1
|
Pracher L, Zeitlinger M. Preclinical and clinical studies in the drug development process of European Medicines Agency-approved non-HIV antiviral agents: a narrative review. Clin Microbiol Infect 2025; 31:931-940. [PMID: 39389465 DOI: 10.1016/j.cmi.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Viral diseases represent a substantial global health challenge, necessitating the urgent development of effective antiviral medications. OBJECTIVES This review aims to present a thorough examination of systemic antiviral drugs approved by the European Medicines Agency (EMA) since its founding, excluding those targeting HIV, with a focus on preclinical and clinical studies in the drug development process. SOURCES Data was extracted from the European Public Assessment Reports and Summary of Product Characteristics issued by the EMA. CONTENT In total, 21 currently approved agents were analysed with a focus on preclinical and clinical studies. The majority of substances have been approved for hepatitis C (38%) and B (19%) followed by influenza and SARS-CoV-2 (14% and 10%, respectively). A smaller subset obtained approval for the indications of hepatitis D, cytomegalovirus, and pox viruses. As for preclinical studies, heterogeneity in the methods used for efficacy studies was observed, which is at least partly explained by the diverse nature of viruses and their hosts and the lack of general guidelines for antiviral pharmacokinetics and pharmacodynamics studies by the EMA. Clinical studies varied in sample sizes, ranging from a few hundred to several thousand patients. Many antiviral agents have a high potential for cytochrome P450 (CYP) and other enzyme interactions, resulting in the need for a high number of drug-drug interaction studies. Special market authorizations are available, including conditional approval for urgently required drugs such as nirmatrelvir/ritonavir for the treatment of COVID-19, and authorization under exceptional circumstances when comprehensive data cannot be provided, as seen with tecovirimat for pox viruses. IMPLICATIONS Streamlining the drug development process of antiviral substances and providing more guidelines would be crucial given the ongoing demand for effective treatment options for existing and new viral diseases.
Collapse
Affiliation(s)
- Lena Pracher
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Hill G, Gao H, Fan Y, Zhang R, Wang L, