1
|
Paterson RL, La Manna MP, Arena De Souza V, Walker A, Gibbs-Howe D, Kulkarni R, Fergusson JR, Mulakkal NC, Monteiro M, Bunjobpol W, Dembek M, Martin-Urdiroz M, Grant T, Barber C, Garay-Baquero DJ, Tezera LB, Lowne D, Britton-Rivet C, Pengelly R, Chepisiuk N, Singh PK, Woon AP, Powlesland AS, McCully ML, Caccamo N, Salio M, Badami GD, Dorrell L, Knox A, Robinson R, Elkington P, Dieli F, Lepore M, Leonard S, Godinho LF. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2318003121. [PMID: 38691588 PMCID: PMC11087797 DOI: 10.1073/pnas.2318003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/08/2024] [Indexed: 05/03/2024] Open
Abstract
Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.
Collapse
Affiliation(s)
| | - Marco P. La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | | | - Andrew Walker
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Dawn Gibbs-Howe
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Rakesh Kulkarni
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Mauro Monteiro
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Marcin Dembek
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Tressan Grant
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Claire Barber
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Diana J. Garay-Baquero
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Liku Bekele Tezera
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
| | - David Lowne
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Robert Pengelly
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Amanda P. Woon
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Mariolina Salio
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Lucy Dorrell
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Andrew Knox
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Ross Robinson
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Paul Elkington
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Marco Lepore
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Sarah Leonard
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Luis F. Godinho
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| |
Collapse
|
2
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Tran AC, Boariu E, García-Bengoa M, Kim MY, Vergara EJ, Mussá T, Reljic R. Serological analysis reveals differential antibody responses between TB patients and latently infected individuals from the TB endemic country of Mozambique. Front Med (Lausanne) 2023; 10:1286785. [PMID: 37877025 PMCID: PMC10591198 DOI: 10.3389/fmed.2023.1286785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Serological antibody profiling of tuberculosis (TB) patients and household contacts with latent TB infection (LTBI) could identify risk indicators of disease progression, and potentially also serve as an easily accessible diagnostic tool to discriminate between these two stages of Mycobacterium tuberculosis (Mtb) infection. Yet, despite significant efforts over many decades, neither application has yet fully materialised, and this is at least in part due to inconsistent and varying antibody profiles from different TB endemic regions. In this study, we conducted a retrospective exploratory analysis of serum antibodies in a cohort of active TB patients (ATB) and their interferon-gamma release assay (IGRA) positive household contacts (LTBI), as well as healthy controls (HC) from Mozambique, a country with a high TB burden from the Sub-Saharan region. Using several Mtb antigens as well as crude preparations of culture filtrate proteins (CFP) from Mtb and Bacille Calmette Guérin (BCG), we report that the most discriminatory response for TB and LTBI was observed for serum IgA antibodies to the MPT64 antigen, followed by IgG antibodies to Ag85B and CFP, with ATB patients having significantly higher levels than LTBI or BCG-vaccinated healthy controls. Conversely, sera from LTBI individuals had higher levels of IgG antibodies to the HBHA antigen than ATB. While our sample size (n = 21 for ATB, 18 for LTBI and 17 for HC) was too small to fully evaluate the diagnostic potential of these differing serological profiles, our study however preliminarily indicated high level of sensitivity (95%) and specificity (97%) of an ELISA MPT64-IgA test for discriminating TB from LTBI and healthy controls, supporting the notion that it alone, or possibly in combination with other antigens such as Ag85B or CFP could lead to development of an easily accessible diagnostic tool for TB.
