.3 (10.8-NR) and 11.0 months (5.0-15.7), respectively. Grade ≥ 3 treatment-related adverse events were reported in 24 patients (55.8%) overall. CONCLUSION Surufatinib plus toripalimab showed encouraging antitumor activity and a tolerable safety profile in patients with treatment-naive advanced or metastatic PD-L1-positive NSCLC and previously treated SCLC.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, High-Tech Zone, Changchun, China.
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ming Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, China
| | - Zhendong Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, China
| | - Lijie Song
- First Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, Henan, China
| | - Si Shi
- Department of Pancreatic Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Xuhui District, Shanghai, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Siming District, Xiamen, Fujian, China
| | - Xing Zhang
- Biotherapy Center, Sun Yat-Sen University Cancer Center, No.651 East Dongfeng Road, Yuexiu District, Guangzhou, Guangdong, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, No.321 Zhongshan Road, Nanjing, Jiangsu, China
| | - Dongmei Ji
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Xuhui District, Shanghai, China
| | - Yanqiao Zhang
- Second Department of Gastroenterology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Weiguo Su
- HUTCHMED Limited, Building 4, 720 Cailun Road, Pilot Free Trade Zone, Shanghai, China
| | - Michael Shi
- HUTCHMED Limited, Building 4, 720 Cailun Road, Pilot Free Trade Zone, Shanghai, China
| | - Songhua Fan
- HUTCHMED Limited, Building 4, 720 Cailun Road, Pilot Free Trade Zone, Shanghai, China
| | - Panfeng Tan
- HUTCHMED Limited, Building 4, 720 Cailun Road, Pilot Free Trade Zone, Shanghai, China
| | - Chen Zhong
- HUTCHMED Limited, Building 4, 720 Cailun Road, Pilot Free Trade Zone, Shanghai, China
| |
Collapse
|
4
|
Failla CM, Carbone ML, Ramondino C, Bruni E, Orecchia A. Vascular Endothelial Growth Factor (VEGF) Family and the Immune System: Activators or Inhibitors? Biomedicines 2024; 13:6. [PMID: 39857591 PMCID: PMC11763294 DOI: 10.3390/biomedicines13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The vascular endothelial growth factor (VEGF) family includes key mediators of vasculogenesis and angiogenesis. VEGFs are secreted by various cells of epithelial and mesenchymal origin and by some immune cells in response to physiological and pathological stimuli. In addition, immune cells express VEGF receptors and/or co-receptors and can respond to VEGFs in an autocrine or paracrine manner. This immunological role of VEGFs has opened the possibility of using the VEGF inhibitors already developed to inhibit tumor angiogenesis also in combination approaches with different immunotherapies to enhance the action of effector T lymphocytes against tumor cells. This review pursues to examine the current understanding of the interplay between VEGFs and the immune system, while identifying key areas that require further evaluation.
Collapse
Affiliation(s)
- Cristina Maria Failla
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Maria Luigia Carbone
- Clinical Trial Center, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| | - Carmela Ramondino
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Emanuele Bruni
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | | |
Collapse
|
5
|
Abdallah M, Voland R, Decamp M, Flickinger J, Pacioles T, Jamil M, Silbermins D, Shenouda M, Valsecchi M, Bir A, Shweihat Y, Bastidas J, Chowdhury N, Kachynski Y, Eldib H, Wright T, Mahdi A, Al-Nusair J, Nwanwene K, Varlotto J. Evaluation of Anti-Angiogenic Therapy Combined with Immunotherapy and Chemotherapy as a Strategy to Treat Locally Advanced and Metastatic Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:4207. [PMID: 39766108 PMCID: PMC11674749 DOI: 10.3390/cancers16244207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has made recent improvements in disease-free survival (DFS) and/or overall survival (OS) in all stages of non-small-cell lung cancer (NSCLC). Here, we review the tumor microenvironment and its immunosuppressive effects and discuss how anti-angiogenic therapies may potentiate the anti-carcinogenic effects of immunotherapy. We also review all the past literature and discuss strategies of combining anti-angiogenic therapy and immunotherapy +/- chemotherapy and hypothesize how we can use this strategy for non-small-cell lung cancer in metastatic previously untreated/previously treated settings in previously treated EGFR-mutated NSCLC for the upfront treatment of brain metastases prior to radiation therapy and for the incorporation of this strategy into stage III unresectable disease. We assert the use of anti-angiogenic therapy and immunotherapy when combined appropriately with chemotherapy and radiotherapy has the potential to increase the long-term survivals in both the stage III and metastatic setting so that we can now consider more patients to experience curative treatment.
Collapse
Affiliation(s)
- Mahmoud Abdallah
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Rick Voland
- Department of Ophthalmology, University of Wisconsin, Madison, WI 53705, USA;
| | - Malcolm Decamp
- Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
| | - John Flickinger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA;
| | - Toni Pacioles
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Muhammad Jamil
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Damian Silbermins
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Mina Shenouda
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Matias Valsecchi
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Arvinder Bir
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Yousef Shweihat
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Juan Bastidas
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Nepal Chowdhury
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Yury Kachynski
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Howide Eldib
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Thomas Wright
- Department of Internal Medicine, Marshall Health, Huntington, WV 25701, USA; (T.W.); (A.M.); (J.A.-N.)
| | - Ahmad Mahdi
- Department of Internal Medicine, Marshall Health, Huntington, WV 25701, USA; (T.W.); (A.M.); (J.A.-N.)
| | - Jowan Al-Nusair
- Department of Internal Medicine, Marshall Health, Huntington, WV 25701, USA; (T.W.); (A.M.); (J.A.-N.)
| | - Kemnasom Nwanwene
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - John Varlotto
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| |
Collapse
|
6
|
Aokage K, Koyama S, Kumagai S, Nomura K, Shimada Y, Yoh K, Wakabayashi M, Fukutani M, Furuya H, Miyoshi T, Tane K, Samejima J, Taki T, Hayashi T, Matsubayashi J, Ishii G, Nishikawa H, Ikeda N, Tsuboi M. Efficacy, Safety, and Influence on the Tumor Microenvironment of Neoadjuvant Pembrolizumab plus Ramucirumab for PD-L1-Positive NSCLC: A Phase II Trial (EAST ENERGY). Clin Cancer Res 2024; 30:5584-5592. [PMID: 39453771 DOI: 10.1158/1078-0432.ccr-24-1561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 10/27/2024]
Abstract
PURPOSE Angiogenesis inhibitors are known to modify tumor immunity. Combination of angiogenesis inhibitors with immune checkpoint inhibitors has shown efficacy against many types of cancers, including non-small cell lung cancer (NSCLC). We investigated the feasibility of neoadjuvant therapy with pembrolizumab and ramucirumab, a VEGFR-2 antagonist for patients with PD-L1-positive NSCLC, and its influence on the tumor microenvironment. PATIENTS AND METHODS Patients with pathologically proven, PD-L1-positive, clinical stage IB to IIIA NSCLC were eligible. Patients received two cycles of pembrolizumab (200 mg/body) and ramucirumab (10 mg/kg) every 3 weeks. Surgery was scheduled 4 to 8 weeks after the last dose. The primary endpoint was the major pathologic response rate by a blinded independent pathologic review. The sample size was 24 patients. Exploratory endpoints were evaluated to elucidate the effects of neoadjuvant therapy on the tumor microenvironment. RESULTS The 24 eligible patients were enrolled between July 2019 and April 2022. The major pathologic response rate was 50.0% (90% confidence interval, 31.9%-68.1%). Six patients showed pathologic complete response. Grade 3 adverse events (AE) occurred in nine patients (37.5%), including three immune-related AEs (acute tubulointerstitial nephritis in two cases and polymyalgia rheumatica in one case). There were no grade 4 or 5 AEs. The transcriptome and multiplex IHC results suggested that tumors with greater CD8+ T-cell infiltration and higher expression of effector molecules at the baseline could show better sensitivity to treatment. CONCLUSIONS This new neoadjuvant combination of pembrolizumab plus ramucirumab was feasible, and anti-VEGF agents may enhance the effects of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Kotaro Nomura
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Miki Fukutani
- Clinical Research Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Furuya
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Joji Samejima
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Taki
- Development of Pathology and Clinical Laboratories, National Cancer Center, Kashiwa, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jun Matsubayashi
- Division of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Genichiro Ishii
- Development of Pathology and Clinical Laboratories, National Cancer Center, Kashiwa, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
7
|
Xu Q, Shao D. Leveraging the synergy between anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system cancers. Front Immunol 2024; 15:1487610. [PMID: 39691707 PMCID: PMC11649667 DOI: 10.3389/fimmu.2024.1487610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The response rates to immunotherapy vary widely depending on the type of cancer and the specific treatment used and can be disappointingly low for many solid tumors. Fortunately, due to their complementary mechanisms of action, immunotherapy and anti-angiogenic therapy have synergistic effects in cancer treatment. By normalizing the tumor vasculature, anti-angiogenic therapy can improve blood flow and oxygenation to facilitate better immune cell infiltration into the tumor and enhance the effectiveness of immunotherapy. It also reduces immunosuppressive factors and enhances immune activation, to create a more favorable environment for immune cells to attack the tumor. Their combination leverages the strengths of both therapies to enhance anti-tumor effects and improve patient outcomes. This review discusses the vasculature-immunity crosstalk in the tumor microenvironment and summarizes the latest advances in combining anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system tumors.
Collapse
Affiliation(s)
| | - Dong Shao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow
University, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Moussa MJ, Kovalenko I, Crupi E, Proskuriakova E, Geng Y, Fallara G, Benkhadra R, Raggi D, Campbell MT, Msaouel P, Alhalabi O. Antiangiogenic therapy combined with immune checkpoint blockade in urothelial cancer: Systematic review and meta-analysis. Bladder Cancer 2024; 10:300-312. [PMID: 40035076 PMCID: PMC11864237 DOI: 10.1177/23523735241296763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 03/05/2025]
Abstract
Background Antiangiogenic therapy had been tested in urothelial cancer (UC) without reaching the clinic. Objective We provide a systematic review and meta-analysis of trials to assess efficacy of immune checkpoint inhibitors (ICI) combined with antiangiogenic agents in UC. Methods Following PRISMA guidelines, we searched for trials with at least one arm of patients with UC treated with ICI plus antiangiogenics. Data were analyzed with the "meta" package from R using a one-staged frequentist meta-analysis. Results After screening 13,708 titles and abstracts, 9 studies were selected for analysis with 14 identified cohorts comprising 621 patients: 448 were ICI-naïve (ICI-N) and 173 were ICI-exposed (ICI-E). The estimated objective response rate (ORR) in all patients was 27% (21-35). In the ICI-N group, ORR was 34% (28-41). Conversely, the ICI-E group had a lower ORR of 16% (9-28). This difference was mainly driven by a higher partial response rate of 27% (23-31) in ICI-N group compared to 13% (8-20) in the ICI-E group. Disease control rate was 72% (66-77) ICI-N group vs. 71% (64-78) in ICI-E group. Median overall survival ranged from 6.4 to 24.9 months in the ICI-N group, and 8.2 to 10.4 months in ICI-E group. Median progression free survival ranged from 1.9 to 10.1 months and from 3 to 3.9 months in both groups, respectively. Conclusion ORR with ICI plus antiangiogenics was lower after prior ICI exposure, with substantial variability estimates among included trials, either due to differences among antiangiogenic agents used or trial-related factors. Future exploration of ICI combined with antiangiogenics in UC, especially in ICI-refractory setting, will benefit from better patient selection.
Collapse
Affiliation(s)
- Mohammad Jad Moussa
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iuliia Kovalenko
- Department of Internal Medicine, Eastern Virginia Medical School, Old Dominion University, Norfolk, VA, USA
| | - Emanuele Crupi
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Medical Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Yimin Geng
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giuseppe Fallara
- Department of Urology and Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Raed Benkhadra
- Department of Hematology and Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daniele Raggi
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Matthew T. Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Hamada Y, Tanoue K, Arigami T, Yamakuchi M, Okawa M, Matsushita D, Takenouchi K, Yamada S, Maywar DN, Nakayama C, Oyama Y, Higashi S, Fujisaki C, Hozaka Y, Kita Y, Hashiguchi T, Ohtsuka T. The Vascular Endothelial Growth Factor-A121/Vascular Endothelial Growth Factor-A165 Ratio as a Predictor of the Therapeutic Response to Immune Checkpoint Inhibitors in Gastric Cancer. Cancers (Basel) 2024; 16:3958. [PMID: 39682145 PMCID: PMC11640175 DOI: 10.3390/cancers16233958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The response rate to immune checkpoint inhibitor (ICI) therapy is limited. Further, there is a need to discover biomarkers to predict therapeutic efficacy. The vascular endothelial growth factor (VEGF) is strongly associated with intra-tumoral immunity; however, its utility as a marker remains unknown. Therefore, our objectives were to examine the isoforms of VEGF and determine whether VEGF levels predict ICI efficacy. METHODS Levels of VEGF isoforms VEGF-A121 and VEGF-A165 were measured in stored serum samples obtained from 30 patients with advanced or recurrent gastric cancer who received nivolumab monotherapy at Kagoshima University Hospital, and the association with prognosis and treatment efficacy was retrospectively analyzed. RESULTS The serum levels of the total VEGF, VEGF-A121, and VEGF-A165 were not significantly associated with prognosis. However, the ratio of VEGF-A121/VEGF-A165 (VEGF-A121/165) exhibited a statistically significant (p = 0.0088) difference in progression-free survival (PFS) with the low-ratio group having a 67-day prolonged median PFS time. Under univariable analysis, only VEGF-A121/165 values exhibited reduced progression-free survival with statistical significance. When comparing treatment responses in the low (n = 15) and high (n = 15) serum VEGF-A-121/165 groups, RECIST evaluation was 3 to 0 for complete response (CR), 2 to 0 for partial response (PR), 3 to 2 for stable disease (SD), and 3 to 10 for progressive disease (PD). Patients with clinically unsettled PR or SD were classified as non-CR/non-PD (4 vs. 3), with a disease control rate of 80% vs. 33%. CONCLUSIONS The serum VEGF-A121/165 ratio may represent a new, easily measured biomarker for predicting the therapeutic response to ICIs.
Collapse
Affiliation(s)
- Yuki Hamada
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan (T.A.)
| | - Kiyonori Tanoue
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan (T.A.)
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan (T.A.)
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masashi Okawa
- Department of Cardiovascular and Gastroenterological Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Daisuke Matsushita
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan (T.A.)
| | - Kazunori Takenouchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | - Drew N. Maywar
- Department of Electrical and Computer Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Chieri Nakayama
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan (T.A.)
| | - Yoko Oyama
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Sadayuki Higashi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Chieko Fujisaki
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan (T.A.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan (T.A.)
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan (T.A.)
| |
Collapse
|
10
|
Meng X, Wang J, Xia J, Wu T, Luo Z, Hong Y, Lu P, Guo Y, Ji Y, Zhang M, Yang L, Cheng P, Liang W, Shan Z, Zhou Y, Wang M, Lu T, Song M, Zong H, Song L, Wang W, Guan L, Li Y, Xing J, Xing S, Wu H, Chu J, Luo X, Lu Y, Xin D, Li A, Jiang B, Li S, Jiang G, Fan Q, Zhao F, Zheng R, Zhu W, Hou Z, Jia Y, Wang F. Efficacy and safety of camrelizumab plus apatinib in patients with advanced esophageal squamous cell carcinoma previously treated with immune checkpoint inhibitors (CAP 02 Re-challenge): A single-arm, phase II study. Eur J Cancer 2024; 212:114328. [PMID: 39307038 DOI: 10.1016/j.ejca.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND With the increasing use of immune checkpoint inhibitors (ICIs) in advanced esophageal squamous cell carcinoma (ESCC), there remains an unmet need for options to address disease progression after prior ICIs. This single-arm phase II study evaluated the efficacy and safety of re-challenge with camrelizumab plus apatinib in patients with advanced ESCC who were previously treated with ICIs. METHODS This study enrolled patients aged 18-75 years with unresectable locally advanced, locally recurrent, or distant metastatic ESCC who received prior ICIs. Patients received intravenous camrelizumab 200 mg every 2 weeks and oral apatinib 250 mg daily until disease progression, unacceptable toxicity, or consent withdrawal. The primary endpoint was the investigator-assessed confirmed objective response rate (ORR). RESULTS Between September 1, 2021 and March 29, 2023, 49 eligible patients were enrolled and received treatment. Among the 49 patients, the confirmed ORR was 10.2 % (95 % CI 3.4-22.2), the disease control rate (DCR) was 69.4 % (54.6-81.7), the median progression-free survival (PFS) was 4.6 months (95 % CI 3.8-6.5) and overall survival (OS) was 7.5 months (5.5-13.6). Grade ≥ 3 treatment-related adverse events occurred in 17 patients (34.7 %). No treatment-related deaths occurred. CONCLUSIONS This study showed that the confirmed ORR was modest and did not reach clinically meaningful improvement for patients with ESCC who were previously treated with ICIs, with a manageable safety profile.
Collapse
Affiliation(s)
- Xiangrui Meng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | - Jin Xia
- Anyang Tumor Hospital, Anyang, Henan, China
| | - Tao Wu
- Anyang Tumor Hospital, Anyang, Henan, China
| | - Zhiquan Luo
- Xinyang Tumor Hospital, Xinyang, Henan, China
| | | | - Ping Lu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanzhen Guo
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yinghua Ji
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Min Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Liuzhong Yang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Cheng
- The First Affiliated Hospital of Nanyang Medical College, Nanyang, Henan, China
| | | | - Zhengzheng Shan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyue Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Taiying Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Zong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijie Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenkang Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lulu Guan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanke Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianxiang Xing
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Xing
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Han Wu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingwen Chu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xi Luo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Lu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dao Xin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aijia Li
- Zhengzhou University, Zhengzhou, Henan, China
| | | | - Shenglei Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guozhong Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingxia Fan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Zhao
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Rongrong Zheng
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Wenqing Zhu
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Zhiguo Hou
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yun Jia
- Alpha X Biotech (Beijing) Co., Ltd., China
| | - Feng Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Wang P, Chen P, Yang W, Yang W, Liu W, Yue S, Luo Q. Prognostic and predictive factors in advanced upper gastrointestinal cancer treated with immune checkpoint inhibitors: a systematic review and meta-analysis of the current evidence. BMC Cancer 2024; 24:1249. [PMID: 39385078 PMCID: PMC11465923 DOI: 10.1186/s12885-024-12998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown encouraging treatment efficacy for upper gastrointestinal cancers (UGICs). However, durable clinical responses only existed in a minority of patients. We evaluated evidence predicting survival benefits to identify the optimal population followed by ICI-based therapy. METHODS A comprehensive search was performed using PubMed, Embase, Cochrane Library, and Web of Science to identify clinical trials for UGICs with ICI-based therapy. The outcomes were objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). The quality of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation System (GRADE). RESULTS Thirty-six studies comprising 12,440 patients were included for quantitative synthesis. Patients with PD-L1-positive (OR = 2.08, p < 0.00001), EBV+ (OR = 8.47, p = 0.003) tumors were more likely to respond to ICI treatment. Moreover, OS was significantly improved with the statistical subgroup difference concerning sex (p = 0.02) and region (p = 0.02). An exploratory subgroup analysis showed significantly improved OS with ICI plus chemotherapy in patients with CPS ≥ 10 (HR = 0.66, p = 0.001) and CPS ≥ 1 (HR = 0.75, p < 0.00001). CONCLUSION UGIC patients with PD-L1-positive, EBV + status are associated with a better therapeutic response to ICI-based therapy. The male patients and Asian patients could derive more survival benefits following ICI treatment than female and non-Asian ones. A combination of prognostic and predictive factors was suggested to help guide immunotherapy decision-making in UGIC patients.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
- School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Ping Chen
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
- School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Weiting Yang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
- School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Wenhan Yang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
- School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Wenqi Liu
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Song Yue
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
- School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Qiuhua Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
- School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
12
|
Nakayama I, Shitara K. The current status of immunotherapy and future horizon in the treatment of metastatic and locally advanced gastroesophageal adenocarcinoma. Expert Opin Biol Ther 2024; 24:903-915. [PMID: 39171531 DOI: 10.1080/14712598.2024.2395921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Immunochemotherapy with PD-1 blockade has been established as the current standard first-line therapy for patients with mGEA. Reviewing the history of clinical trials offers valuable insight into the evolution of immune oncology in mGEA, paving the way for future advancements in this field. AREAS COVERED This review summarizes the findings of previous clinical trials related to immunotherapy for patients with GEA in the metastatic and locally advanced setting. We also introduce ongoing clinical trials to address the current challenging issues in clinical practice. EXPERT OPINION In general, GEA exhibits intermediate immunogenic characteristics with heterogeneous expressions, and responders to anti-PD-(L)1 therapy are mostly enriched to patients with specific genomic profiles such as MSI-H, high PD-L1 expression, high TMB, and EBV-associated type. Co-administration with anti-angiogenic agents or simultaneous blockade of immune checkpoint molecules is being explored to offer benefit of immunotherapy for more patients. We hope that CLDN18.2 and upcoming targets like FGFR2b will complement the treatment niche of immunotherapy in the field of mGEA. Bispecific antibodies, antibody drug conjugates, CAR-T, and vaccine are anticipated to enhance efficacy and expand the scope of immunotherapy.
Collapse
Affiliation(s)
- Izuma Nakayama
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
13
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Carlisle J, Liu Y, Leal T. Back to the Drawing Board: Overcoming Resistance to PD-1 Blockade. J Clin Oncol 2024; 42:2367-2371. [PMID: 38833649 DOI: 10.1200/jco.24.00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Jennifer Carlisle
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Yuan Liu
- Department of Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
15
|
Adkins D, Ley JC, Liu J, Oppelt P. Ramucirumab in combination with pembrolizumab for recurrent or metastatic head and neck squamous cell carcinoma: a single-centre, phase 1/2 trial. Lancet Oncol 2024; 25:888-900. [PMID: 38851207 DOI: 10.1016/s1470-2045(24)00204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND VEGF, a key mediator of angiogenesis and resistance to immunotherapy, is overexpressed in head and neck squamous cell carcinoma (HNSCC). We aimed to determine the recommended phase 2 dose of ramucirumab, a selective VEGFR2 inhibitor, given with pembrolizumab and the objective response rate of this combination as first-line treatment for recurrent or metastatic HNSCC. METHODS In this single-centre, phase 1/2 trial, which was done at Washington University (St Louis, MO, USA), eligible patients were aged 18 years or older with incurable recurrent or metastatic HNSCC and an Eastern Cooperative Oncology Group performance status of 0-2. Patients in phase 2 were required to have had no previous systemic therapy for recurrent or metastatic disease. In a dose de-escalation phase 1 design, patients received ramucirumab (starting dose 10 mg/kg given intravenously) and pembrolizumab (200 mg intravenously) on day 1 of each 21-day cycle. The recommended phase 2 dose of ramucirumab was defined as the highest dose at which one or fewer of three patients had dose-limiting toxicity during cycle one (primary endpoint of phase 1). In a Simon's two-stage phase 2 design, patients received the recommended phase 2 dose of ramucirumab and pembrolizumab. Tumour response (primary endpoint of phase 2) was assessed by Response Evaluation Criteria in Solid Tumours (version 1.1). We hypothesised that there would be an objective response rate of 32% or higher (null ≤13%). Eight or more responses among 33 evaluable patients (those with at least one response assessment) was evidence for activity (80% power; one-sided α=0·05). Analyses were done per protocol. The trial is registered with ClinicalTrials.gov, NCT03650764, and is closed to enrolment. FINDINGS Between June 18, 2019, and Feb 11, 2021, three patients enrolled and were treated in phase 1 and 37 patients in phase 2. Median age of all patients was 64 years (IQR 59-72). 36 (90%) of 40 patients were men and four (10%) were women, and 36 (90%) patients were White, three (8%) were Black or African American, and one (3%) was Asian. In phase 1, no dose-limiting toxicity event occurred. The recommended phase 2 dose of ramucirumab was 10 mg/kg. Median follow-up for patients on phase 2 was 14·8 months (IQR 4·9-31·0). In phase 2, 18 (55%; 95% CI 38-70) of 33 evaluable patients had an objective response, including confirmed complete response in 11 patients, confirmed partial response in six patients, and unconfirmed partial response in one patient. The most common grade 3 or worse adverse events were dysphagia (14 [38%] of 37 patients), lung infection (11 [30%]), lymphocyte count decrease (ten [27%]), hypophosphataemia (nine [24%]), and hypertension (eight [22%]). No treatment-related deaths were recorded. INTERPRETATION Ramucirumab and pembrolizumab were safe to administer to patients with recurrent or metastatic HNSCC, and the objective response rate with this combination as first-line treatment for recurrent or metastatic HNSCC was favourable. Further studies of ramucirumab and pembrolizumab in patients with recurrent or metastatic HNSCC are warranted. FUNDING Lilly and the Joseph Sanchez Foundation.
