1
|
Anderson JL, Sandstrom K, Klenchin VA, Evans DT. Rhesus Macaque Killer Cell Ig-like Receptor Domain 0 Glycans Impact Surface Expression and Ligand Specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1787-1798. [PMID: 39465971 PMCID: PMC11625459 DOI: 10.4049/jimmunol.2400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Defining the MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as a model for infectious diseases and comparative immunogenetics. Several rhesus macaque KIRs belong to a phylogenetically distinct group with a three-amino acid deletion in domain 0 (D0). This deletion results in polymorphic differences in potential N-linked glycosylation (PNG) sites adjacent to a predicted KIR-MHC class I contact site. Whereas most KIRs have two tandem PNG sites in D0 (N36FTN39FT), the KIRs containing the deletion only have a single site in this region (N36FT). To discern the contribution of glycosylation to KIR expression and ligand recognition, we constructed PNG mutants for six lineage II KIR genes that eliminate or create sites for N-glycan addition at these locations. The impact of these mutations on total and surface expression was determined by immunoblotting and flow cytometry. Ligand engagement was assessed by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. We found that N36FT is glycosylated in KIR with a single site, and at least one site is glycosylated in KIRs with two tandem sites. In general, for rhesus KIRs with a single D0 glycosylation site, that site contributes to surface expression. For KIRs with two tandem sites, the first site can contribute to ligand specificity. This study establishes that D0 glycosylation of rhesus macaque KIRs modulates surface expression and contributes to ligand specificity.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
2
|
Rebuffet L, Melsen JE, Escalière B, Basurto-Lozada D, Bhandoola A, Björkström NK, Bryceson YT, Castriconi R, Cichocki F, Colonna M, Davis DM, Diefenbach A, Ding Y, Haniffa M, Horowitz A, Lanier LL, Malmberg KJ, Miller JS, Moretta L, Narni-Mancinelli E, O'Neill LAJ, Romagnani C, Ryan DG, Sivori S, Sun D, Vagne C, Vivier E. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat Immunol 2024; 25:1474-1488. [PMID: 38956378 PMCID: PMC11291291 DOI: 10.1038/s41590-024-01883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.
Collapse
Grants
- Wellcome Trust
- MR/W031698/1 Medical Research Council
- P01 CA065493 NCI NIH HHS
- P01 CA111412 NCI NIH HHS
- E.V laboratory at CIML and Assistance-Publique des Hôpitaux de Marseille is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (TILC, grant agreement No. 694502 and MInfla-TILC, grand agreement No. 875102), the Agence Nationale de la Recherche including the PIONEER Project (ANR-17-RHUS-0007), MSDAvenir, Innate Pharma and institutional grants awarded to the CIML (INSERM, CNRS and Aix-Marseille University) and Marseille Immunopole.
- D.M.D laboratory is funded by the Medical Research Council (MR/W031698/1) and the Wellcome Trust (110091/Z/15/Z).
- A.D. laboratory is supported by the European Research Council (ERC AdG ILCAdapt, 101055309 to A.D.) and by the German Research Foundation (DFG) (SFB 1444/427826188 and TRR 241/375876048 to A.D., SPP1937/Di764 /9-2 to A.D.). We are grateful to the Benjamin Franklin Flow Cytometry Facility (BFFC) for support in cell sorting. BFFC is supported by DFG Instrument Grants INST 335/597-1 FUGG und INST 335/777-1 FUGG.
- KJM was supported by the Research Council of Norway, Center of Excellence: Precision Immunotherapy Alliance (332727), the US National Cancer Institute (P01 CA111412, P009500901).
- L.M. is funded by Associazione Italiana contro il Cancro (AIRC), 5xmille project n. 21147.
- C.R. laboratory is supported by the ERC Advanced Grant ‘MEM-CLONK’ (101055157) and the Deutsche Forschungsgemeinschaft (DFG) grants SFB TRR241 B02 and RO 3565/7-1.
- D.G.R is supported by funding from the Medical Research Council (MRC) (MC_UU_00028) and Wellcome Trust-Academy of Medical Sciences (WT-AMS) (SBF009\1119).
- S.S. is funded by Ministero dell’Istruzione, dell’Università e della Ricerca: PRIN 2017WC8499_004 and Fondazione AIRC: AIRC 5×1000 project id. 21147.
Collapse
Affiliation(s)
- Lucas Rebuffet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Janine E Melsen
- Leiden University Medical Center, Willem-Alexander Children's Hospital, Laboratory for Pediatric Immunology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Immunology, Leiden, the Netherlands
| | - Bertrand Escalière
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Sweden Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel M Davis
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, UK
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Amir Horowitz
- Department of Immunology & Immunotherapy, The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- The Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Chiara Romagnani
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
- Berlin University Alliance, Berlin, Germany
| | - Dylan G Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Constance Vagne
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Paris-Saclay Cancer Cluster, Le Kremlin-Bicêtre, France.
| |
Collapse
|
3
|
Gingrich AA, Razmara AM, Gingrich PW, Rebhun RB, Murphy WJ, Kent MS, Brown CT, Siegel JB, Canter RJ. Missing a "Missing Self" Mechanism: Modeling and Detection of Ly49 Expression in Canine NK Cells. Immunohorizons 2023; 7:760-770. [PMID: 37971282 PMCID: PMC10696421 DOI: 10.4049/immunohorizons.2300092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
NK cells are a key focus in immuno-oncology, based on their ability to eliminate malignant cells without prior sensitization. Dogs are valuable models for translational immunotherapy studies, especially for NK cells, where critical species differences exist between mice and humans. Given that the mechanism for recognition of "self" by canine NK cells is currently unknown, we sought to evaluate expression of Ly49 in canine NK cells using in silico and high-throughput techniques. We interrogated the identified polymorphism/mutation in canine Ly49 and assessed the potential impact on structure using computational modeling of three-dimensional protein structure and protein-protein docking of canine Ly49 with MHC class I (MHC-I). Bulk and single-cell RNA-sequencing analysis was performed to detect gene expression of Ly49/KLRA1 in resting and activated NK cells. Tertiary protein structure demonstrated significant structural similarity to the known murine system. Molecular docking of canine Ly49 with MHC-I was favorable, converging at a single low-energy conformation. RNA sequencing revealed expression of Ly49/KLRA1 in both resting and activated NK cells and demonstrated almost exclusive expression of the gene in the NK cluster at the single-cell level. Despite prior reports of a mutated, nonfunctional canine Ly49, our data support that the protein product is predicted to bind to MHC-I in a comparable conformation to the murine system and is expressed in canine NK cells with upregulation following activation. Taken together, these data suggest that Ly49 is capable of recognizing MHC-I and therefore regulating NK cell function in dogs.
Collapse
Affiliation(s)
- Alicia A. Gingrich
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| | - Aryana M. Razmara
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| | - Phillip W. Gingrich
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA
| | - Robert B. Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - William J. Murphy
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - C. Titus Brown
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - Justin B. Siegel
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA
| | - Robert J. Canter
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| |
Collapse
|
4
|
Floerchinger A, Klein JE, Finkbeiner MSC, Schäfer TE, Fuchs G, Doerner J, Zirngibl H, Ackermann M, Kvasnicka HM, Chester KA, Jäger D, Ball CR, Ungerechts G, Engeland CE. A vector-encoded bispecific killer engager to harness virus-activated NK cells as anti-tumor effectors. Cell Death Dis 2023; 14:104. [PMID: 36765035 PMCID: PMC9918448 DOI: 10.1038/s41419-023-05624-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
Treatment with oncolytic measles vaccines (MV) elicits activation of immune cells, including natural killer (NK) cells. However, we found that MV-activated NK cells show only modest direct cytotoxic activity against tumor cells. To specifically direct NK cells towards tumor cells, we developed oncolytic measles vaccines encoding bispecific killer engagers (MV-BiKE) targeting CD16A on NK cells and carcinoembryonic antigen (CEA) as a model tumor antigen. MV-BiKE are only slightly attenuated compared to parental MV and mediate secretion of functional BiKE from infected tumor cells. We tested MV-BiKE activity in cocultures of colorectal or pancreatic cancer cells with primary human NK cells. MV-BiKE mediate expression of effector cytokines, degranulation and specific anti-tumor cytotoxicity by NK cells. Experiments with patient-derived pancreatic cancer cultures indicate that efficacy of MV-BiKE may vary between individual tumors with differential virus permissiveness. Remarkably, we confirmed MV-BiKE activity in primaryhuman colorectal carcinoma specimens with autochthonous tumor and NK cells.This study provides proof-of-concept for MV-BiKE as a novel immunovirotherapy to harness virus-activated NK cells as anti-tumor effectors.
Collapse
Affiliation(s)
- Alessia Floerchinger
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Jessica E Klein
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maximiliane S C Finkbeiner
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Theresa E Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Gwendolin Fuchs
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Francis Crick Institute, London, UK
| | - Johannes Doerner
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Hubert Zirngibl
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | - Hans M Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | | | - Dirk Jäger
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
5
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
6
|
Alesci A, Lauriano ER, Fumia A, Irrera N, Mastrantonio E, Vaccaro M, Gangemi S, Santini A, Cicero N, Pergolizzi S. Relationship between Immune Cells, Depression, Stress, and Psoriasis: Could the Use of Natural Products Be Helpful? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061953. [PMID: 35335319 PMCID: PMC8954591 DOI: 10.3390/molecules27061953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about 2%-3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but an interaction between genetic and environmental factors has been recognized with an essential modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the relationship of depression and stress in its pathogenesis and development. In addition, this review contains a focus on the possible use of natural products, thus pointing out their mechanism of action in order to counteract clinical and psychological symptoms.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine—Section of Pharmacology, University of Messina, 98125 Messina, Italy;
| | | | - Mario Vaccaro
- Department of Clinical and Experimental Medicine—Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| |
Collapse
|
7
|
Licensing Natural Killers for Antiviral Immunity. Pathogens 2021; 10:pathogens10070908. [PMID: 34358058 PMCID: PMC8308748 DOI: 10.3390/pathogens10070908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors (IRs) enable discrimination between self- and non-self molecules on the surface of host target cells. In this regard, they have a vital role in self-tolerance through binding and activating intracellular tyrosine phosphatases which can inhibit cellular activation. Yet, self-MHC class I (MHC I)-specific IRs are versatile in that they can also positively impact lymphocyte functionality, as exemplified by their role in natural killer (NK) cell education, often referred to as ’licensing‘. Recent discoveries using defined mouse models of cytomegalovirus (CMV) infection have revealed that select self-MHC I IRs can increase NK cell antiviral defenses as well, whereas other licensing IRs cannot, or instead impede virus-specific NK responses for reasons that remain poorly understood. This review highlights a role for self-MHC I ‘licensing’ IRs in antiviral immunity, especially in the context of CMV infection, their impact on virus-specific NK cells during acute infection, and their potential to affect viral pathogenesis and disease.
Collapse
|
8
|
Amorim LM, Augusto DG, Nemat-Gorgani N, Montero-Martin G, Marin WM, Shams H, Dandekar R, Caillier S, Parham P, Fernández-Viña MA, Oksenberg JR, Norman PJ, Hollenbach JA. High-Resolution Characterization of KIR Genes in a Large North American Cohort Reveals Novel Details of Structural and Sequence Diversity. Front Immunol 2021; 12:674778. [PMID: 34025673 PMCID: PMC8137979 DOI: 10.3389/fimmu.2021.674778] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The KIR (killer-cell immunoglobulin-like receptor) region is characterized by structural variation and high sequence similarity among genes, imposing technical difficulties for analysis. We undertook the most comprehensive study to date of KIR genetic diversity in a large population sample, applying next-generation sequencing in 2,130 United States European-descendant individuals. Data were analyzed using our custom bioinformatics pipeline specifically designed to address technical obstacles in determining KIR genotypes. Precise gene copy number determination allowed us to identify a set of uncommon gene-content KIR haplotypes accounting for 5.2% of structural variation. In this cohort, KIR2DL4 is the framework gene that most varies in copy number (6.5% of all individuals). We identified phased high-resolution alleles in large multi-locus insertions and also likely founder haplotypes from which they were deleted. Additionally, we observed 250 alleles at 5-digit resolution, of which 90 have frequencies ≥1%. We found sequence patterns that were consistent with the presence of novel alleles in 398 (18.7%) individuals and contextualized multiple orphan dbSNPs within the KIR complex. We also identified a novel KIR2DL1 variant, Pro151Arg, and demonstrated by molecular dynamics that this substitution is predicted to affect interaction with HLA-C. No previous studies have fully explored the full range of structural and sequence variation of KIR as we present here. We demonstrate that pairing high-throughput sequencing with state-of-art computational tools in a large cohort permits exploration of all aspects of KIR variation including determination of population-level haplotype diversity, improving understanding of the KIR system, and providing an important reference for future studies.
Collapse
Affiliation(s)
- Leonardo M. Amorim
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Danillo G. Augusto
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University, Palo Alto, CA, United States
| | - Gonzalo Montero-Martin
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Wesley M. Marin
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Hengameh Shams
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Ravi Dandekar
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Stacy Caillier
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Peter Parham
- Department of Structural Biology, Stanford University, Palo Alto, CA, United States
| | | | - Jorge R. Oksenberg
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Paul J. Norman
- Department of Structural Biology, Stanford University, Palo Alto, CA, United States
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, CA, United States
| |
Collapse
|
9
|
Identification of distinct LRC- and Fc receptor complex-like chromosomal regions in fish supports that teleost leukocyte immune-type receptors are distant relatives of mammalian Fc receptor-like molecules. Immunogenetics 2021; 73:93-109. [PMID: 33410929 DOI: 10.1007/s00251-020-01193-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 01/17/2023]
Abstract
Leukocyte immune-type receptors (LITRs) are a large family of immunoregulatory receptor-types originally identified in the channel catfish (Ictalurus punctatus (Ip)LITRs). Phylogenetic analyses of LITRs show that they share distant evolutionary relationships with important mammalian immunoregulatory receptors belonging to the Fc receptors family and the leukocyte receptor complex (LRC), but their syntenic relationships with these immunoglobulin superfamily members have not been investigated. To further examine the possible evolutionary connections between teleost LITRs and various mammalian immunoregulatory receptor-types, we surveyed the genomic databases of representative vertebrate taxa and our results show that teleost LITRs generally exist in large genomic clusters, which are linked to vangl2, arhgef11, and slam family genes, features that are also shared by amphibian and mammalian Fc receptor-like molecules (FCRLs). Moreover, detailed phylogenetic comparisons between the individual Ig-like domains of LITRs and mammalian FCRLs shows that these receptors share related Ig-like domains indicative of their common ancestry. However, contrary to our previous reports, no supportive evidence for phylogenetic relationships between the Ig-like domains of LITRs with the Ig-like domains of LRC-encoded mammalian immunoregulatory receptors was found. We also identified an LRC-like region in the zebrafish genome, but no expanded litr-related genes were located in this region. Similarly, no lilr-related genes were found in spotted gar, a representative basal ray-finned fish. Finally, two distantly related fcrls and an LRC-like gene were identified in the elephant shark genome, suggesting that the loss of an immunoregulatory receptor-containing LRC region may be unique to ray-finned fish.
Collapse
|
10
|
Tsurumi A, Flaherty PJ, Que YA, Ryan CM, Mendoza AE, Almpani M, Bandyopadhaya A, Ogura A, Dhole YV, Goodfield LF, Tompkins RG, Rahme LG. Multi-Biomarker Prediction Models for Multiple Infection Episodes Following Blunt Trauma. iScience 2020; 23:101659. [PMID: 33047099 PMCID: PMC7539926 DOI: 10.1016/j.isci.2020.101659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Severe trauma predisposes patients to multiple independent infection episodes (MIIEs), leading to augmented morbidity and mortality. We developed a method to identify increased MIIE risk before clinical signs appear, which is fundamentally different from existing approaches entailing infections' detection after their establishment. Applying machine learning algorithms to genome-wide transcriptome data from 128 adult blunt trauma patients' (42 MIIE cases and 85 non-cases) leukocytes collected ≤48 hr of injury and ≥3 days before any infection, we constructed a 15-transcript and a 26-transcript multi-biomarker panel model with the least absolute shrinkage and selection operator (LASSO) and Elastic Net, respectively, which accurately predicted MIIE (Area Under Receiver Operating Characteristics Curve [AUROC] [95% confidence intervals, CI]: 0.90 [0.84–0.96] and 0.92 [0.86–0.96]) and significantly outperformed clinical models. Gene Ontology and network analyses found various pathways to be relevant. External validation found our model to be generalizable. Our unique precision medicine approach can be applied to a wide range of patient populations and outcomes. We describe a method for predicting multiple independent infection episodes (MIIEs). We applied machine learning algorithms to transcriptome data to develop models The biomarker prediction models significantly outperformed clinical models External validation in another trauma cohort found evidence of generalizability
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Patrick J. Flaherty
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland, 3010 Bern, Switzerland
| | - Colleen M. Ryan
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - April E. Mendoza
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Marianna Almpani
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Arunava Bandyopadhaya
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Asako Ogura
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yashoda V. Dhole
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Laura F. Goodfield
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Ronald G. Tompkins
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
- Corresponding author
| |
Collapse
|
11
|
Lan X, Liu F, Ma J, Chang Y, Lan X, Xiang L, Shen X, Zhou F, Zhao Q. Leukocyte immunoglobulin-like receptor A3 is increased in IBD patients and functions as an anti-inflammatory modulator. Clin Exp Immunol 2020; 203:286-303. [PMID: 33006756 PMCID: PMC7806419 DOI: 10.1111/cei.13529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence shows that a homozygous 6·7-kb deletion of the novel anti-inflammatory molecule leukocyte immunoglobulin-like receptor A3 (LILRA3) is associated with many autoimmune disorders. However, its effects on pathogenesis of inflammatory bowel disease (IBD) have yet not been clarified. LILRA3 is mainly expressed in monocytes, whereas its effects on biological behaviors of monocytes have not been systematically reported. In our study, to investigate the association between LILRA3 polymorphism and IBD susceptibility, LILRA3 polymorphism was assessed in 378 IBD patients and 509 healthy controls. Quantitative real time PCR (qRT-PCR), Western blot and immunohistochemistry (IHC) were employed to detect the LILRA3 expression in IBD patient blood and intestinal samples. The human U937 monocyte cell line was employed to establish LILRA3 over-expressing cells and the effects of LILRA3 on the biological behaviors of U937 cells were systematically explored. Although no association of the polymorphism with IBD development was found, LILRA3 expression was markedly increased in IBD patients compared with healthy controls. Over-expression of LILRA3 in monocytes led to significant decreases in secretion of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-6. Additionally, LILRA3 abated monocyte migration by reducing the expression of several chemokines and enhanced monocyte phagocytosis by increasing CD36 expression. Furthermore, LILRA3 promoted monocyte proliferation through a combination of Akt and extracellular receptor kinase/mitogen-activated protein kinase (Erk/MEK) signaling pathways. We report for the first time, to our knowledge, that LILRA3 is related to IBD and functions as an anti-inflammatory modulator in U937 cells.
Collapse
Affiliation(s)
- X Lan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F Liu
- Department of Gastroenterology, Xuhui District Central Hospital, Shanghai, China
| | - J Ma
- Department of Health Related Product Evaluation, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Y Chang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - X Lan
- Pathology department, National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, China
| | - L Xiang
- Department of Infectious Disease, Xiangxi Autonomous Prefecture People's Hospital, Xiangxi, China
| | - X Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F Zhou
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Q Zhao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Sato Y, Ogawa E, Okuyama R. Role of Innate Immune Cells in Psoriasis. Int J Mol Sci 2020; 21:ijms21186604. [PMID: 32917058 PMCID: PMC7554918 DOI: 10.3390/ijms21186604] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin condition caused by a combination of hereditary and environmental factors. Its development is closely related to the adaptive immune response. T helper 17 cells are major IL-17-producing cells, a function that plays an important role in the pathogenesis of psoriasis. However, recent findings have demonstrated that innate immune cells also contribute to the development of psoriasis. Innate lymphoid cells, γδ T cells, natural killer T cells, and natural killer cells are activated in psoriasis, contributing to disease pathology through IL-17-dependent and -independent mechanisms. The present review provides an overview of recent findings, demonstrating a role for innate immunity in psoriasis.
Collapse
Affiliation(s)
| | | | - Ryuhei Okuyama
- Correspondence: ; Tel.: +81-263-37-2645; Fax: +81-263-37-2646
| |
Collapse
|
13
|
Controlling the Perturbations of Solar Radiation Pressure on the Lorentz Spacecraft. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the present paper is to analyze the viability of using Lorentz Force (LF) acting on a charged spacecraft to neutralize the effects of Solar Radiation Pressure (SRP) on the longitude of the ascending node and the argument of perigee of the spacecraft’s orbit. In this setting, the Gauss planetary equations for LF and SRP are presented and averaged over the true anomaly. The averaged variations for the longitude of the ascending node (h) and the argument of perigee (g) are invariant under the symmetry (i,g)⟶(−i,−g) due to Lorentz Force. The sum of change rates due to both perturbing forces of LF and SRP is assigned by zero to estimate the charge amount to balance the variation for the argument of perigee and longitude of ascending. Numerical investigations have been developed to show the evolution of the charge quantity for different orbital parameters at both Low Earth and Geosynchronous Orbits.
Collapse
|
14
|
Li Y, Wang T, Hu X, Zhang H, Chen L, Bao X, He J. Study of KIR gene expression at the mRNA level in specific donor-derived NK cells after allogeneic HSCT. Immunogenetics 2020; 72:135-141. [PMID: 31900503 DOI: 10.1007/s00251-019-01153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
The function of natural killer (NK) cells after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is regulated by the balance between inhibitory KIRs (iKIRs) and activating KIRs (aKIRs). However, few studies have examined the subsequent expression of KIR genes unique to the donor. We defined the set of KIR genes expressed only in the donor and designed a method for measuring the expression of these KIR genes by quantitative real-time polymerase chain reaction (RT-qPCR) based on genetic cloning techniques. In this study, we evaluated the recovery pattern of KIR genes in 252 donor-recipient pairs. The expression of each KIR unique to the donor was in line with that of KIR genes shared by the donor and recipient, such as KIR2DS1, KIR3DS1, KIR2DS4, or KIR2DS3. The timing of the peak mRNA expression of aKIRs unique to the donor was inconsistent but occurred within the first 3 months posttransplantation, whereas the peak mRNA expression of iKIRs was consistently observed in the third month after transplantation. The expression of KIR2DL2 in the third month posttransplantation was significantly higher in the transplant recipients than in the donors (p = 0.01). The KIR2DL1 and KIR3DL1 levels in the transplant recipients in the second and third months posttransplantation were also obviously higher than the donor levels (p < 0.0001). Thus, these observations should be considered when attempting to predict the correlation between mRNA expression and prognosis after allo-HSCT.
Collapse
Affiliation(s)
- Ying Li
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Building 15, No. 708 Renmin Road, Suzhou, 215007, Jiangsu, China
| | - Tian Wang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215007, Jiangsu, China
| | - Xing Hu
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Building 15, No. 708 Renmin Road, Suzhou, 215007, Jiangsu, China
| | - Huanhuan Zhang
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Building 15, No. 708 Renmin Road, Suzhou, 215007, Jiangsu, China
| | - Luyao Chen
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Building 15, No. 708 Renmin Road, Suzhou, 215007, Jiangsu, China
| | - Xiaojing Bao
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Building 15, No. 708 Renmin Road, Suzhou, 215007, Jiangsu, China
| | - Jun He
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Building 15, No. 708 Renmin Road, Suzhou, 215007, Jiangsu, China. .,Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215007, Jiangsu, China.
| |
Collapse
|
15
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
16
|
Misra MK, Augusto DG, Martin GM, Nemat-Gorgani N, Sauter J, Hofmann JA, Traherne JA, González-Quezada B, Gorodezky C, Bultitude WP, Marin W, Vierra-Green C, Anderson KM, Balas A, Caro-Oleas JL, Cisneros E, Colucci F, Dandekar R, Elfishawi SM, Fernández-Viña MA, Fouda M, González-Fernández R, Große A, Herrero-Mata MJ, Hollenbach SQ, Marsh SGE, Mentzer A, Middleton D, Moffett A, Moreno-Hidalgo MA, Mossallam GI, Nakimuli A, Oksenberg JR, Oppenheimer SJ, Parham P, Petzl-Erler ML, Planelles D, Sánchez-García F, Sánchez-Gordo F, Schmidt AH, Trowsdale J, Vargas LB, Vicario JL, Vilches C, Norman PJ, Hollenbach JA. Report from the Killer-cell Immunoglobulin-like Receptors (KIR) component of the 17th International HLA and Immunogenetics Workshop. Hum Immunol 2018; 79:825-833. [PMID: 30321631 DOI: 10.1016/j.humimm.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
Abstract
The goals of the KIR component of the 17th International HLA and Immunogenetics Workshop (IHIW) were to encourage and educate researchers to begin analyzing KIR at allelic resolution, and to survey the nature and extent of KIR allelic diversity across human populations. To represent worldwide diversity, we analyzed 1269 individuals from ten populations, focusing on the most polymorphic KIR genes, which express receptors having three immunoglobulin (Ig)-like domains (KIR3DL1/S1, KIR3DL2 and KIR3DL3). We identified 13 novel alleles of KIR3DL1/S1, 13 of KIR3DL2 and 18 of KIR3DL3. Previously identified alleles, corresponding to 33 alleles of KIR3DL1/S1, 38 of KIR3DL2, and 43 of KIR3DL3, represented over 90% of the observed allele frequencies for these genes. In total we observed 37 KIR3DL1/S1 allotypes, 40 for KIR3DL2 and 44 for KIR3DL3. As KIR allotype diversity can affect NK cell function, this demonstrates potential for high functional diversity worldwide. Allelic variation further diversifies KIR haplotypes. We determined KIR3DL3 ∼ KIR3DL1/S1 ∼ KIR3DL2 haplotypes from five of the studied populations, and observed multiple population-specific haplotypes in each. This included 234 distinct haplotypes in European Americans, 191 in Ugandans, 35 in Papuans, 95 in Egyptians and 86 in Spanish populations. For another 35 populations, encompassing 642,105 individuals we focused on KIR3DL2 and identified another 375 novel alleles, with approximately half of them observed in more than one individual. The KIR allelic level data gathered from this project represents the most comprehensive summary of global KIR allelic diversity to date, and continued analysis will improve understanding of KIR allelic polymorphism in global populations. Further, the wealth of new data gathered in the course of this workshop component highlights the value of collaborative, community-based efforts in immunogenetics research, exemplified by the IHIW.
Collapse
Affiliation(s)
- Maneesh K Misra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Danillo G Augusto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gonzalo Montero Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Betsy González-Quezada
- Department of Immunology and Immunogenetics, InDRE, Secretary of Health, Francisco P. Miranda #177, Colonia Lomas de Plateros, Del. Álvaro Obregón, CP 01480, Mexico City, Mexico; Fundación Comparte Vida, A.C. Galileo #92, Col. Polanco, Del. Miguel Hidalgo, CP 11550 Mexico City, Mexico
| | - Clara Gorodezky
- Department of Immunology and Immunogenetics, InDRE, Secretary of Health, Francisco P. Miranda #177, Colonia Lomas de Plateros, Del. Álvaro Obregón, CP 01480, Mexico City, Mexico; Fundación Comparte Vida, A.C. Galileo #92, Col. Polanco, Del. Miguel Hidalgo, CP 11550 Mexico City, Mexico
| | - Will P Bultitude
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Wesley Marin
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cynthia Vierra-Green
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Kirsten M Anderson
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Antonio Balas
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Jose L Caro-Oleas
- Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain
| | - Elisa Cisneros
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Ravi Dandekar
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | - Merhan Fouda
- National Cancer Institute, Cairo University, Cairo, Egypt
| | | | | | | | | | - Steven G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Alex Mentzer
- Wellcome Trust Centre for Human Genetics, and Jenner Institute, University of Oxford, Oxford, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Cambridge, UK
| | | | | | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Dolores Planelles
- Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Luciana B Vargas
- Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jose L Vicario
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Carlos Vilches
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology, University of Colorado, Denver, CO 80045, United States
| | - Jill A Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
18
|
Natural killer cells in inflammatory heart disease. Clin Immunol 2016; 175:26-33. [PMID: 27894980 DOI: 10.1016/j.clim.2016.11.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 11/20/2016] [Indexed: 02/07/2023]
Abstract
Despite of a multitude of excellent studies, the regulatory role of natural killer (NK) cells in the pathogenesis of inflammatory cardiac disease is greatly underappreciated. Clinical abnormalities in the numbers and functions of NK cells are observed in myocarditis and inflammatory dilated cardiomyopathy (DCMi) as well as in cardiac transplant rejection [1-6]. Because treatment of these disorders remains largely symptomatic in nature, patients have little options for targeted therapies [7,8]. However, blockade of NK cells and their receptors can protect against inflammation and damage in animal models of cardiac injury and inflammation. In these models, NK cells suppress the maturation and trafficking of inflammatory cells, alter the local cytokine and chemokine environments, and induce apoptosis in nearby resident and hematopoietic cells [1,9,10]. This review will dissect each protective mechanism employed by NK cells and explore how their properties might be exploited for their therapeutic potential.
Collapse
|
19
|
Multi-functional lectin-like transcript-1: A new player in human immune regulation. Immunol Lett 2016; 177:62-9. [DOI: 10.1016/j.imlet.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022]
|
20
|
Abstract
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.
Collapse
|
21
|
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015; 6:368. [PMID: 26284063 PMCID: PMC4515552 DOI: 10.3389/fimmu.2015.00368] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
22
|
Are animal models useful or confusing in understanding the human feto-maternal relationship? A debate. J Reprod Immunol 2015; 108:56-64. [DOI: 10.1016/j.jri.2014.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022]
|
23
|
Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35 Suppl:S185-S198. [PMID: 25818339 DOI: 10.1016/j.semcancer.2015.03.004] [Citation(s) in RCA: 1085] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.
Collapse
|
24
|
Staines K, Hunt LG, Young JR, Butter C. Evolution of an expanded mannose receptor gene family. PLoS One 2014; 9:e110330. [PMID: 25390371 PMCID: PMC4229073 DOI: 10.1371/journal.pone.0110330] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/21/2014] [Indexed: 01/22/2023] Open
Abstract
Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens.