Collapse
Affiliation(s)
- Andy C. Tran
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Eugenia Boariu
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - María García-Bengoa
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Mi-Young Kim
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Emil Joseph Vergara
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Tufária Mussá
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Rajko Reljic
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| |
Collapse
|
4
|
Qu M, Liang Z, Chen Y, Wang Y, Wang H, Liu Z, Liu Y, Dong Y, Ge X, Li H, Zhou X. Antibodies Targeting the Cell Wall Induce Protection against Virulent Mycobacterium bovis Infection. Microbiol Spectr 2023; 11:e0343122. [PMID: 36847491 PMCID: PMC10100962 DOI: 10.1128/spectrum.03431-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/11/2022] [Indexed: 03/01/2023] Open
Abstract
Accumulating evidence indicates that antibodies can protect against some intracellular pathogens. Mycobacterium bovis is an intracellular bacterium, and its cell wall (CW) is essential for its virulence and survival. However, the questions of whether antibodies play a protective role in immunity against M. bovis infection and what effects antibodies specific to the CW of M. bovis have still remain unclear. Here, we report that antibodies targeting the CW of an isolated pathogenic M. bovis strain and that of an attenuated bacillus Calmette-Guérin (BCG) strain could induce protection against virulent M. bovis infection in vitro and in vivo. Further research found that the antibody-induced protection was mainly achieved by promoting Fc gamma receptor (FcγR)-mediated phagocytosis, inhibiting bacterial intracellular growth, and enhancing the fusion of phagosomes and lysosomes, and it also depended on T cells for its efficacy. Additionally, we analyzed and characterized the B-cell receptor (BCR) repertoires of CW-immunized mice via next-generation sequencing. CW immunization stimulated BCR changes in the complementarity determining region 3 (CDR3) isotype distribution, gene usage, and somatic hypermutation. Overall, our study validates the idea that antibodies targeting the CW induce protection against virulent M. bovis infection. This study highlights the importance of antibodies targeting the CW in the defense against tuberculosis. IMPORTANCE M. bovis is the causative agent of animal tuberculosis (TB) and human TB. Research on M. bovis is of great public health significance. Currently, TB vaccines are mainly aimed at eliciting protection by enhancement of cell-mediated immunity, and there are few studies on protective antibodies. This is the first report of protective antibodies against M. bovis infection, and the antibodies had both preventive and even therapeutic effects in an M. bovis infection mouse model. Additionally, we reveal the relationship between CDR3 gene diversity and the immune characteristics of the antibodies. These results will provide valuable advice for the rational development of TB vaccines.
Collapse
Affiliation(s)
- Mengjin Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhengmin Liang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yulan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoran Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziyi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yiduo Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuhui Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Ge
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Dieli F, Ivanyi J. Role of antibodies in vaccine-mediated protection against tuberculosis. Cell Mol Immunol 2022; 19:758-760. [PMID: 35396489 PMCID: PMC8991659 DOI: 10.1038/s41423-022-00861-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy.
| | - Juraj Ivanyi
- Centre for Host-Microbiome Interactions, Guy's Campus of Kings College, London, UK.
| |
Collapse
|
6
|
Rijnink WF, Ottenhoff THM, Joosten SA. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front Immunol 2021; 12:640168. [PMID: 33679802 PMCID: PMC7930078 DOI: 10.3389/fimmu.2021.640168] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is still a major threat to mankind, urgently requiring improved vaccination and therapeutic strategies to reduce TB-disease burden. Most present vaccination strategies mainly aim to induce cell-mediated immunity (CMI), yet a series of independent studies has shown that B-cells and antibodies (Abs) may contribute significantly to reduce the mycobacterial burden. Although early studies using B-cell knock out animals did not support a major role for B-cells, more recent studies have provided new evidence that B-cells and Abs can contribute significantly to host defense against Mtb. B-cells and Abs exist in many different functional subsets, each equipped with unique functional properties. In this review, we will summarize current evidence on the contribution of B-cells and Abs to immunity toward Mtb, their potential utility as biomarkers, and their functional contribution to Mtb control.
Collapse
Affiliation(s)
- Willemijn F Rijnink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Ivanyi J. Tuberculosis vaccination needs to avoid 'decoy' immune reactions. Tuberculosis (Edinb) 2020; 126:102021. [PMID: 33254012 DOI: 10.1016/j.tube.2020.102021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Current search for a new effective vaccine against tuberculosis involves selected antigens, vectors and adjuvants. These are being evaluated usually by their booster inoculation following priming with Bacillus Calmette-Guerin. The purpose of this article is to point out, that despite being attenuated of virulence, priming with BCG may still involve immune mechanisms, which are not favourable for protection against active disease. It is postulated, that the responsible 'decoy' constituents selected during the evolution of pathogenic tubercle bacilli may be involved in the evasion from bactericidal host resistance and stimulate immune responses of a cytokine phenotype, which lead to the transition from latent closed granulomas to reactivation with infectious lung cavities. The decoy mechanisms appear as favourable for most infected subjects but leading in a minority of cases to pathology which can effectively transmit the infection. It is proposed that construction and development of new vaccine candidates could benefit from avoiding decoy-type immune mechanisms.