Collapse
Affiliation(s)
- Douglas Adkins
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA; Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA.
| | - Jessica C Ley
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA; Washington University School of Medicine, St Louis, MO, USA
| | - Peter Oppelt
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA; Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
16
|
Shang S, Zhang L, Liu K, Lv M, Zhang J, Ju D, Wei D, Sun Z, Wang P, Yuan J, Zhu Z. Landscape of targeted therapies for advanced urothelial carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:641-677. [PMID: 38966172 PMCID: PMC11220318 DOI: 10.37349/etat.2024.00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.
Collapse
Affiliation(s)
- Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Maoxin Lv
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming 65000, Yunnan, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi’an 710068, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Pinxiao Wang
- School of Clinical Medicine, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
17
|
Masetti M, Al-Batran SE, Goetze TO, Thuss-Patience P, Knorrenschild JR, Goekkurt E, Folprecht G, Ettrich TJ, Lindig U, Luley KB, Pink D, Dechow T, Sookthai D, Junge S, Loose M, Pauligk C, Lorenzen S. Efficacy of ramucirumab combination chemotherapy as second-line treatment in patients with advanced adenocarcinoma of the stomach or gastroesophageal junction after exposure to checkpoint inhibitors and chemotherapy as first-line therapy. Int J Cancer 2024; 154:2142-2150. [PMID: 38447003 DOI: 10.1002/ijc.34894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
FOLFOX plus nivolumab represents a standard of care for first-line therapy of advanced gastroesophageal cancer (aGEC) with positive PD-L1 expression. The efficacy of second-line VEGFR-2 inhibition with ramucirumab (RAM) plus chemotherapy after progression to immunochemotherapy remains unclear. Medical records of patients with aGEC enrolled in the randomized phase II AIO-STO-0417 trial after treatment failure to first-line FOLFOX plus nivolumab and ipilimumab were retrospectively analyzed. Patients were divided into two groups based on second-line therapy: RAM plus chemotherapy (RAM group) or treatment without RAM (control group). Eighty three patients were included. In the overall population, progression-free survival (PFS) in the RAM group was superior to the control (4.5 vs 2.9 months). Responders (CR/PR) to first-line immunochemotherapy receiving RAM containing second-line therapy had prolonged OS from start of first-line therapy (28.9 vs 16.5 months), as well as second-line OS (9.6 vs 7.5 months), PFS (5.6 vs 2.9 months) and DCR (53% vs 29%) compared to the control. PD-L1 CPS ≥1 was 42% and 44% for the RAM and the control, respectively. Patients with CPS ≥1 in the RAM group showed better tumor control (ORR 25% vs 10%) and improved survival (total OS 11.5 vs 8.0 months; second-line OS 6.5 vs 3.9 months; PFS 4.5 vs 1.6 months) compared to the control. Prior exposure to first-line FOLFOX plus dual checkpoint inhibition followed by RAM plus chemotherapy shows favorable response and survival rates especially in patients with initial response and positive PD-L1 expression and has the potential to advance the treatment paradigm in aGEC.
Collapse
Affiliation(s)
- Michael Masetti
- Klinikum rechts der Isar, Technische Universität München, Klinik für Innere Medizin III, Munich, Germany
| | - Salah-Eddin Al-Batran
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany and Krankenhaus Nordwest, University Cancer Center Frankfurt, Frankfurt, Germany
| | - Thorsten O Goetze
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany and Krankenhaus Nordwest, University Cancer Center Frankfurt, Frankfurt, Germany
| | - Peter Thuss-Patience
- Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eray Goekkurt
- Haematologisch-Onkologische Praxis Eppendorf, Universitäres Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Gunnar Folprecht
- Medizinische Klinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | | | - Udo Lindig
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Kim Barbara Luley
- UKSH Campus Lübeck, Klinik für Hämatologie und Onkologie, Lübeck, Germany
| | - Daniel Pink
- Klinik und Poliklinik für Innere Medizin C, Hämatologie und Onkologie, Transplantationszentrum, Palliativmedizin, Universität Greifswald and Klinik für Hämatologie, Onkologie und Palliativmedizin-Sarkomzentrum, HELIOS Klinikum Bad Saarow, Bad Saarow, Germany
| | | | - Disorn Sookthai
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Sabine Junge
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Maria Loose
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Claudia Pauligk
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Sylvie Lorenzen
- Klinikum rechts der Isar, Technische Universität München, Klinik für Innere Medizin III, Munich, Germany
| |
Collapse
|
18
|
Li S, Yu ZS, Liu HZ, Li SJ, Wang MY, Ning FL, Tian LJ. Immunotherapy combined with antiangiogenic therapy as third- or further-line therapy for stage IV non-small cell lung cancer patients with ECOG performance status 2: A retrospective study. Cancer Med 2024; 13:e7349. [PMID: 38872402 PMCID: PMC11176590 DOI: 10.1002/cam4.7349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Patients with Eastern Cooperative Oncology Group performance status (ECOG PS) 2 probably cannot tolerate chemotherapy or other antitumor therapies. Some studies have reported that immunotherapy combined with antiangiogenic therapy is well-tolerated and shows good antitumor activity. However, the efficacy of this combination as a later-line therapy in patients with ECOG PS 2 is unclear. This study evaluated the effectiveness and safety of this combination strategy as third- or further-line therapy in stage IV non-small cell lung cancer (NSCLC) patients with ECOG PS 2. METHODS In this retrospective study, patients treated with camrelizumab plus antiangiogenic therapy (bevacizumab, anlotinib, or recombinant human endostatin) were included. Objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), quality of life (QOL) assessed by ECOG PS, and safety were analyzed. RESULTS Between January 10, 2019, and February 28, 2024, a total of 59 patients were included. The ORR was 35.6% (21/59) and the DCR was 86.4%. With a median follow-up of 10.5 months (range: 0.7-23.7), the median PFS was 5.5 months (95% confidence interval [CI]: 3.8-7.3) and the median OS was 10.5 months (95% CI: 11.2-13.6). QOL was improved (≥1 reduction in ECOG PS) in 39 patients (66.1%). The most common Grade 3-4 treatment-related adverse events were hepatic dysfunction (6 [10%]), hypertension (5 [8%]), and hypothyroidism (3 [5%]). There were no treatment-related deaths. CONCLUSIONS Third- or further-line immunotherapy combined with antiangiogenic therapy is well-tolerated and shows good antitumor activity in stage IV NSCLC patients with ECOG PS 2. Future large-scale prospective studies are required to confirm the clinical benefits of this combination therapy.
Collapse
Affiliation(s)
- Shuo Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Ze-Shun Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Hong-Zhi Liu
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Shu-Jing Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Ming-Yue Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Fang-Ling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Li-Jun Tian
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| |
Collapse
|
19
|
Dong C, Hui K, Gu J, Wang M, Hu C, Jiang X. Plasma sPD-L1 and VEGF levels are associated with the prognosis of NSCLC patients treated with combination immunotherapy. Anticancer Drugs 2024; 35:418-425. [PMID: 38386011 DOI: 10.1097/cad.0000000000001576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The clinical significance of plasma soluble programmed cell death ligand 1 (sPD-L1) and vascular endothelial growth factor (VEGF) for non-small cell lung cancer (NSCLC) treated with the combination of anti-angiogenic therapy and anti-PD-L1 antibody (Ab) remain unknown. This study aimed to explore the association between plasma sPD-L1 and VEGF levels and the prognosis of NSCLC patients treated with the combination of Envafolimab and Endostar. Peripheral blood samples were collected from 24 NSCLC patients at baseline and after 6 weeks of treatment and were detected for sPD-L1 and VEGF levels. Both baseline and posttreatment sPD-L1 were significantly higher in progressive disease (PD) group than in controlled disease (CD) group (median: 77.5 pg/ml vs. 64.6 pg/ml, P = 0.036, median: 8451 pg/ml vs. 5563 pg/ml, P = 0.012). In multivariate analysis, lower baseline sPD-L1 levels were significantly associated with longer progression-free survival (PFS) (HR = 6.834, 95% CI: 1.350-34.592, P = 0.020). There were significantly higher posttreatment VEGF levels in PD group compared with CD group (median: 323.7 pg/ml vs. 178.5 pg/ml, P = 0.009). Higher posttreatment VEGF levels were significantly associated with shorter PFS in multivariate analysis (HR = 5.911, 95% CI: 1.391-25.122, P = 0.016). Plasma sPD-L1 and VEGF levels are associated with the clinical response and prognosis of NSCLC patients treated with the combination of PD-L1 inhibitors and anti-angiogenetic therapy.
Collapse
Affiliation(s)
- Changhong Dong
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
20
|
Sabaghian A, Shamsabadi S, Momeni S, Mohammadikia M, Mohebbipour K, Sanami S, Ahmad S, Akhtar N, Sharma NR, Kushwah RBS, Gupta Y, Prakash A, Pazoki-Toroudi H. The role of PD-1/PD-L1 signaling pathway in cancer pathogenesis and treatment: a systematic review. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aim: Cancer as a complex disease poses significant challenges for both diagnosis and treatment. Researchers have been exploring various avenues to find effective therapeutic strategies, with a particular emphasis on cellular signaling pathways and immunotherapy. One such pathway that has recently been suggested is the PD-1/PD-L1 pathway, which is an immune checkpoint signaling system that plays an important role in regulating the immune system and maintaining tissue homeostasis. Cancer cells exploit this pathway by producing PD-L1, which attaches to PD-1 on T cells, thus inhibiting immune responses and enabling the cancer cells to escape detection by the immune system. This study aimed to evaluate the role of the PD-1/PD-L1 pathway in cancer pathogenesis and treatment. Method: This study was performed based on the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). All in vitro , in vivo , and clinical studies that were published in English have been considered during a thorough search of the Scopus, Web of Science, and PubMed databases without date restriction until March 2024. Results: According to the studies reviewed, the PD-1/PD-L1 signaling axis suggests promising therapeutic effects on various types of cancers such as non-small cell lung cancer, melanoma, breast cancer, hepatocellular carcinoma, squamous cell carcinoma, and colorectal cancer, among others. Additionally, research suggests that immune checkpoint inhibitors that block PD1/PD-L1, such as pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, avelumab, etc. , can effectively prevent tumor cells from escaping the immune system. Moreover, there might be a possible interaction between microbiome, obesity, etc. on immune mechanisms and on the immune checkpoint inhibitors (ICIs). Conclusion: Although we have gained considerable knowledge about ICIs, we are still facing challenges in effectively prescribing the appropriate ICIs for individual patients. This is largely due to the complex interactions between different intracellular pathways, which need to be thoroughly studied. To resolve this issue, it is necessary to conduct more reliable clinical trials that can produce a scientific consensus.
Collapse
|
21
|
Wang J, Lin J, Wang R, Tong T, Zhao Y. Immunotherapy combined with apatinib in the treatment of advanced or metastatic gastric/gastroesophageal tumors: a systematic review and meta-analysis. BMC Cancer 2024; 24:603. [PMID: 38760737 PMCID: PMC11102247 DOI: 10.1186/s12885-024-12340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Immunotherapy or apatinib alone has been used as third-line adjuvant therapy for advanced or metastatic gastric/gastroesophageal junction (G/GEJ) tumors, but the efficacy of combining them with each other for the treatment of patients with advanced or metastatic G/GEJ is unknown; therefore, we further evaluated the efficacy and safety of immunotherapy combined with apatinib in patients with advanced or metastatic G/GEJ. METHODS The main search was conducted on published databases: Embase, Cochrane library, PubMed.The search was conducted from the establishment of the database to December 2023.Clinical trials with patients with advanced or metastatic G/GEJ and immunotherapy combined with apatinib as the study variable were collected. Review Manager 5.4 software as well as stata 15.0 software were used for meta-analysis. RESULTS A total of 651 patients from 19 articles were included in this meta-analysis. In the included studies, immunotherapy combined with apatinib had a complete response (CR) of 0.03 (95% CI: 0.00 -0.06), partial response (PR) of 0.34 (95% CI: 0.19-0.49), stable disease (SD) of 0.43 (95% CI: 0.32-0.55), objective response rate (ORR) was 0.36 (95% CI: 0.23-0.48), disease control rate (DCR) was 0.80 (95% CI: 0.74-0.86), and median progression-free survival (PFS) was 4.29 (95% CI: 4.05-4.52), median Overall survival (OS) was 8.79 (95% CI: 7.92-9.66), and the incidence of grade ≥ 3 TRAEs was 0.34 (95% CI: 0:19-0.49). PR, ORR, DCR, median PFS and median OS were significantly higher in the immunotherapy and apatinib combination chemotherapy group (IAC) than in the immunotherapy combination apatinib group (IA). And the difference was not significant in the incidence of SD and grade ≥ 3 TRAEs. CONCLUSION This meta-analysis shows that immunotherapy combined with apatinib is safe and effective in the treatment of advanced or metastatic G/GEJ, where IAC can be a recommended adjuvant treatment option for patients with advanced or metastatic G/GEJ. However, more large multicenter randomized studies are urgently needed to reveal the long-term outcomes of immunotherapy combined with apatinib treatment.
Collapse
Affiliation(s)
- Jincheng Wang
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun City, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun City, 130000, Jilin, China
| | - Ruimin Wang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun City, 130041, Jilin, China
| | - Ti Tong
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun City, China
| | - Yinghao Zhao
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun City, China.
| |
Collapse
|
22
|
Yang C, Xuan T, Gong Q, Dai X, Wang C, Zhang R, Zhao W, Wang J, Yue W, Li J. Efficacy and safety of novel immune checkpoint inhibitor-based combinations versus chemotherapy as first-line treatment for patients with extensive-stage small cell lung cancer: A network meta-analysis. Thorac Cancer 2024; 15:1246-1262. [PMID: 38623838 PMCID: PMC11128374 DOI: 10.1111/1759-7714.15310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Patients with extensive-stage small cell lung cancer (ES-SCLC) have an exceptionally poor prognosis and immune checkpoint inhibitors (ICIs) combined with etoposide-platinum is recommended as standard first-line therapy. However, which combination pattern is the best still remains unknown. This network meta-analysis was performed to compare the efficacy and safety of currently available patterns including an antiangiogenic agent containing regimen and probed into the most appropriate therapy for patients. METHODS Hazard ratios (HRs) and odds ratios (ORs) were generated using R software. The outcomes of overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events of grade 3 or higher (grade ≥ 3 adverse events [AEs]) were analyzed. RESULTS A total of 10 randomized controlled trials (RCTs) involving 5544 patients were included for analysis. Drug combination patterns included adebrelimab, atezolizumab, durvalumab, durvalumab plus tremelimumab, ipilimumab, pembrolizumab, serplulimab, benmelstobart plus anlotinib, tislelizumab, tiragolumab plus atezolizumab and toripalimab in combination with chemotherapy. The novel antiangiogenic agent containing regimen benmelstobart + anlotinib + chemotherapy showed the highest possibility to present the best PFS and OS versus chemotherapy. Compared with ICI plus chemotherapy, it also achieved significantly better PFS and presented a tendency of OS benefit. As for safety and toxicity, patients treated with benmelstobart + anlotinib + chemotherapy and durvalumab + tremelimumab + chemotherapy suffered a higher likelihood of more grade ≥ 3 AEs without unexpected AEs. CONCLUSION PD-1/PD-L1 inhibitors-based combinations are associated with significant improvement in both PFS and OS for treatment-naïve ES-SCLC patients. Benmelstobart plus anlotinib with chemotherapy (CT) yielded better survival benefit versus CT alone or other ICIs + CT with caution for more adverse effects along with the addition of an antiangiogenic agent.
Collapse
Affiliation(s)
- Chuang Yang
- Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Tiantian Xuan
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoChina
| | - Qing Gong
- Department of Respiratory Oncology, Wendeng District People's HospitalWeihaiChina
| | - Xin Dai
- Department of Medical Oncology, Shandong Provincial Hospital of Traditional Chinese MedicineJinanChina
| | - Chengjun Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Rongyu Zhang
- Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wen Zhao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jian Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
23
|
Raoul P, De Gaetano V, Sciaraffia G, Ormea G, Cintoni M, Pozzo C, Strippoli A, Gasbarrini A, Mele MC, Rinninella E. Gastric Cancer, Immunotherapy, and Nutrition: The Role of Microbiota. Pathogens 2024; 13:357. [PMID: 38787209 PMCID: PMC11124250 DOI: 10.3390/pathogens13050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the treatment of gastric cancer (GC), which still represents the third leading cause of cancer-related death in Western countries. However, ICI treatment outcomes vary between individuals and need to be optimized. Recent studies have shown that gut microbiota could represent a key influencer of immunotherapy responses. At the same time, the nutritional status and diet of GC patients are also predictive of immunotherapy treatment response and survival outcomes. The objective of this narrative review is to gather recent findings about the complex relationships between the oral, gastric, and gut bacterial communities, dietary factors/nutritional parameters, and immunotherapy responses. Perigastric/gut microbiota compositions/functions and their metabolites could be predictive of response to immunotherapy in GC patients and even overall survival. At the same time, the strong influence of diet on the composition of the microbiota could have consequences on immunotherapy responses through the impact of muscle mass in GC patients during immunotherapy. Future studies are needed to define more precisely the dietary factors, such as adequate daily intake of prebiotics, that could counteract the dysbiosis of the GC microbiota and the impaired nutritional status, improving the clinical outcomes of GC patients during immunotherapy.
Collapse
Affiliation(s)
- Pauline Raoul
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
| | - Valeria De Gaetano
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Gianmario Sciaraffia
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Ginevra Ormea
- Degree Course in Pharmacy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmelo Pozzo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonia Strippoli
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonio Gasbarrini
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
24
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Current and Future Therapeutic Targets for Directed Molecular Therapies in Cholangiocarcinoma. Cancers (Basel) 2024; 16:1690. [PMID: 38730642 PMCID: PMC11083102 DOI: 10.3390/cancers16091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data, clinical trials (MEDLINE; ncbi.pubmed.com), congress contributions (asco.org; esmo.org), and active recruiting clinical trains (clinicaltrial.gov) on targeted therapies in cholangiocarcinoma. Palliative treatment regimens were analyzed as well as preoperative and perioperative treatment options. We summarized the current knowledge for each mutation and molecular pathway that is or has been under clinical evaluation and discussed the results on the background of current treatment guidelines. We established and recommended targeted treatment options that already exist for second-line settings, including IDH-, BRAF-, and NTRK-mutated tumors, as well as for FGFR2 fusion, HER2/neu-overexpression, and microsatellite instable tumors. Other options for targeted treatment include EGFR- or VEGF-dependent pathways, which are known to be overexpressed or dysregulated in this cancer type and are currently under clinical investigation. Targeted therapy in CCA is a hallmark of individualized medicine as these therapies aim to specifically block pathways that promote cancer cell growth and survival, leading to tumor shrinkage and improved patient outcomes based on the molecular profile of the tumor.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Luo Z, Liu X, Chen Y, Shen L, Qin H, Zha Q, Hu F, Wang Y. Gene features of tumor-specific T cells relevant to immunotherapy, targeted therapy and chemotherapy in lung cancer. Heliyon 2024; 10:e28374. [PMID: 38590880 PMCID: PMC10999884 DOI: 10.1016/j.heliyon.2024.e28374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
1 BACKGROUND In lung cancer, the use of small-molecule inhibitors, chemotherapy and immunotherapy has led to unprecedented survival benefits in selected patients. Considering most patients will experience a relapse within a short period of time due to single drug resistance, combination therapy is also particularly important to improve patient prognosis. Therefore, more robust biomarkers to predict responses to immunotherapy, targeted therapy, chemotherapy and rationally drug combination therapies may be helpful in clinical treatment choices. 2 METHODS We defined tumor-specific T cells (TSTs) and their features (TSTGs) by single-cell RNA sequencing. We applied LASSO regression to filter out the most survival-relevant TSTGs to form the Tumor-specific T cell score (TSTS). Immunological characteristics, enriched pathways, and mutation were evaluated in high- and low TSTS groups. 3 RESULTS We identified six clusters of T cells as TSTs in lung cancer, and four most robust genes from 9 feature genes expressed only on tumor-specific T cells were screened to construct a tumor-specific T cells score (TSTS). TSTS was positively correlated with immune infiltration and angiogenesis and negatively correlated with malignant cell proliferation. Moreover, potential vascular-immune crosstalk in lung cancer provides the theoretical basis for combined anti-angiogenic and immunotherapy. Noticeable, patients in high TSTS had better response to ICB and targeted therapy and patients in the low TSTS group often benefit from chemotherapy. 4 CONCLUSION The proposed TSTS is a promising indicator to predict immunotherapy, targeted therapy and chemotherapy responses in lung cancer patients for helping clinical treatment choices.
Collapse
Affiliation(s)
- Ziwei Luo
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xuefei Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Ying Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lize Shen
- LC-Bio Technology Co.ltd, Hangzhou, 310018, China
| | - Hui Qin
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Qiongfang Zha
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Feng Hu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Yali Wang
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
| |
Collapse
|
26
|
Yang M, Cao H, Wang C, Yu C, Sun P. Incidence of thromboembolic events in non-small cell lung cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. J Cancer Res Ther 2024; 20:509-521. [PMID: 38687920 DOI: 10.4103/jcrt.jcrt_1031_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 05/02/2024]
Abstract
ABSTRACT The incidence of thromboembolic events (TEs) in non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs) has rarely been reported. The MEDLINE, EMBASE, and the Cochrane Library databases were searched. The primary outcome was the incidence of TEs, and the secondary outcome was the relationship between TEs and overall survival (OS) following ICI therapy. A subgroup analysis of TE incidents was performed according to the TE type and combination regimens. The I2 statistic was used to determine the heterogeneity, and funnel plots and Egger's test were used to assess publication bias. A total of 16,602 patients with NSCLC in 63 experimental arms were included in the analysis. The rate of TEs ranged from 0.1% to 13.8%, and the pooled overall incidence of all-grade TEs was 3% (95% confidence interval [CI], 2%-4%). The pooled rate of high-grade TEs was 1% (95% CI, 1%-2%). The venous and arterial TE rates were 3% (95% CI, 2%-4%) and 1% (95% CI, 1%-2%), respectively. Patients who received immunotherapy + chemoradiotherapy had the highest incidence of TEs (7%). The TE pooled rate was higher in patients treated with combined ICIs than in those treated with mono ICIs (4% vs. 2%). The OS was lower in patients with TEs than in those without TEs (hazard ratio, 1.4; 95% CI, 1.02%-1.92%). The incidence of TEs in NSCLC patients treated with ICIs was reasonable. Nonetheless, clinicians must be aware of potential thrombotic complications and treat them promptly.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Oncology, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, Shandong, P.R. China
| | - Hongxin Cao
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Congcong Wang
- Department of Oncology, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, Shandong, P.R. China
| | - Caiyan Yu
- Department of Oncology, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, Shandong, P.R. China
| | - Ping Sun
- Department of Oncology, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, Shandong, P.R. China
| |
Collapse
|
27
|
Ye X, Yu Y, Zheng X, Ma H. Clinical immunotherapy in pancreatic cancer. Cancer Immunol Immunother 2024; 73:64. [PMID: 38430289 PMCID: PMC10908626 DOI: 10.1007/s00262-024-03632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
Pancreatic cancer remains a challenging disease with limited treatment options, resulting in high mortality rates. The predominant approach to managing pancreatic cancer patients continues to be systemic cytotoxic chemotherapy. Despite substantial advancements in immunotherapy strategies for various cancers, their clinical utility in pancreatic cancer has proven less effective and durable. Whether administered as monotherapy, employing immune checkpoint inhibitors, tumor vaccines, chimeric antigen receptors T cells, or in combination with conventional chemoradiotherapy, the clinical outcomes remain underwhelming. Extensive preclinical experiments and clinical trials in the realm of pancreatic cancer have provided valuable insights into the complexities of immunotherapy. Chief among the hurdles are the immunosuppressive tumor microenvironment, limited immunogenicity, and the inherent heterogeneity of pancreatic cancer. In this comprehensive review, we provide an overview and critical analysis of current clinical immunotherapy strategies for pancreatic cancer, emphasizing their endeavors to overcome immunotherapy resistance. Particular focus is placed on strategies aimed at reshaping the immunosuppressive microenvironment and enhancing T cell-mediated tumor cell killing. Ultimately, through deeper elucidation of the underlying pathogenic mechanisms of pancreatic cancer and the refinement of therapeutic approaches, we anticipate breakthroughs that will pave the way for more effective treatments in this challenging disease.