Collapse
Affiliation(s)
| | | | | | - Colin Butter
- The Pirbright Institute, Compton, United Kingdom
| |
Collapse
|
25
|
Kowata K, Nakaoka M, Nishio K, Fukao A, Satoh A, Ogoshi M, Takahashi S, Tsudzuki M, Takeuchi S. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken. Gene 2014; 542:23-8. [DOI: 10.1016/j.gene.2014.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
|
26
|
Liu J, Wang L, Gao W, Li L, Cui X, Yang H, Lin W, Dang Q, Zhang N, Sun Y. Inhibitory receptor immunoglobulin-like transcript 4 was highly expressed in primary ductal and lobular breast cancer and significantly correlated with IL-10. Diagn Pathol 2014; 9:85. [PMID: 24762057 PMCID: PMC4045966 DOI: 10.1186/1746-1596-9-85] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/29/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Immunoglobulin-like transcript 4 (ILT4) is an inhibitory molecule involved in immune response and has recently been identified to be strongly inducible by IL-10. The aim of the present study was to examine the associations of ILT4 expression with clinicopathological characteristics and IL-10 expression in primary ductal and lobular breast cancer. METHODS We studied the expression of ILT4 in 4 cancer cell lines, 117 primary tumor tissues and 97 metastatic lymph nodes from patients with primary ductal and lobular breast cancer by reverse transcription-polymerase chain reaction, western blot or immunohistochemistry analysis. Additionally, IL-10 expression was also investigated using immunohistochemistry in primary tumor tissues. Then the relationship between ILT4 expression and clinicopathological characteristics/IL-10 expression was evaluated. RESULTS ILT4 was highly expressed in all 4 human breast cancer cell lines on both mRNA and protein levels. In primary tumor tissues, ILT4 or IL-10 was expressed in the cell membrane, cytoplasm, or both; the positive rate of ILT4 and IL-10 expression was 60.7% (71/117) and 80.34% (94/117), respectively. ILT4 level was significantly correlated with IL-10 (r =0.577; p<0.01). Furthermore, the expression of ILT4 or IL-10 was associated with less number of Tumor Infiltrating Lymphocytes (TILs) (p=0.004 and 0.018, respectively) and more lymph node metastasis (p=0.046 and 0.035, respectively). CONCLUSION Our data demonstrated the association of ILT4 and IL-10 expression in human breast cancer, suggesting their important roles in immune dysfunction and lymph node metastases. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1692652692107916.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, No,105, Jie Fang Road, Jinan, Shandong 250013, PR, China.
| |
Collapse
|
27
|
|
28
|
Li YI, Kong L, Ponting CP, Haerty W. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles. Genome Biol Evol 2013; 5:923-33. [PMID: 23576313 PMCID: PMC3673632 DOI: 10.1093/gbe/evt060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.
Collapse
Affiliation(s)
- Yang I Li
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
29
|
Bradley Shaffer H, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK, Borchert GM, Botka CW, Bowden RM, Braun EL, Bronikowski AM, Bruneau BG, Buck LT, Capel B, Castoe TA, Czerwinski M, Delehaunty KD, Edwards SV, Fronick CC, Fujita MK, Fulton L, Graves TA, Green RE, Haerty W, Hariharan R, Hernandez O, Hillier LW, Holloway AK, Janes D, Janzen FJ, Kandoth C, Kong L, de Koning APJ, Li Y, Literman R, McGaugh SE, Mork L, O'Laughlin M, Paitz RT, Pollock DD, Ponting CP, Radhakrishnan S, Raney BJ, Richman JM, St John J, Schwartz T, Sethuraman A, Spinks PQ, Storey KB, Thane N, Vinar T, Zimmerman LM, Warren WC, Mardis ER, Wilson RK. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 2013; 14:R28. [PMID: 23537068 PMCID: PMC4054807 DOI: 10.1186/gb-2013-14-3-r28] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/15/2013] [Accepted: 03/28/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. RESULTS Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. CONCLUSIONS Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.
Collapse
Affiliation(s)
- H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA
| | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| | - Andrew M Shedlock
- College of Charleston Biology Department and Grice Marine Laboratory, Charleston, SC 29424, USA
- Medical University of South Carolina College of Graduate Studies and Center for Marine Biomedicine and Environmental Sciences, Charleston, SC 29412, USA
| | - Robert C Thomson
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - John Abramyan
- Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada
| | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101 USA
| | - Daleen Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Kyle K Biggar
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada
| | - Glen M Borchert
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
- Department of Biological Sciences, Life Sciences Building, University of South Alabama, Mobile, AL 36688-0002, USA
| | | | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5, Canada
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mike Czerwinski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kim D Delehaunty
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catrina C Fronick
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lucinda Fulton
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Tina A Graves
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Richard E Green
- Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA
| | - Wilfried Haerty
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Ramkumar Hariharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
| | - Omar Hernandez
- FUDECI, Fundación para el Desarrollo de las Ciencias Físicas, Matemáticas y Naturales. Av, Universidad, Bolsa a San Francisco, Palacio de Las Academias, Caracas, Venezuela
| | - LaDeana W Hillier
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Alisha K Holloway
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Daniel Janes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Cyriac Kandoth
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Lesheng Kong
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - AP Jason de Koning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yang Li
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | - Lindsey Mork
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michelle O'Laughlin
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Brian J Raney
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Joy M Richman
- Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada
| | - John St John
- Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA
| | - Tonia Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Arun Sethuraman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Phillip Q Spinks
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada
| | - Nay Thane
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Tomas Vinar
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava 84248, Slovakia
| | - Laura M Zimmerman
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Elaine R Mardis
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
30
|
Ex vivo expansion of canine cytotoxic large granular lymphocytes exhibiting characteristics of natural killer cells. Vet Immunol Immunopathol 2013; 153:249-59. [PMID: 23548866 DOI: 10.1016/j.vetimm.2013.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/19/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
Canine NK cells still are not well-characterized due to the lack of information concerning specific NK cell markers and the fact that NK cells are not an abundant cell population. In this study, we selectively expanded the canine cytotoxic large granular lymphocytes (CLGLs) that exhibit morphologic, genetic, and functional characteristics of NK cells from normal donor PBMCs. The cultured CLGLs were characterized by a high proportion of CD5(dim) expressing cells, of which the majority of cells co-expressed CD3 and CD8, but did not express TCRαβ and TCRγδ. The phenotype of the majority of the CLGLs was CD5(dim)CD3(+)CD8(+) TCRαβ(-)TCRγδ(-)CD4(-)CD21(-)CD11c(+/-)CD11d(+/-)CD44(+). The expression of mRNAs for NK cell-associated receptors (NKG2D, NKp30, NKp44, Ly49, perforin, and granzyme B) were highly upregulated in cultured CLGLs. Specifically, NKp46 was remarkably upregulated in the cultured CLGLs compared to PBMCs. The mRNAs for the NKT-associated iTCRα gene in CLGLs was present at a basal level. The cytotoxic activity of the CLGLs against canine NK cell-sensitive CTAC cells was remarkably elevated in a dose-dependent manner, and the CLGLs produced large amounts of IFN-γ. The antitumor activity of CLGLs extended to different types of canine tumor cells (CF41.Mg and K9TCC-pu-AXC) without specific antigen recognition. These results are consistent with prior reports, and strongly suggest that the selectively expanded CLGLs represent a population of canine NK cells. The results of this study will contribute to future research on canine NK cells as well as NK cell-based immunotherapy.
Collapse
|
31
|
Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, Manz MG. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 2013; 31:635-674. [PMID: 23330956 DOI: 10.1146/annurev-immunol-032712-095921] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies.