Collapse
Affiliation(s)
- Juraj Ivanyi
- Centre for Host-Microbiome Interactions, Guy's Campus of Kings College London, SE1, 1UL, United kingdom.
| |
Collapse
|
8
|
Tran AC, Diogo GR, Paul MJ, Copland A, Hart P, Mehta N, Irvine EB, Mussá T, Drake PMW, Ivanyi J, Alter G, Reljic R. Mucosal Therapy of Multi-Drug Resistant Tuberculosis With IgA and Interferon-γ. Front Immunol 2020; 11:582833. [PMID: 33193394 PMCID: PMC7606302 DOI: 10.3389/fimmu.2020.582833] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
New evidence has been emerging that antibodies can be protective in various experimental models of tuberculosis. Here, we report on protection against multidrug-resistant Mycobacterium tuberculosis (MDR-TB) infection using a combination of the human monoclonal IgA 2E9 antibody against the alpha-crystallin (Acr, HspX) antigen and mouse interferon-gamma in mice transgenic for the human IgA receptor, CD89. The effect of the combined mucosal IgA and IFN-γ; treatment was strongest (50-fold reduction) when therapy was applied at the time of infection, but a statistically significant reduction of lung bacterial load was observed even when the therapy was initiated once the infection had already been established. The protection involving enhanced phagocytosis and then neutrophil mediated killing of infected cells was IgA isotype mediated, because treatment with an IgG version of 2E9 antibody was not effective in human IgG receptor CD64 transgenic mice. The Acr antigen specificity of IgA antibodies for protection in humans has been indicated by their elevated serum levels in latent tuberculosis unlike the lack of IgA antibodies against the virulence-associated MPT64 antigen. Our results represent the first evidence for potential translation of mucosal immunotherapy for the management of MDR-TB.
Collapse
Affiliation(s)
- Andy C Tran
- Institute for Infection and Immunity, St. George's University, London, United Kingdom
| | - Gil R Diogo
- Institute for Infection and Immunity, St. George's University, London, United Kingdom
| | - Matthew J Paul
- Institute for Infection and Immunity, St. George's University, London, United Kingdom
| | - Alastair Copland
- Institute for Infection and Immunity, St. George's University, London, United Kingdom
| | - Peter Hart
- Institute for Infection and Immunity, St. George's University, London, United Kingdom
| | - Nickita Mehta
- Ragon Institute, Harvard, Cambridge, MA, United States
| | | | - Tufária Mussá
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique.,Departamento de Plataformas Tecnológicas em Saúde, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Pascal M W Drake
- Institute for Infection and Immunity, St. George's University, London, United Kingdom
| | - Juraj Ivanyi
- Departamento de Plataformas Tecnológicas em Saúde, Instituto Nacional de Saúde, Maputo, Mozambique.,Guy's Campus of King's College London, London, United Kingdom
| | - Galit Alter
- Ragon Institute, Harvard, Cambridge, MA, United States
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George's University, London, United Kingdom
| |
Collapse
|
9
|
Kumar SK, Singh P, Sinha S. Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosis in human macrophages by augmenting phagosome maturation. Open Biol 2015; 5:150171. [PMID: 26674415 PMCID: PMC4703058 DOI: 10.1098/rsob.150171] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
This study investigated the hypothesis that serum antibodies against Mycobacterium tuberculosis present in naturally infected healthy subjects of a tuberculosis (TB) endemic area could create and/or sustain the latent form of infection. All five apparently healthy Indian donors showed high titres of serum antibodies against M. tuberculosis cell membrane antigens, including lipoarabinomannan and alpha crystallin. Uptake and killing of bacilli by the donor macrophages was significantly enhanced following their opsonization with antibody-rich, heat-inactivated autologous sera. However, the capability to opsonize was apparent for antibodies against some and not other antigens. High-content cell imaging of infected macrophages revealed significantly enhanced colocalization of the phagosome maturation marker LAMP-1, though not of calmodulin, with antibody-opsonized compared with unopsonized M. tuberculosis. Key enablers of macrophage microbicidal action--proinflammatory cytokines (IFN-γ and IL-6), phagosome acidification, inducible NO synthase and nitric oxide--were also significantly enhanced following antibody opsonization. Interestingly, heat-killed M. tuberculosis also elevated these mediators to the levels comparable to, if not higher than, opsonized M. tuberculosis. Results of the study support the emerging view that an efficacious vaccine against TB should, apart from targeting cell-mediated immunity, also generate 'protective' antibodies.