Collapse
Affiliation(s)
- Xiaorong Ye
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
| | - Xiaohu Zheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| | - Hongdi Ma
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
| |
Collapse
|
28
|
Saito M, Suzuki K, Tamaki S, Kimura Y, Abe I, Endo Y, Watanabe F, Rikiyama T. Efficacy of ramucirumab and subsequent nivolumab therapy in patients with advanced gastric cancer: A retrospective study. Mol Clin Oncol 2024; 20:17. [PMID: 38292013 PMCID: PMC10823313 DOI: 10.3892/mco.2024.2715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Nivolumab monotherapy is a standard treatment of metastatic gastric cancer, and this type of cancer involves vascular endothelial growth factor (VEGF) signaling in the tumor immunological environment. The subgroup analysis of the ATTRACTION-2 trial revealed that prior treatment with ramucirumab (RAM), a VEGF inhibitor, affected the therapeutic effect of nivolumab. The present retrospective study aimed to review patients with metastatic gastric cancer who were treated with paclitaxel (PTX) and RAM followed by nivolumab. A total of 29 patients with metastatic gastric cancer were treated with PTX + RAM as second-line treatment, followed by nivolumab monotherapy as third-line treatment. The therapeutic efficacy of nivolumab was compared in 13 patients with progression-free survival (PFS) of <5 months and 16 patients with PFS ≥5 months after PTX + RAM therapy. The present study included 22 male and seven female patients, with a median age of 68 years (range, 45-82 years). Human epidermal growth factor receptor 2 positivity was observed in six patients. The disease control rate was 62.1%. The PFS and overall survival (OS) were 4.4 and 11.9 months, respectively. Patients with PFS ≥5 months after PTX + RAM therapy showed better outcome in both PFS (5.3 months vs. 2.8 months, P=0.039) and OS (6.9 months vs. 15.2 months, P=0.066) after nivolumab treatment than patients with PFS of <5 months after PTX + RAM therapy. However, no significant relationship was observed between the outcome of first-line treatment and nivolumab. The therapeutic effect of nivolumab was associated with prior PTX + RAM treatment in advanced gastric cancer.
Collapse
Affiliation(s)
- Masaaki Saito
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Sawako Tamaki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Yasuaki Kimura
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Iku Abe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Yuhei Endo
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| |
Collapse
|
29
|
Wang L, Luo Y, Ren S, Zhang Z, Xiong A, Su C, Zhou J, Yu X, Hu Y, Zhang X, Dong X, Meng S, Wu F, Hou X, Dai Y, Song W, Li B, Wang ZM, Xia Y, Zhou C. A Phase 1b Study of Ivonescimab, a Programmed Cell Death Protein-1 and Vascular Endothelial Growth Factor Bispecific Antibody, as First- or Second-Line Therapy for Advanced or Metastatic Immunotherapy-Naive NSCLC. J Thorac Oncol 2024; 19:465-475. [PMID: 37879536 DOI: 10.1016/j.jtho.2023.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION This study (HARMONi-5) aimed to evaluate the safety and efficacy of ivonescimab (a bispecific antibody against programmed cell death protein 1 and vascular endothelial growth factor) as first- or second-line monotherapy in patients with advanced immunotherapy-naive NSCLC. METHODS Eligible patients received intravenous ivonescimab 10 mg/kg every 3 weeks (Q3W), 20 mg/kg every 2 weeks (Q2W), 20 mg/kg Q3W, or 30 mg/kg Q3W. The primary end points were safety and objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS At data cutoff (October 5, 2022), 108 patients were enrolled and received ivonescimab. Programmed death ligand-1 tumor proportion score (TPS) was greater than or equal to 1% in 74 patients (68.5%), including 35 (32.4%) with TPS greater than or equal to 50%. The median follow-up was 10.4 months (range: 8.4-10.9 mo). For all patients, ORR and disease control rate were 39.8% and 86.1%, respectively. ORR by TPS was 14.7%, 51.4%, and 57.1% in patients with TPS less than 1%, greater than or equal to 1%, and greater than or equal to 50%, respectively. In the 67 programmed death ligand-1-positive patients receiving first-line ivonescimab, the ORR was 33.3%, 52.6%, 60.0%, and 75.0% at the doses of 10 mg/kg Q3W, 20 mg/kg Q2W, 20 mg/kg Q3W, and 30 mg/kg Q3W, respectively. Grade greater than or equal to 3 treatment-related adverse events (TRAEs) were observed in 24 patients (22.2%). TRAEs leading to treatment discontinuation occurred in one patient (0.9%). TRAEs leading to death occurred in three patients (2.8%) with squamous NSCLC. The occurrence of grade greater than or equal to 3 TRAEs and grade greater than or equal to 3 bleeding events in squamous versus nonsquamous NSCLC patients was 25.5% versus 18.9% and 0.0% versus 1.9%, respectively. CONCLUSIONS Ivonescimab monotherapy was well tolerated and found to have a promising efficacy in patients with advanced or metastatic NSCLC. CLINICALTRIALS gov identifier: NCT04900363.
Collapse
Affiliation(s)
- Lei Wang
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yongzhong Luo
- The First Department of Thoracic Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Shengxiang Ren
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhihong Zhang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital, Hefei, People's Republic of China
| | - Anwen Xiong
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunxia Su
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jin Zhou
- Department of Medical Oncology, Cancer Hospital of Sichuan Province, Chengdu, People's Republic of China
| | - Xinmin Yu
- Department of Thoracic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, People's Republic of China
| | - Yanping Hu
- Department of Thoracic Oncology, Hubei Cancer Hospital, Wuhan, People's Republic of China
| | - Xiaodong Zhang
- Department of Medical Oncology, Cancer Hospital of Nantong, Nantong, People's Republic of China
| | - Xiaorong Dong
- Cancer Center, Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuyan Meng
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fengying Wu
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoming Hou
- Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuanrong Dai
- Department of Respiratory Medicine, The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Wenzhou, People's Republic of China
| | - Weifeng Song
- Akeso Biopharma, Inc., Zhongshan, People's Republic of China
| | - Baiyong Li
- Akeso Biopharma, Inc., Zhongshan, People's Republic of China
| | | | - Yu Xia
- Akeso Biopharma, Inc., Zhongshan, People's Republic of China
| | - Caicun Zhou
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
30
|
Chen K, Li S, Chen M, Jin Z, Sun X, Zhou S, Yang H. Endostar acts as a pneumonitis protectant in patients with locally advanced non-small cell lung cancer receiving concurrent chemoradiotherapy. BMC Cancer 2024; 24:257. [PMID: 38395838 PMCID: PMC10893751 DOI: 10.1186/s12885-024-12001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND CCRT is presently the standard treatment for LA-NSCLC. RP is one of the main obstacles to the completion of thoracic radiation therapy, resulting in limited survival benefits in NSCLC patients. This research aims to explore the role of Endostar in the occurrence of grade≥2 RP and clinical curative effect in LA-NSCLC patients. METHODS This study retrospectively analyzed 122 patients with stage III NSCLC who received CCRT from December 2008 to December 2017, or Endostar intravenous drip concurrently with chemoradiotherapy (Endostar + CCRT group). Standard toxicity of the pneumonitis endpoint was also collected by CTCAE V5.0. We further summarized other available studies on the role of Endostar in the prognosis of NSCLC patients and the incidence of RP. RESULTS There were 76 cases in the CCRT group and 46 cases in the CCRT+ Endostar group. In the CCRT+ Endostar group, the occurrence of grade ≥2 RP in patients with V20Gy ≥25% was significantly higher than that in patients with V20Gy < 25% (p = 0.001). In the cohorts with V20Gy < 25%, 0 cases of 29 patients treated with Endostar developed grade ≥2 RP was lower than in the CCRT group (p = 0.026). The re-analysis of data from other available studies indicated that Endostar plus CCRT could be more efficient and safely in the occurrence of grade≥2 RP with LA-NSCLC. CONCLUSIONS When receiving CCRT for LA-NSCLC patients, simultaneous combination of Endostar is recommended to enhance clinical benefit and reduce pulmonary toxicity.
Collapse
Affiliation(s)
- Kuifei Chen
- Taizhou hospital of Zhejiang Province, Shaoxing University, Zhejiang Province, Taizhou, 317000, China
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Shuling Li
- Taizhou hospital of Zhejiang Province, Shaoxing University, Zhejiang Province, Taizhou, 317000, China
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Meng Chen
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Zhicheng Jin
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Xuefeng Sun
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Suna Zhou
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China.
| | - Haihua Yang
- Taizhou hospital of Zhejiang Province, Shaoxing University, Zhejiang Province, Taizhou, 317000, China.
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China.
| |
Collapse
|
31
|
Ren S, Wang X, Han BH, Pan Y, Zhao J, Cheng Y, Hu S, Liu T, Li Y, Cheng Y, Feng J, Yi S, Gu S, Gao S, Luo Y, Liu Y, Liu C, Duan H, Wang S, Yang X, Fan J, Zhou C. First-line treatment with camrelizumab plus famitinib in advanced or metastatic NSCLC patients with PD-L1 TPS ≥1%: results from a multicenter, open-label, phase 2 trial. J Immunother Cancer 2024; 12:e007227. [PMID: 38388167 PMCID: PMC10882294 DOI: 10.1136/jitc-2023-007227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The combination of immune-checkpoint inhibitors and antiangiogenic agents can synergistically modulate the tumor microenvironment and represents a promising treatment option. Here, we evaluated the efficacy and safety of camrelizumab plus famitinib (a receptor tyrosine kinase inhibitor) as a first-line treatment for advanced or metastatic NSCLC patients with a programmed death ligand-1 (PD-L1) tumor proportion score (TPS) of ≥1%, in an open-label, multicenter, phase 2 basket trial. METHODS Eligible patients received camrelizumab (200 mg once every 3 weeks via intravenous infusion) plus oral famitinib at an initial dose of 20 mg once daily. The primary endpoint was the objective response rate (ORR), as assessed by the investigator per Response Evaluation Criteria in Solid Tumors V.1.1. Key secondary endpoints included disease control rate (DCR), duration of respons, progression-free survival (PFS), overall survival (OS), 12-month OS rate, and safety profile. RESULTS Of the enrolled 41 patients, 21 (51.2%) had a PD-L1 TPS of 1-49%. As of the cut-off date on June 22, 2022, the combination regimen of camrelizumab and famitinib achieved an ORR of 53.7% (95% CI 37.4% to 69.3%) and a DCR of 92.7% (95% CI 80.1% to 98.5%). The median PFS was 16.6 months (95% CI 8.3 to not reached), and OS data were not yet mature, with an estimated 12-month OS rate of 76.8% (95% CI 60.0% to 87.3%). The most common treatment-related adverse events of grade 3 or higher included hypertension (22.0%), increased alanine aminotransferase (12.2%), decreased neutrophil count (9.8%), proteinuria (7.3%), decrease platelet count (7.3%), and hypokalemia (7.3%). One (2.4%) patient died from grade 5 hemoptysis, which was considered possibly related to the study treatment by the investigator. CONCLUSION Camrelizumab plus famitinib demonstrated promising antitumor activity in advanced or metastatic NSCLC patients and had an acceptable safety profile. These findings suggest that this combination regimen could be an alternative therapeutic option and warrant further investigation. TRIAL REGISTRATION NUMBER NCT04346381.