Collapse
Affiliation(s)
- Anthony Rongvaux
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520
| | - Hitoshi Takizawa
- Division of Hematology, University Hospital Zürich, CH-8091 Zürich, Switzerland
| | - Till Strowig
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520
| | - Tim Willinger
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520
| | - Elizabeth E Eynon
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520
| | - Richard A Flavell
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520;
| | - Markus G Manz
- Division of Hematology, University Hospital Zürich, CH-8091 Zürich, Switzerland
| |
Collapse
|
32
|
Solgi G, Ghafari H, Ashouri E, Alimoghdam K, Rajalingam R, Amirzargar A. Comparison of KIR gene content profiles revealed a difference between northern and southern Persians in the distribution of KIR2DS5 and its linked loci. Hum Immunol 2011; 72:1079-83. [PMID: 21867738 DOI: 10.1016/j.humimm.2011.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/22/2011] [Accepted: 08/04/2011] [Indexed: 01/24/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIR) are the key receptors of human natural killer (NK) cells that mount an early immune response against infection and tumors. The number and type of KIR genes are substantially variable between individuals and populations. Recently we reported KIR gene content diversity in a Persian population living in the southern province of Fars, which is comparable to that of European Caucasians. These results are consistent with the ethnic ancestry and affinity between Persians and Caucasians. Herein we analyzed another Persian population living in the northern province of Tehran and discovered an unexpected increase in the distribution of KIR2DS5 and its linked loci KIR3DS1, -2DS1, and -2DL5 in northern Persians compared with that reported in the southern Persian population. Although the geographic barriers may have limited the gene flow, the impact of the local environment on the natural selection of KIR2DS5 and its linked loci in the northern Persians cannot be completely ruled out. The difference in northern and southern populations in activating KIR gene content creates an appealing hypothesis that KIR2DS5-enriched northern Persians are more resistant to developing clinical conditions demonstrated to be associated with KIR2DS5, such as psoriasis vulgaris, endometriosis, ankylosing spondylitis, and acute rejection of kidney grafts, compared with those living in the southern part of the country.
Collapse
Affiliation(s)
- Ghasem Solgi
- Immunology Department, Medical School, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | | | | | | | | | | |
Collapse
|
33
|
How does variability of immune system genes affect placentation? Placenta 2011; 32:539-45. [PMID: 21665273 PMCID: PMC3202627 DOI: 10.1016/j.placenta.2011.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 12/19/2022]
Abstract
Formation of the placenta is a crucial step in mammalian pregnancy. Apart from its function in ensuring an optimal supply of nutrients and oxygen to the fetus, the placenta is also the interface at which allo-recognition of invading trophoblast cells by the maternal immune system can potentially occur. We summarise here the “state of the art” on how variability of immune system genes that code for major histocompatibility complex (MHC) molecules and natural killer receptors (NKR) may impact on human placentation. MHC and NKR are the most polymorphic human genes. Our recent reports point out that specific combinations of fetal MHC and maternal NKR genes in humans correlate with the risk of pre-eclampsia, recurrent miscarriage (RM) and fetal growth restriction (FGR). Research in this field is still at an early stage and future studies in mouse and humans will be needed before the results can be translated to clinical applications. We discuss our recent work, as well as the opportunities offered by mouse genetics, to understand the cellular and molecular mechanisms underlying immune interactions at the maternal-fetal interface.
Collapse
|
34
|
Yennamalli RM, Rader AJ, Wolt JD, Sen TZ. Thermostability in endoglucanases is fold-specific. BMC STRUCTURAL BIOLOGY 2011; 11:10. [PMID: 21291533 PMCID: PMC3047435 DOI: 10.1186/1472-6807-11-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 02/03/2011] [Indexed: 12/03/2022]
Abstract
Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.
Collapse
Affiliation(s)
- Ragothaman M Yennamalli
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
35
|
Pyo CW, Guethlein LA, Vu Q, Wang R, Abi-Rached L, Norman PJ, Marsh SGE, Miller JS, Parham P, Geraghty DE. Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus. PLoS One 2010; 5:e15115. [PMID: 21206914 PMCID: PMC3012066 DOI: 10.1371/journal.pone.0015115] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/25/2010] [Indexed: 12/21/2022] Open
Abstract
The fast evolving human KIR gene family encodes variable lymphocyte receptors specific for polymorphic HLA class I determinants. Nucleotide sequences for 24 representative human KIR haplotypes were determined. With three previously defined haplotypes, this gave a set of 12 group A and 15 group B haplotypes for assessment of KIR variation. The seven gene-content haplotypes are all combinations of four centromeric and two telomeric motifs. 2DL5, 2DS5 and 2DS3 can be present in centromeric and telomeric locations. With one exception, haplotypes having identical gene content differed in their combinations of KIR alleles. Sequence diversity varied between haplotype groups and between centromeric and telomeric halves of the KIR locus. The most variable A haplotype genes are in the telomeric half, whereas the most variable genes characterizing B haplotypes are in the centromeric half. Of the highly polymorphic genes, only the 3DL3 framework gene exhibits a similar diversity when carried by A and B haplotypes. Phylogenetic analysis and divergence time estimates, point to the centromeric gene-content motifs that distinguish A and B haplotypes having emerged ∼6 million years ago, contemporaneously with the separation of human and chimpanzee ancestors. In contrast, the telomeric motifs that distinguish A and B haplotypes emerged more recently, ∼1.7 million years ago, before the emergence of Homo sapiens. Thus the centromeric and telomeric motifs that typify A and B haplotypes have likely been present throughout human evolution. The results suggest the common ancestor of A and B haplotypes combined a B-like centromeric region with an A-like telomeric region.
Collapse
Affiliation(s)
- Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lisbeth A. Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Quyen Vu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Laurent Abi-Rached
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Paul J. Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Jeffrey S. Miller
- University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ostergaard AE, Lubieniecki KP, Martin SAM, Stet RJM, Davidson WS, Secombes CJ. Genomic organisation analysis of novel immunoglobulin-like transcripts in Atlantic salmon (Salmo salar) reveals a tightly clustered and multigene family. BMC Genomics 2010; 11:697. [PMID: 21143889 PMCID: PMC3022915 DOI: 10.1186/1471-2164-11-697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 12/09/2010] [Indexed: 11/12/2022] Open
Abstract
Background Several novel immunoglobulin-like transcripts (NILTs) which have previously been identified in the salmonid species rainbow trout (Oncorhynchus mykiss) contain either one or two extracellular Ig domains of the V-type. NILTs also possess either an immunoreceptor tyrosine-based activating motif (ITAM) or immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic region resulting in different signalling abilities. Here we report for the first time the genomic organisation and structure of the multigene family of NILTs in Atlantic salmon (Salmo salar) using a BAC sequencing approach. Results We have identified six novel Atlantic salmon NILT genes (Ssa-NILT1-6), two pseudogenes (Ssa-NILTp1 and Ssa-NILTp2) and seven genes encoding putative transposable elements in one BAC covering more than 200 kbp. Ssa-NILT1, 2, 4, 5 and 6 contain one Ig domain, all having a CX3C motif, whereas Ssa-NILT3 contains two Ig domains, having a CX6C motif in Ig1 and a CX7C motif in Ig2. Atlantic salmon NILTs possess several ITIMs in the cytoplasmic region and the ITIM-bearing exons are in phase 0. A comparison of identity between the amino acid sequences of the CX3C Ig domains from NILTs varies from 77% to 96%. Ssa-NILT1, 2, 3 and 4 were all confirmed to be expressed either by their presence in EST databases (Ssa-NILT1) or RT-PCR (Ssa-NILT2, 3, and 4) using cDNA as template. A survey of the repertoire of putative NILT genes in a single individual revealed three novel genes (Ssa-NILT7-9) represented by the Ig domain, which together with Ig domains from Ssa-NILT1-6 could be divided into different groups based on specific motifs. Conclusions This report reveals a tightly clustered, multigene NILT family in Atlantic salmon. By screening a highly redundant Atlantic salmon BAC library we have identified and characterised the genomic organisation of six genes encoding NILT receptors. The genes show similar characteristics to NILTs previously identified in rainbow trout, having highly conserved cysteines in the Ig domain and several inhibitory signalling motifs in the cytoplasmic region. In a single individual three unique NILT Ig domain sequences were discovered at the genomic DNA level, which were divided into two different groups based on a four residue motif after the third cysteine. Our results from the BAC screening and analysis on the repertoire of NILT genes in a single individual indicates that many genes of this expanding Ig containing NILT family are still to be discovered in fish.
Collapse
|
37
|
Abi-Rached L, Moesta AK, Rajalingam R, Guethlein LA, Parham P. Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells. PLoS Genet 2010; 6:e1001192. [PMID: 21079681 PMCID: PMC2973822 DOI: 10.1371/journal.pgen.1001192] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/01/2010] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/immunology
- Animals
- Asia, Southeastern
- Biological Evolution
- Epitopes/immunology
- HLA-B Antigens/immunology
- Haplotypes/genetics
- Histocompatibility Antigens/immunology
- Humans
- Killer Cells, Natural/immunology
- Ligands
- Pan troglodytes/genetics
- Pan troglodytes/immunology
- Phylogeny
- Protein Structure, Tertiary
- Receptors, KIR/chemistry
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Recombination, Genetic/genetics
- Selection, Genetic
- Signal Transduction/genetics
- Species Specificity
Collapse
Affiliation(s)
- Laurent Abi-Rached
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Achim K. Moesta
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Raja Rajalingam
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lisbeth A. Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
van Bergen J, Koning F. The tortoise and the hare: slowly evolving T-cell responses take hastily evolving KIR. Immunology 2010; 131:301-9. [PMID: 20722764 DOI: 10.1111/j.1365-2567.2010.03337.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The killer cell immunoglobulin-like receptor (KIR) locus comprises a variable and rapidly evolving set of genes encoding multiple inhibitory and activating receptors. The activating receptors recently evolved from the inhibitory receptors and both bind HLA class I and probably also class I-like structures induced by viral infection. Although generally considered natural killer (NK) cell receptors, KIR are also expressed by a large fraction of effector memory T cells, which slowly accumulate during human life. These effector memory cells are functionally similar to NK cells, as they are immediate effector cells that are cytotoxic and produce IFN-γ. However, different rules apply to NK and T cells with respect to KIR expression and function. For example, KIR tend to modulate signals driven by the T-cell receptor (TCR) rather than to act independently, and use different signal transduction pathways to modulate only a subset of effector functions. The most important difference may lie in the rules governing tolerance: while NK cells with activating KIR binding self-HLA are hyporesponsive, the same is unlikely to apply to T cells. We argue that the expression of activating KIR on virus-specific T cells carrying TCR that weakly cross-react with autoantigens can unleash the autoreactive potential of these cells. This may be the case in rheumatoid arthritis, where cytomegalovirus-specific KIR2DS2(+) T cells might cause vasculitis. Thus, the rapid evolution of activating KIR may have allowed for efficient NK-cell control of viruses, but may also have increased the risk that slowly evolving T-cell responses to persistent pathogens derail into autoimmunity.
Collapse
Affiliation(s)
- Jeroen van Bergen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands.
| | | |
Collapse
|
39
|
Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 2010; 89:216-24. [PMID: 20567250 DOI: 10.1038/icb.2010.78] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells are potent immune effector cells that can respond to infection and cancer, as well as allowing maternal adaptation to pregnancy. In response to malignant transformation or pathogenic invasion, NK cells can secrete cytokine and may be directly cytolytic, as well as exerting effects indirectly through other cells of the immune system. To recognize and respond to inflamed or infected tissues, NK cells express a variety of activating and inhibitory receptors including NKG2D, Ly49 or KIR, CD94-NKG2 heterodimers and natural cytotoxicity receptors, as well as co-stimulatory receptors. These receptors recognize cellular stress ligands as well as major histocompatibility complex class I and related molecules, which can lead to NK cell responses. Importantly, NK cells must remain tolerant of healthy tissue, and some of these receptors can also prevent activation of NK cells. In this review, we describe the expression of prominent NK cell receptors, as well as expression of their ligands and their role in immune responses. In addition, we describe the main signaling pathways used by NK cell receptors. Although we now appreciate that NK cell biology is more complicated than first thought, there are still facets of their biology that remain unclear. These will be highlighted and discussed in this review.
Collapse
Affiliation(s)
- Hollie J Pegram
- Cancer Immunology Research Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The functions of human natural killer (NK) cells are controlled by diverse families of antigen receptors. Prominent among these are the killer cell immunoglobulin-like receptors (KIR), a family of genes clustered in one of the most variable regions of the human genome. Within this review we discuss the vast polymorphism of the KIR gene complex which rivals that of the human leucocyte antigen (HLA) complex. There are several aspects to this polymorphism. Initially there is presence/absence of individual KIR genes, with four of these genes, termed framework genes, being present in all individuals tested to date, except on those very occasional instances when the gene has been deleted. Within each gene, alleles are present at different frequencies. We provide details of a new website that enables convenient searching for data on KIR gene, allele and genotype frequencies in different populations and show how these frequencies vary in different worldwide populations and the high probability of individuals differing in their KIR repertoire when both gene and allele polymorphism is considered. The KIR genes present in an individual may be classified into A and/or B haplotypes, which respectively have a more inhibitory role or a more activating role on the function of the NK cell. Family studies have been used to ascertain the make-up of these haplotypes, inclusion of allele typing enabling determination of whether one or two copies of a particular gene is present. In addition to genetic diversification the KIR gene complex shows differences at the functional level with different alleles having different protein expression levels and different avidity with their HLA ligand.
Collapse
Affiliation(s)
- Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool and Broadgreen University Hospital and School of Infection and Host Defence, Liverpool University, Liverpool, UK.
| | | |
Collapse
|
41
|
Yokoyama WM, Altfeld M, Hsu KC. Natural killer cells: tolerance to self and innate immunity to viral infection and malignancy. Biol Blood Marrow Transplant 2010; 16:S97-S105. [PMID: 19835969 PMCID: PMC3900292 DOI: 10.1016/j.bbmt.2009.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cells are lymphocytes whose ability to identify and kill virally infected and malignant cells while sparing normal cells was poorly understood until the late 1980’s and the introduction of the “missing self’ hypothesis. According to this hypothesis, downregulation of major histocompatibility complex (MHC) class I molecules during viral infection or malignant transformation triggers NK activation (1 ). Since this hypothesis was first proposed, much has been learned about NK cell surface receptors, their role in the molecular basis of missing-self recognition, and the mechanisms underlying NK cell tolerance. In this review, we will discuss these mechanisms, as well as their relevance to viral infection and tumor immunity and stem cell transplantation.