Collapse
Affiliation(s)
- Shashi Kant Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Padam Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Sudhir Sinha
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
10
|
Abebe F, Bjune G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin Exp Immunol 2009; 157:235-43. [PMID: 19604263 DOI: 10.1111/j.1365-2249.2009.03967.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is one of the most important infectious diseases globally. Immune effector mechanisms that lead to protection or development of clinical disease are not fully known. It is generally accepted that cell-mediated immunity (CMI) plays a pivotal role in controlling Mtb infection, whereas antibody responses are believed to have no protective role. This generalization is based mainly on early classical experiments that lacked standard protocols, and the T helper type 1 (Th1)/Th2 paradigm. According to the Th1/Th2 paradigm Th1 cells protect the host from intracellular pathogens, whereas Th2 cells protect form extracellular pathogens. During the last two decades, the Th1/Th2 paradigm has dominated not only our understanding of immunity to infectious pathogens but also our approach to vaccine design. However, the last few years have seen major discrepancies in this model. Convincing evidence for the protective role of antibodies against several intracellular pathogens has been established. Studies of B cell-deficient mice, severe combined immunodeficiency (SCID) mice, passive immunization using monoclonal (mAb) and polyclonal antibodies and immune responses against specific mycobacterial antigens in experimental animals reveal that, in addition to a significant immunomodulatory effect on CMI, antibodies play an essential protective role against mycobacterial infections. In this review, our current understanding of the essential role of antibodies during Mtb infections, limitations of the Th1/Th2 model and the unfolding interdependence and mutual regulatory relationships between the humoral and CMI will be presented and discussed.
Collapse
Affiliation(s)
- F Abebe
- University of Oslo, Faculty of Medicine, Institute of General Practice and Community Medicine, Section for International Health, Oslo, Norway.
| | | |
Collapse
|
11
|
The European effort towards the development of mucosal vaccines for poverty-related diseases. Vaccine 2009; 27:2641-8. [DOI: 10.1016/j.vaccine.2009.02.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/10/2009] [Accepted: 02/18/2009] [Indexed: 12/20/2022]
|
12
|
Maglione PJ, Xu J, Casadevall A, Chan J. Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:3329-38. [PMID: 18292558 DOI: 10.4049/jimmunol.180.5.3329] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The critical role of cellular immunity during tuberculosis (TB) has been extensively studied, but the impact of Abs upon this infection remains poorly defined. Previously, we demonstrated that B cells are required for optimal protection in Mycobacterium tuberculosis-infected mice. FcgammaR modulate immunity by engaging Igs produced by B cells. We report that C57BL/6 mice deficient in inhibitory FcgammaRIIB (RIIB-/-) manifested enhanced mycobacterial containment and diminished immunopathology compared with wild-type controls. These findings corresponded with enhanced pulmonary Th1 responses, evidenced by increased IFN-gamma-producing CD4+ T cells, and elevated expression of MHC class II and costimulatory molecules B7-1 and B7-2 in the lungs. Upon M. tuberculosis infection and immune complex engagement, RIIB-/- macrophages produced more of the p40 component of the Th1-promoting cytokine IL-12. These data strongly suggest that FcgammaRIIB engagement can dampen the TB Th1 response by attenuating IL-12p40 production or activation of APCs. Conversely, C57BL/6 mice lacking the gamma-chain shared by activating FcgammaR had enhanced susceptibility and exacerbated immunopathology upon M. tuberculosis challenge, associated with increased production of the immunosuppressive cytokine IL-10. Thus, engagement of distinct FcgammaR can divergently affect cytokine production and susceptibility during M. tuberculosis infection.
Collapse
Affiliation(s)
- Paul J Maglione
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|