Collapse
Affiliation(s)
- Shengxiang Ren
- Oncology Department, Shanghai Pulmonary Hospital, Shanghai, China
| | - Xicheng Wang
- Department of Oncology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Bao-Hui Han
- Department of Respiration, Shanghai Chest Hospital, Shanghai, China
| | - Yueyin Pan
- Oncology Chemotherapy Department, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Beijing Cancer Hospital, Beijing, China
| | - Yufeng Cheng
- Department of Chemotherapy, Qilu Hospital of Shandong University, Jinan, China
| | - Sheng Hu
- Department of Thoracic Tumor, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yalun Li
- Respiratory and Critical Care Medicine, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, China
| | - Ying Cheng
- Department of Medical Oncology, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanyong Yi
- Department of Medical Oncology, Zhengzhou Central Hospital, Zhengzhou, China
| | - Shanzhi Gu
- Department of Interventional Radiology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shegan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yongzhong Luo
- Thoracic Medicine Department, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Liu
- Department of Gastroenterology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huijie Duan
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co Ltd, Shanghai, China
| | - Shuni Wang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co Ltd, Shanghai, China
| | - Xinfeng Yang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co Ltd, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caicun Zhou
- Oncology Department, Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
32
|
Liu J, Shu J. Immunotherapy and targeted therapy for cholangiocarcinoma: Artificial intelligence research in imaging. Crit Rev Oncol Hematol 2024; 194:104235. [PMID: 38220125 DOI: 10.1016/j.critrevonc.2023.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive hepatobiliary malignancy, second only to hepatocellular carcinoma in prevalence. Despite surgical treatment being the recommended method to achieve a cure, it is not viable for patients with advanced CCA. Gene sequencing and artificial intelligence (AI) have recently opened up new possibilities in CCA diagnosis, treatment, and prognosis assessment. Basic research has furthered our understanding of the tumor-immunity microenvironment and revealed targeted molecular mechanisms, resulting in immunotherapy and targeted therapy being increasingly employed in the clinic. Yet, the application of these remedies in CCA is a challenging endeavor due to the varying pathological mechanisms of different CCA types and the lack of expressed immune proteins and molecular targets in some patients. AI in medical imaging has emerged as a powerful tool in this situation, as machine learning and deep learning are able to extract intricate data from CCA lesion images while assisting clinical decision making, and ultimately improving patient prognosis. This review summarized and discussed the current immunotherapy and targeted therapy related to CCA, and the research progress of AI in this field.
Collapse
Affiliation(s)
- Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
33
|
Chen X, Chen LJ, Peng XF, Deng L, Wang Y, Li JJ, Guo DL, Niu XH. Anti-PD-1/PD-L1 therapy for colorectal cancer: Clinical implications and future considerations. Transl Oncol 2024; 40:101851. [PMID: 38042137 PMCID: PMC10701436 DOI: 10.1016/j.tranon.2023.101851] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in the world. The PD-1/PD-L1 pathway plays a crucial role in modulating immune response to cancer, and PD-L1 expression has been observed in tumor and immune cells within the tumor microenvironment of CRC. Thus, immunotherapy drugs, specifically checkpoint inhibitors, have been developed to target the PD-1/PD-L1 signaling pathway, thereby inhibiting the interaction between PD-1 and PD-L1 and restoring T-cell function in cancer cells. However, the emergence of resistance mechanisms can reduce the efficacy of these treatments. To counter this, monoclonal antibodies (mAbs) have been used to improve the efficacy of CRC treatments. mAbs such as nivolumab and pembrolizumab are currently approved for CRC treatment. These antibodies impede immune checkpoint receptors, including PD-1/PD-L1, and their combination therapy shows promise in the treatment of advanced CRC. This review presents a concise overview of the use of the PD-1/PD-L1 blockade as a therapeutic strategy for CRC using monoclonal antibodies and combination therapies. Additionally, this article outlines the function of PD-1/PD-L1 as an immune response suppressor in the CRC microenvironment as well as the potential advantages of administering inflammatory agents for CRC treatment. Finally, this review analyzes the outcomes of clinical trials to examine the challenges of anti-PD-1/PD-L1 therapeutic resistance.
Collapse
Affiliation(s)
- Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Ling Deng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Yan Wang
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Jiu-Jiang Li
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Dong-Li Guo
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China.
| |
Collapse
|
34
|
Chen JJ, Lee TH, Kuo G, Yen CL, Lee CC, Chang CH, Tu KH, Chen YC, Fang JT, Hung CC, Yang CW, Chou WC, Chi CC, Tu YK, Yu Yang H. All-cause and immune checkpoint inhibitor-associated acute kidney injury in immune checkpoint inhibitor users: a meta-analysis of occurrence rate, risk factors and mortality. Clin Kidney J 2024; 17:sfad292. [PMID: 38186874 PMCID: PMC10768773 DOI: 10.1093/ckj/sfad292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 01/09/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have been associated with acute kidney injury (AKI). However, the occurrence rate of ICI-related AKI has not been systematically examined. Additionally, exposure to proton pump inhibitors (PPIs) and non-steroidal anti-inflammatory drugs (NSAIDs) were considered as risk factors for AKI, but with inconclusive results in ICI-related AKI. Our aim was to analyse the occurrence rate of all-cause AKI and ICI-related AKI and the occurrence rates of severe AKI and dialysis-requiring AKI, and to determine whether exposure to PPIs and NSAIDs poses a risk for all-cause and ICI-related AKI. Methods This study population was adult ICI recipients. A systematic review was conducted by searching MEDLINE, Embase and PubMed through October 2023. We included prospective trials and observational studies that reported any of the following outcomes: the occurrence rate of all-cause or ICI-related AKI, the relationship between PPI or NSAID exposure and AKI development or the mortality rate in the AKI or non-AKI group. Proportional meta-analysis and pairwise meta-analysis were performed. The evidence certainty was assessed using the Grading of Recommendations Assessment, Development and Evaluation framework. Results A total of 120 studies comprising 46 417 patients were included. The occurrence rates of all-cause AKI were 7.4% (14.6% from retrospective studies and 1.2% from prospective clinical trials). The occurrence rate of ICI-related AKI was 3.2%. The use of PPIs was associated with an odds ratio (OR) of 1.77 [95% confidence interval (CI) 1.43-2.18] for all-cause AKI and an OR of 2.42 (95% CI 1.96-2.97) for ICI-related AKI. The use of NSAIDs was associated with an OR of 1.77 (95% CI 1.10-2.83) for all-cause AKI and an OR of 2.57 (95% CI 1.68-3.93) for ICI-related AKI. Conclusions Our analysis revealed that approximately 1 in 13 adult ICI recipients may experience all-cause AKI, while 1 in 33 adult ICI recipients may experience ICI-related AKI. Exposure to PPIs and NSAIDs was associated with an increased OR risk for AKI in the current meta-analysis.
Collapse
Affiliation(s)
- Jia-Jin Chen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tao-Han Lee
- Nephrology Department, Chansn Hospital, Taoyuan City, Taiwan
| | - George Kuo
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chieh-Li Yen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsiang Chang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ji-Tseng Fang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Chi Chou
- Department of Hematology and Oncology, Chang Gung Memorial Hospital in Linkou and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chi Chi
- School of Medicine, College of Medicine, Chang Gung University; Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yu-Kang Tu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Huang- Yu Yang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
35
|
Li A, Fang J. Anti‐angiogenic therapy enhances cancer immunotherapy: Mechanism and clinical application. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2025]
Abstract
AbstractImmunotherapy, specifically immune checkpoint inhibitors, is revolutionizing cancer treatment, achieving durable control of previously incurable or advanced tumors. However, only a certain group of patients exhibit effective responses to immunotherapy. Anti‐angiogenic therapy aims to block blood vessel growth in tumors by depriving them of essential nutrients and effectively impeding their growth. Emerging evidence shows that tumor vessels exhibit structural and functional abnormalities, resulting in an immunosuppressive microenvironment and poor response to immunotherapy. Both preclinical and clinical studies have used anti‐angiogenic agents to enhance the effectiveness of immunotherapy against cancer. In this review, we concentrate on the synergistic effect of anti‐angiogenic and immune therapies in cancer management, dissect the direct effects and underlying mechanisms of tumor vessels on recruiting and activating immune cells, and discuss the potential of anti‐angiogenic agents to improve the effectiveness of immunotherapy. Lastly, we outline challenges and opportunities for the anti‐angiogenic strategy to enhance immunotherapy. Considering the increasing approval of the combination of anti‐angiogenic and immune therapies in treating cancers, this comprehensive review would be timely and important.
Collapse
Affiliation(s)
- An‐Qi Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
| | - Jian‐Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
- Department of Hepatobiliary Surgery I General Surgery Center Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
36
|
Lin H, Ma C, Zhong A, Zang H, Chen W, Li L, Le Y, Xie Q. Anti-Angiogenic Agents Combined with Immunotherapy for Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Comb Chem High Throughput Screen 2024; 27:1081-1091. [PMID: 37559541 DOI: 10.2174/1386207326666230808112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Anti-angiogenic agents could enhance tumor immunity response, and anti- angiogenesis plus immunotherapy has become a novel treatment option for advanced non-small cell lung cancer (NSCLC). The efficacy of this combination therapy remains controversial and obscure. AIM We conducted a meta-analysis to evaluate the clinical efficacy and safety of this therapeutic strategy in patients with advanced NSCLC and provide more guidance for treating NSCLC clinically. METHODS A systematic literature search was performed in PubMed, Embase, Web of Science, CNKI, and Wanfang databases to identify relevant studies published up to December 2021. The primary endpoint was the objective response rate (ORR). Second endpoints were progression-free survival (PFS), overall survival (OS), and grade ≥3 AEs adverse events (AEs). The sensitivity analysis was conducted to confirm the stability of the results. STATA 15.0 was utilized for all pooled analyses. RESULTS Eleven studies were eventually included in the meta-analysis, involving 533 patients with advanced NSCLC. The pooled ORR rate was 27% (95% CI 18% to 35%; I2 =84.2%; p<0.001), while the pooled median PFS and OS was 5.84 months (95% CI 4.66 to 7.03 months; I2=78.4%; p<0.001) and 14.20 months (95% CI 11.08 to 17.32 months; I2=82.2%; p=0.001), respectively. Most common grade ≥3 AEs included hypertension, hand-foot syndrome, diarrhea, adrenal insufficiency, hyponatremia, proteinuria, rash, thrombocytopenia, and fatigue. CONCLUSION Anti-angiogenesis combined with immunotherapy demonstrated satisfactory antitumor activity and an acceptable toxicity profile in patients with advanced NSCLC. The pooled results of our meta-analysis provided further evidence supporting the favorable efficacy and safety of this therapeutic strategy.
Collapse
Affiliation(s)
- Heng Lin
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Chenhui Ma
- Department of Thoracis Surgery, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Aihong Zhong
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Huanping Zang
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Wenxin Chen
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Lixiu Li
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Yuyin Le
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Qiang Xie
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| |
Collapse
|
37
|
Zhao W, Jiang J. Advances in Predictive Biomarkers for Anti-Angiogenic Therapy in Non-Small Cell Lung Cancer. Cancer Control 2024; 31:10732748241270589. [PMID: 39192835 PMCID: PMC11363049 DOI: 10.1177/10732748241270589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to explore advances in biomarkers related to anti-angiogenic therapy in patients with non-small cell lung cancer (NSCLC), thereby enhancing treatment selection, advancing personalized and precision medicine to improve treatment outcomes and patient survival rates. This article reviews key discoveries in predictive biomarkers for anti-angiogenic therapy in NSCLC in recent years, such as (1) liquid biopsy predictive biomarkers: studies have identified activated circulating endothelial cells (aCECs) via liquid biopsy as potential predictive biomarkers for the efficacy of anti-angiogenic therapy; (2) imaging biomarkers: advanced imaging technologies, such as dynamic contrast-enhanced integrated magnetic resonance positron emission tomography (MR-PET), are used to assess tumor angiogenesis in patients with NSCLC and evaluate the clinical efficacy of anti-angiogenic drugs; (3) genetic predictive biomarkers: research has explored polymorphisms of Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) and vascular endothelial growth factor-A (VEGF-A), as well as how plasma levels of VEGF-A can predict the outcomes and prognosis of patients with non-squamous NSCLC undergoing chemotherapy combined with bevacizumab. Despite progress in identifying biomarkers related to anti-angiogenic therapy, several challenges remain, including limitations in clinical trials, heterogeneity in NSCLC, and technical hurdles. Future research will require extensive clinical validation and in-depth mechanistic studies to fully exploit the potential of these biomarkers for personalized treatment.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Jun Jiang
- Division III, Department of Medical Oncology, Affiliated Hospital of Qinghai University, Qinghai, China
| |
Collapse
|
38
|
Li D, Loriot Y, Burgoyne AM, Cleary JM, Santoro A, Lin D, Aix SP, Garrido-Laguna I, Sudhagoni R, Guo X, Andrianova S, Paulson S. Cabozantinib plus atezolizumab in previously untreated advanced hepatocellular carcinoma and previously treated gastric cancer and gastroesophageal junction adenocarcinoma: results from two expansion cohorts of a multicentre, open-label, phase 1b trial (COSMIC-021). EClinicalMedicine 2024; 67:102376. [PMID: 38204489 PMCID: PMC10776423 DOI: 10.1016/j.eclinm.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Background Cabozantinib is approved for previously treated advanced hepatocellular carcinoma (aHCC) and has been investigated in gastric cancer (GC) and gastroesophageal junction adenocarcinoma (GEJ). Atezolizumab plus bevacizumab is approved for unresectable or metastatic HCC untreated with prior systemic therapy. We evaluated efficacy and safety of cabozantinib plus atezolizumab in aHCC previously untreated with systemic anticancer therapy or previously treated GC/GEJ. Methods COSMIC-021 (ClinicalTrials.gov, NCT03170960) is an open-label, phase 1b study in solid tumours with a dose-escalation stage followed by tumour-specific expansion cohorts, including aHCC (cohort 14) and GC/GEJ (cohort 15). Eligible patients were aged ≥18 years with measurable locally advanced, metastatic, or recurrent disease per RECIST version 1.1. Patients received oral cabozantinib 40 mg daily and intravenous atezolizumab 1200 mg once every 3 weeks until progressive disease or unacceptable toxicity. The primary endpoint was investigator-assessed objective response rate per RECIST version 1.1. Findings Patients were screened between February 14, 2019, and May 7, 2020, and 61 (30 aHCC, 31 GC/GEJ) were enrolled and received at least one dose of study treatment. Median duration of follow-up was 31.2 months (IQR 28.5-32.7) for aHCC and 30.4 months (28.7-31.9) for GC/GEJ. Objective response rate was 13% (4/30, 95% CI 4-31) for aHCC and 0% (95% CI 0-11) for GC/GEJ. Six (20%) aHCC patients and three (10%) GC/GEJ patients had treatment-related adverse events resulting in discontinuation of either study drug. Interpretation Cabozantinib plus atezolizumab had clinical activity with a manageable safety profile in aHCC previously untreated with systemic anticancer therapy. Clinical activity of cabozantinib plus atezolizumab was minimal in previously treated GC/GEJ. Funding Exelixis, Inc., Alameda, CA, USA.
Collapse
Affiliation(s)
- Daneng Li
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yohann Loriot
- Department of Cancer Medicine, Gustave Roussy Institute, INSERM 981, University Paris-Saclay, Villejuif, France
| | | | - James M. Cleary
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Armando Santoro
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Italy
- Humanitas University, Pieve Emanuele, Italy
| | - Daniel Lin
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Santiago Ponce Aix
- Hospital Universitario 12 de Octubre, H12O-CNIO Lung Cancer Clinical Research Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| | | | | | | | | | - Scott Paulson
- Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas, TX, USA
| |
Collapse
|
39
|
Coschi CH, Juergens RA. Overcoming Resistance Mechanisms to Immune Checkpoint Inhibitors: Leveraging the Anti-Tumor Immune Response. Curr Oncol 2023; 31:1-23. [PMID: 38275827 PMCID: PMC10814017 DOI: 10.3390/curroncol31010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
As far back as 3000 years ago, the immune system was observed to play a role in mediating tumor regression. Since then, many strategies have been developed to leverage the anti-tumor immune response. However, while many patients respond to ICIs up front some do not, and many of those that do eventually experience tumor progression. Currently, there are several predictive biomarkers of the immune checkpoint inhibitor response; however, no one test appears to be universally predictive and their application varies by disease site. There are many ways in which cancer cells develop primary or acquired resistance to immune checkpoint inhibitors. Efforts to reverse resistance include ways to combat T cell exhaustion, reprogram the tumor microenvironment, increase the availability of tumor neo-antigens, target alternative immune checkpoints, restore a normal/healthy patient gut microbiome, oncolytic viruses and tumor vaccines. The most studied and most promising methods include combining ICIs with therapies targeting alternative immune checkpoints and restoring a normal/healthy patient gut microbiome. This review will discuss T cell-mediated immunity, how this is leveraged by modern immunotherapy to treat cancer and mechanisms of immune checkpoint inhibitor resistance, while highlighting strategies to overcome primary and secondary resistance mechanisms.
Collapse
Affiliation(s)
- Courtney H. Coschi
- Department of Oncology, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
| | - Rosalyn A. Juergens
- Department of Oncology, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
- Escarpment Cancer Research Institute, McMaster University, Hamilton, ON L8V 5C2, Canada
| |
Collapse
|
40
|
Riccò B, Martinelli G, Bardasi C, Dominici M, Spallanzani A, Salati M. Optimizing the Continuum of Care in Gastric Cancer. Onco Targets Ther 2023; 16:995-1012. [PMID: 38021446 PMCID: PMC10680466 DOI: 10.2147/ott.s365505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) still ranks as the fifth most common malignancy and the fourth leading cause of cancer-related death worldwide. Despite the recent progress in the therapeutic algorithm of the advanced disease with the advent of immune checkpoint inhibitors (ICIs) and next-generation HER2-directed therapies, survival rates remain poor, with a median survival hardly exceeding 12 months. Furthermore, only 40% of patients remain eligible for second- and later-line treatments due to the aggressiveness of the disease and the rapid deterioration of performance status (PS). Thus, current research is focusing either on the identification of novel treatment options or the development of personalized strategies to optimize the continuum of care and ultimately improve patients' outcome. In this article, we provide an overview of the current treatment landscape for advanced GC with a particular emphasis on later-line treatments and outline novel perspectives on the horizon.
Collapse
Affiliation(s)
- Beatrice Riccò
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Giulio Martinelli
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Camilla Bardasi
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Andrea Spallanzani
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
41
|
Siringo M, Baena J, Bote de Cabo H, Torres-Jiménez J, Zurera M, Zugazagoitia J, Paz-Ares L. Future Perspectives in the Second Line Therapeutic Setting for Non-Oncogene Addicted Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:5505. [PMID: 38067208 PMCID: PMC10705719 DOI: 10.3390/cancers15235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the management of non-oncogene addicted non-small-cell lung cancer (NSCLC). Blocking the anti-PD-1 axis represents the current standard of care in the first-line setting, with drugs administered either as monotherapy or in combination with chemotherapy. Despite notable successes achieved with ICIs, most of their long-term benefits are restricted to approximately 20% of patients. Consequently, the post-failure treatment landscape after failure to first-line treatment remains a complex challenge. Currently, docetaxel remains the preferred option, although its benefits remain modest as most patients do not respond or progress promptly. In recent times, novel agents and treatment combinations have emerged, offering fresh opportunities to improve patient outcomes. ICIs combined either with antiangiogenic or other novel immunotherapeutic compounds have shown promising preliminary activity. However, more mature data concerning specific combinations do not support their benefit over standard of care. In addition, antibody-drug conjugates seem to be the most promising alternative among all available compounds according to already-published phase I/II data that will be confirmed in soon-to-be-published phase III trial data. In this report, we provide a comprehensive overview of the current second-line treatment options and discuss future therapeutic perspectives.
Collapse
Affiliation(s)
- Marco Siringo
- Department of Medical Oncology, 12 de Octubre Hospital, 28041 Madrid, Spain; (M.S.); (J.B.); (H.B.d.C.); (J.T.-J.); (M.Z.)
- Department of Medical Oncology, Sapienza University of Rome, 00100 Rome, Italy
| | - Javier Baena
- Department of Medical Oncology, 12 de Octubre Hospital, 28041 Madrid, Spain; (M.S.); (J.B.); (H.B.d.C.); (J.T.-J.); (M.Z.)
- Lung Cancer Clinical Research Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Helena Bote de Cabo
- Department of Medical Oncology, 12 de Octubre Hospital, 28041 Madrid, Spain; (M.S.); (J.B.); (H.B.d.C.); (J.T.-J.); (M.Z.)
- Lung Cancer Clinical Research Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Javier Torres-Jiménez
- Department of Medical Oncology, 12 de Octubre Hospital, 28041 Madrid, Spain; (M.S.); (J.B.); (H.B.d.C.); (J.T.-J.); (M.Z.)
- Lung Cancer Clinical Research Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - María Zurera
- Department of Medical Oncology, 12 de Octubre Hospital, 28041 Madrid, Spain; (M.S.); (J.B.); (H.B.d.C.); (J.T.-J.); (M.Z.)
- Lung Cancer Clinical Research Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Jon Zugazagoitia
- Department of Medical Oncology, 12 de Octubre Hospital, 28041 Madrid, Spain; (M.S.); (J.B.); (H.B.d.C.); (J.T.-J.); (M.Z.)
- Lung Cancer Clinical Research Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
- Ciberonc, 28029 Madrid, Spain
| | - Luis Paz-Ares
- Department of Medical Oncology, 12 de Octubre Hospital, 28041 Madrid, Spain; (M.S.); (J.B.); (H.B.d.C.); (J.T.-J.); (M.Z.)
- Lung Cancer Clinical Research Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
- Ciberonc, 28029 Madrid, Spain
- Medicine Department, Medicine Faculty, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
42
|
Cheng R, Li B, Wang H, Zeng Y. Immune checkpoint inhibitors and cellular immunotherapy for advanced gastric, gastroesophageal cancer: a long pathway. Clin Transl Oncol 2023; 25:3122-3138. [PMID: 37036597 DOI: 10.1007/s12094-023-03181-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Although the incidence rate and mortality of gastric/gastroesophageal cancer (G/GEJC) are declining globally, G/GEJC remains a health issue in East Asia. When diagnosed as advanced stage, treatment after serial lines of chemotherapy is limited, with a median overall survival of less than 1 year. Immunotherapy, including immune checkpoint inhibitors (ICIs) and cellular immunotherapy, has changed the prospects of cancer therapy by reversing immune suppression in the tumor microenvironment. As part of this review, we enumerated the clinical uses of ICIs related to the immunosuppressive signaling axis PD-1/PD-L1 and CTLA-4/B7. ICIs were initially approved as a secondary treatment option for patients with severe pretreating advanced gastric and gastroesophageal cancer (AG/GEJC). Till now, it has become the mainstream therapy in combination with chemotherapy and targeted therapy for patients identified by biomarkers. Numerous evidence showed microsatellite instability (MSI), programmed cell death ligand 1 (PD-L1) expression, tumor mutation burden (TMB) and Epstein-Barr virus (EBV) status might be indicative to the use of ICIs. In addition, we discussed the current limitations and prospects of ICIs in AG/GGEJC, as well as the first clinical application of novel CAR-T cell therapies.
Collapse
Affiliation(s)
- Runzi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
- Shantou University Medical College, Shantou, People's Republic of China
| | - Baizhi Li
- Shantou University Medical College, Shantou, People's Republic of China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Yongming Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China.
| |
Collapse
|
43
|
Yu P, Wang Y, Yuan D, Sun Y, Qin S, Li T. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front Immunol 2023; 14:1276694. [PMID: 37936692 PMCID: PMC10626545 DOI: 10.3389/fimmu.2023.1276694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Ovarian cancer remains a challenging disease with limited treatment options and poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor growth, progression, and therapy response. One characteristic feature of the TME is the abnormal tumor vasculature, which is associated with inadequate blood perfusion, hypoxia, and immune evasion. Vascular normalization, a therapeutic strategy aiming to rectify the abnormal tumor vasculature, has emerged as a promising approach to reshape the TME, enhance antitumor immunity, and synergize with immunotherapy in ovarian cancer. This review paper provides a comprehensive overview of vascular normalization and its potential implications in ovarian cancer. In this review, we summarize the intricate interplay between anti-angiogenesis and immune modulation, as well as ICI combined with anti-angiogenesis therapy in ovarian cancer. The compelling evidence discussed in this review contributes to the growing body of knowledge supporting the utilization of combination therapy as a promising treatment paradigm for ovarian cancer, paving the way for further clinical development and optimization of this therapeutic approach.