Collapse
Affiliation(s)
- Wayne M Yokoyama
- Howard Hughes Medical Institute, Rheumatology Division, Washington University Medical Center, St Louis, Missouri, USA
| | | | | |
Collapse
|
42
|
Kasahara M. Genome duplication and T cell immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:7-36. [PMID: 20800811 DOI: 10.1016/s1877-1173(10)92002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adaptive immune system (AIS) mediated by T cells and B cells arose ~450 million years ago in a common ancestor of jawed vertebrates. This system was so successful that, once established, it has been maintained in all classes of jawed vertebrates with only minor modifications. One event thought to have contributed to the emergence of this form of AIS is two rounds of whole-genome duplication. This event enabled jawed vertebrate ancestors to acquire many paralogous genes, known as ohnologs, with essential roles in T cell and B cell immunity. Ohnologs encode the key components of the antigen presentation machinery and signal transduction pathway for lymphocyte activation as well as numerous transcription factors important for lymphocyte development. Recently, it has been discovered that jawless vertebrates have developed an AIS employing antigen receptors unrelated to T/B cell receptors, but with marked overall similarities to the AIS of jawed vertebrates. Emerging evidence suggests that a common ancestor of all vertebrates was equipped with T-lymphoid and B-lymphoid lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido, University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
43
|
Abi-Rached L, Kuhl H, Roos C, ten Hallers B, Zhu B, Carbone L, de Jong PJ, Mootnick AR, Knaust F, Reinhardt R, Parham P, Walter L. A small, variable, and irregular killer cell Ig-like receptor locus accompanies the absence of MHC-C and MHC-G in gibbons. THE JOURNAL OF IMMUNOLOGY 2009; 184:1379-91. [PMID: 20026738 DOI: 10.4049/jimmunol.0903016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The killer cell Ig-like receptors (KIRs) of NK cells recognize MHC class I ligands and function in placental reproduction and immune defense against pathogens. During the evolution of monkeys, great apes, and humans, an ancestral KIR3DL gene expanded to become a diverse and rapidly evolving gene family of four KIR lineages. Characterizing the KIR locus are three framework regions, defining two intervals of variable gene content. By analysis of four KIR haplotypes from two species of gibbon, we find that the smaller apes do not conform to these rules. Although diverse and irregular in structure, the gibbon haplotypes are unusually small, containing only two to five functional genes. Comparison with the predicted ancestral hominoid KIR haplotype indicates that modern gibbon KIR haplotypes were formed by a series of deletion events, which created new hybrid genes as well as eliminating ancestral genes. Of the three framework regions, only KIR3DL3 (lineage V), defining the 5' end of the KIR locus, is present and intact on all gibbon KIR haplotypes. KIR2DL4 (lineage I) defining the central framework region has been a major target for elimination or inactivation, correlating with the absence of its putative ligand, MHC-G, in gibbons. Similarly, the MHC-C-driven expansion of lineage III KIR genes in great apes has not occurred in gibbons because they lack MHC-C. Our results indicate that the selective forces shaping the size and organization of the gibbon KIR locus differed from those acting upon the KIR of other hominoid species.
Collapse
Affiliation(s)
- Laurent Abi-Rached
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yokoyama WM, Altfeld M, Hsu KC. Natural killer cells: tolerance to self and innate immunity to viral infection and malignancy. BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION : JOURNAL OF THE AMERICAN SOCIETY FOR BLOOD AND MARROW TRANSPLANTATION 2009. [PMID: 19835969 DOI: 10.1016/j.bbmt.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wayne M Yokoyama
- Howard Hughes Medical Institute, Rheumatology Division, Washington University Medical Center, St Louis, Missouri, USA
| | | | | |
Collapse
|
45
|
Tan CY, Chong YS, Loganath A, Chan YH, Ravichandran J, Lee CG, Chong SS. Possible gene-gene interaction of KIR2DL4 with its cognate ligand HLA-G in modulating risk for preeclampsia. Reprod Sci 2009; 16:1135-43. [PMID: 19700612 DOI: 10.1177/1933719109342280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity that occurs only during pregnancy. Pregnancy is the only physiological situation where killer-cell immunoglobulin-like receptors (KIRs) may meet cognate nonself variants of human leukocyte antigen (HLA) allotypes. We previously reported that presence of fetal HLA-G*0106 was significantly associated with risk for PE in multigravid pregnancies. We have now tested the KIR2DL4 receptor gene for association with PE, as well as for its interaction with HLA-G in modulating disease risk, in a case-control study of 83 PE and 240 normotensive pregnancies. No significant association was observed between alleles of KIR2DL4 and PE in both maternal and fetal groups, either among primigravid or multigravid pregnancies. Alleles of KIR2DL4 and HLA-G were then analyzed together to determine whether particular variant ligand-receptor combinations were associated with an increased risk for PE. Gene-gene interaction analyses suggest that the presence of fetal HLA-G*0106 in combination with maternal KIR2DL4*006 is significantly associated with PE risk in multigravid pregnancies (P < .001). These data provide the first preliminary evidence suggesting that although KIR2DL4 itself is not associated with PE, it may modulate the effect of HLA-G*0106 on risk for PE.
Collapse
Affiliation(s)
- Chia Yee Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
46
|
Modeling infectious disease in mice: co-adaptation and the role of host-specific IFNgamma responses. PLoS Pathog 2009; 5:e1000333. [PMID: 19478881 PMCID: PMC2682201 DOI: 10.1371/journal.ppat.1000333] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Hammond JA, Guethlein LA, Abi-Rached L, Moesta AK, Parham P. Evolution and survival of marine carnivores did not require a diversity of killer cell Ig-like receptors or Ly49 NK cell receptors. THE JOURNAL OF IMMUNOLOGY 2009; 182:3618-27. [PMID: 19265140 DOI: 10.4049/jimmunol.0803026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ly49 lectin-like receptors and killer cell Ig-like receptors (KIR) are structurally unrelated cell surface glycoproteins that evolved independently to function as diverse NK cell receptors for MHC class I molecules. Comparison of primates and various domesticated animals has shown that species have either a diverse Ly49 or KIR gene family, but not both. In four pinniped species of wild marine carnivore, three seals and one sea lion, we find that Ly49 and KIR are each represented by single, orthologous genes that exhibit little polymorphism and are transcribed to express cell surface protein. Pinnipeds are therefore species in which neither Ly49 nor KIR are polygenic, but retain the ancestral single-copy state. Whereas pinniped Ly49 has been subject to purifying selection, we find evidence for positive selection on KIR3DL during pinniped evolution. This selection, which focused on the D0 domain and the stem, points to the functionality of the KIR and most likely led to the sea lion's loss of D0. In contrast to the dynamic and rapid evolution of the KIR and Ly49 genes in other species, the pinniped KIR and Ly49 have been remarkably stable during the >33 million years since the last common ancestor of seals and sea lions. These results demonstrate that long-term survival of placental mammal species need not require a diverse system of either Ly49 or KIR NK cell receptors.
Collapse
Affiliation(s)
- John A Hammond
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
48
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
49
|
Abstract
Armed with potent cytotoxic and immunostimulatory effector functions, natural killer (NK) cells have the potential to cause significant damage to normal self cells unless controlled by self-tolerance mechanisms. NK cells identify and attack target cells based on integration of signals from activation and inhibitory receptors, whose ligands exhibit complex expression and/or binding patterns. Preservation of NK cell self-tolerance must therefore go beyond mere engagement of inhibitory receptors during effector functions. Herein, we review recent work that has uncovered a number of mechanisms to ensure self-tolerance of NK cells. For example, licensing of NK cells allows only NK cells that can engage self-MHC to become functionally competent, or licensed. The molecular mechanism of this phenomenon appears to require signaling by receptors that were originally identified in effector inhibition. However, the nature of the signaling event has not yet been defined, but new interpretations of several published experiments provide valuable clues. In addition, several other cell-intrinsic and -extrinsic mechanisms of NK cell tolerance are discussed, including activation receptor cooperation and synergy, cytokine stimulation, and the opposing roles of accessory and regulatory cells. Finally, NK cell tolerance is discussed as it relates to the clinic, such as KIR-HLA disease associations, tumor immunotherapy, and fetal tolerance.
Collapse
|
50
|
Brown MG, Scalzo AA. NK gene complex dynamics and selection for NK cell receptors. Semin Immunol 2008; 20:361-8. [PMID: 18640056 DOI: 10.1016/j.smim.2008.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 06/06/2008] [Indexed: 01/06/2023]
Abstract
Natural killer (NK) cells play important roles in innate defense against infectious agents particularly viruses and also tumors. They mediate their effects through direct cytolysis, release of cytokines and regulation of subsequent adaptive immune responses. NK cells are equipped with sophisticated arrays of inhibitory and activation receptors that regulate their function. In this review we illustrate some of the major evolutionary relationships between NK cell receptors among different animal species and what some of the major mechanisms are that give rise to this diversity in receptor families, including the potential roles of pathogens such as viruses in driving receptor evolution.
Collapse
Affiliation(s)
- Michael G Brown
- Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | | |
Collapse
|