Collapse
Affiliation(s)
- Ping Yu
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yaru Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dahai Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
45
|
He D, Wang L, Xu J, Zhao J, Bai H, Wang J. Research advances in mechanism of antiangiogenic therapy combined with immune checkpoint inhibitors for treatment of non-small cell lung cancer. Front Immunol 2023; 14:1265865. [PMID: 37915579 PMCID: PMC10618022 DOI: 10.3389/fimmu.2023.1265865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Immunotherapy has changed the treatment strategy of non-small cell lung cancer (NSCLC) in recent years, among which anti-PD-1/PD-L1 antibodies are the most used. However, the majority of patients with NSCLC do not derive benefit from immune checkpoint inhibitors (ICIs). Vascular abnormalities are a hallmark of most solid tumors and facilitate immune evasion. Thus, combining antiangiogenic therapies might increase the effectiveness of anti-PD-1/PD-L1 antibodies. In this paper, the mechanisms of anti-angiogenic agents combined with anti-PD-1/PD-L1 antibodies are illustrated, moreover, relevant clinical studies and predictive immunotherapeutic biomarkers are summarized and analyzed, in order to provide more treatment options for NSCLC patients.
Collapse
Affiliation(s)
| | | | | | | | - Hua Bai
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Wang
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Zhang W, Wang J, Wang Q, Cheng Y, Yang L, Li Y, Zhong H, Chu T, Dong Y, Zhang Y, Qian F, Xiong L, Shi C, Zhang C, He Z, Zhu J, Liu X, Ma H, Li K, Han B. A randomized double-blind trial of TQB2450 with or without anlotinib in pretreated driver-negative non-small cell lung cancer. Lung Cancer 2023; 184:107353. [PMID: 37647728 DOI: 10.1016/j.lungcan.2023.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/31/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Immune monotherapy as second-line treatment confers only modest survival benefit on non-small cell lung cancer (NSCLC) patients with no mutated driver genes, necessitating combination treatment strategies. This phase Ib trial investigated the efficacy and safety of anti-PD-L1 antibody TQB2450 plus antiangiogenic drug anlotinib for NSCLC. MATERIALS AND METHODS Pretreated stage IIIB or IV NSCLC patients with wild-type EGFR/ALK and minimally one measurable lesion were randomized 1:1:1 to receive TQB2450 1200 mg plus placebo, or TQB2450 1200 mg plus anlotinib 10 or 12 mg. The primary outcome was progression-free survival (PFS) and the secondary outcomes included objective response rate (ORR). RESULTS Thirty-three patients received TQB2450 plus placebo and 34 patients each received TQB2450 plus anlotinib 10 mg and 12 mg. At the data cutoff, the median PFS was 8.7 months (95% CI 6.1-17.1) in the TQB2450 plus anlotinib group and 2.8 months (95% CI 1.4-4.7) in the TQB2450 only group. The ORR reached 30.9% (95% CI 20.2%-43.3%) in the TQB2450 plus anlotinib group and was 3.0% (95% CI 0.1%-15.8%) in the TQB2450 only group. In patients with PD-L1 ≥ 1%, the ORR was 50.0% (95% CI 33.4%-66.6%) for TQB2450 plus anlotinib and 5.3% (95% CI 0.1%-26.0%) for TQB2450 plus placebo. No new safety signals were observed. CONCLUSION Anlotinib plus TQB2450 demonstrated promising antitumor activities in advanced NSCLC patients without EGFR and ALK alterations and the toxicities were overall manageable. The study findings support the continued development of TQB2450 plus anlotinib for advanced NSCLC patients without driver gene alterations.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jing Wang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ying Cheng
- Department of Thoracic Medical Oncology, Jilin Cancer Hospital, Changchun, China
| | - Lei Yang
- Department of Respiratory Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Yuechuan Li
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Hua Zhong
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tianqing Chu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yu Dong
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yanwei Zhang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Fangfei Qian
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liwen Xiong
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chunlei Shi
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Cuicui Zhang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhen He
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhu
- Department of Thoracic Medical Oncology, Jilin Cancer Hospital, Changchun, China
| | - Xiting Liu
- Department of Respiratory Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Hui Ma
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Kai Li
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Baohui Han
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
47
|
Yan X, Zhao Z, Tang H. Current status and future of anti-angiogenic drugs in lung cancer. Clin Exp Med 2023; 23:2009-2023. [PMID: 36920592 DOI: 10.1007/s10238-023-01039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Lung cancer, as a malignant tumor with both high incidence and mortality in China, is one of the major causes of death in our population and one of the major public health problems in China. Effective treatment of lung cancer is a major public health task for all human beings. Angiogenesis plays an important role in the development of tumor, not only as a basic condition for tumor growth, but also as a significant factor to promote tumor metastasis. Therefore, anti-angiogenesis has become a vital means to inhibit tumor development, and anti-angiogenic drugs can rebalance pro- and anti-angiogenic factors to inhibit tumor cells. This article reviews the mechanism of blood vessel formation in tumor tissues and the mechanism of action of different anti-angiogenic drugs, the combination therapy of anti-angiogenic drugs and other anti-tumor drugs, and the mechanism of anti-angiogenic drug resistance.
Collapse
Affiliation(s)
- Xuan Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, No. 2901, Caolang Road, Shanghai, 201508, People's Republic of China
| | - Zhangyan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, No. 2901, Caolang Road, Shanghai, 201508, People's Republic of China
| | - Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, No. 2901, Caolang Road, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
48
|
Zheng Y, Dong H, Yu Y, Hu Z, Xue C, Zhang X, Cui H. Treatment-related adverse events of immune checkpoint inhibitors combined with angiogenesis inhibitors in advanced lung cancer: A systematic review and meta-analysis. Int Immunopharmacol 2023; 123:110785. [PMID: 37598630 DOI: 10.1016/j.intimp.2023.110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) with angiogenesis inhibitors have been used to treat advanced lung cancer. Their associated treatment-related adverse events (trAEs) are currently considered acceptable; however, no conclusion has been reached. We aimed to summarize the trAEs caused by ICIs combined with angiogenesis inhibitors in patients with advanced lung cancer. METHODS Pulled studies met the following criteria: patients with advanced lung cancer who received treatment involving ICIs combined with angiogenesis inhibitors (with or without chemotherapy) in interventional or observational studies. Results included the type and number of trAEs or immune-related adverse events (irAEs), treatment-associated discontinuation and mortality, overall survival (OS), and progression-free survival (PFS). PROSPERO CRD42022337656. RESULTS The study enrolled 32 trials involving 2313 patients who had 7768 any-grade trAEs and 1078 grade ≥3 trAEs. The pooled incidences were 87.33% (95% confidence interval [CI]: 79.49-93.65; I2 = 94.04%) for any-grade trAEs, and 38.63% (95% CI: 28.28-49.50; I2 = 95.61%) for grade ≥3 trAEs. There were 132 kinds of any-grade trAEs involving 18 systems, and 99 kinds of grade ≥3 trAEs involving 16 systems. For all trAEs, we observed significant differences in the line of therapy, trial design, therapy combination, and types of angiogenesis inhibitors (all P < 0.05). The rate of trAEs increased with dosage and frequency of medication. Pooled incidences of discontinuation and mortality were 10.64% and 0.81%, respectively. Nearly 647 patients experienced irAEs, including 636 any-grade irAEs and 154 grade ≥3 irAEs. CONCLUSIONS Overall, the incidence of trAEs caused by ICIs combined with angiogenesis inhibitors is generally acceptable. These trAEs have a wide spectrum nearly covering the full range of adverse events. Grade ≥3 trAEs are more closely associated with angiogenesis inhibitors than any grade. However, treatment-associated mortality remains concerning.
Collapse
Affiliation(s)
- Yumin Zheng
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Huijing Dong
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yixuan Yu
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zixin Hu
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chongxiang Xue
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xu Zhang
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Huijuan Cui
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, People's Republic of China.
| |
Collapse
|
49
|
Chen K, Xu Y, Huang Z, Yu X, Hong W, Li H, Xu X, Lu H, Xie F, Chen J, Xu Y, Fan Y. Sintilimab plus anlotinib as second- or third-line therapy in metastatic non-small cell lung cancer with uncommon epidermal growth factor receptor mutations: A prospective, single-arm, phase II trial. Cancer Med 2023; 12:19460-19470. [PMID: 37723837 PMCID: PMC10587987 DOI: 10.1002/cam4.6548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Patients with non-small-cell lung cancer (NSCLC) and uncommon EGFR alterations typically have worse treatment outcomes than patients with classically EGFR-mutated NSCLC. This study aimed to investigate the efficacy and safety of PD-1 blockade with sintilimab plus anti-angiogenic treatment with anlotinib in patients with NSCLC harboring uncommon EGFR mutations. METHODS Patients with metastatic NSCLC harboring uncommon EGFR mutations after two previous treatments, including a platinum-based chemotherapy regimen and a targeted treatment (or chemotherapy only for patients harboring EGFR ex20ins), received sintilimab combined with anlotinib. The primary endpoint was objective response rate (ORR). RESULTS At data cutoff (September 27, 2022), median follow-up was 22.3 months (range, 1.2-37.6). Among 21 enrolled patients, 12 had EGFR ex20ins and nine had other uncommon EGFR mutations such as L861Q, G719A, and G709X. Overall, eight patients (38.1%) achieved an objective response, and 18 (85.7%) achieved disease control. Median (95% CI) progression-free survival (PFS) was 7.0 (5.4-8.6) months, and median overall survival (OS) was 20.0 (15.6-24.4) months. The 12-month PFS rate (95% CI) was 22.2% (7.4-42.0), and the 12-month OS rate was 66.7% (42.5-82.5). Patients harboring EGFR ex20ins had similar ORR and PFS to those with other mutations. Six patients (28.6%) experienced grade 3 treatment-related adverse events (TRAEs); hand-foot syndrome was the most common grade 3 TRAE (2 patients; 9.5%). No grade ≥4 TRAEs were observed. CONCLUSIONS The combination of sintilimab and anlotinib demonstrated durable efficacy and was generally well tolerated in patients with NSCLC and uncommon EGFR mutations who had received prior standard-of-care treatments. (ClinicalTrials.gov identifier: NCT04790409).
Collapse
Affiliation(s)
- Kaiyan Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Yanjun Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Zhiyu Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Xiaoqing Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Clinical TrialZhejiang Cancer HospitalHangzhouChina
| | - Wei Hong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Hui Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Xiaoling Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Hongyang Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Fajun Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Jun Chen
- Department of Radiotherapy and ChemotherapyThe Affiliated People's Hospital of Ningbo UniversityNingboChina
| | - Youzu Xu
- Department of Respiratory and Critical Care MedicineTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Yun Fan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| |
Collapse
|
50
|
Yang H, Li X, Yang W. Advances in targeted therapy and immunotherapy for esophageal cancer. Chin Med J (Engl) 2023; 136:1910-1922. [PMID: 37403208 PMCID: PMC10431250 DOI: 10.1097/cm9.0000000000002768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 07/06/2023] Open
Abstract
ABSTRACT Esophageal cancer (EC) is one of the most common aggressive malignant tumors in the digestive system with a severe epidemiological situation and poor prognosis. The early diagnostic rate of EC is low, and most EC patients are diagnosed at an advanced stage. Multiple multimodality treatments have gradually evolved into the main treatment for advanced EC, including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. And the emergence of targeted therapy and immunotherapy has greatly improved the survival of EC patients. This review highlights the latest advances in targeted therapy and immunotherapy for EC, discusses the efficacy and safety of relevant drugs, summarizes related important clinical trials, and tries to provide references for therapeutic strategy of EC.
Collapse
Affiliation(s)
- Haiou Yang
- Cancer center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
| | - Xuewei Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|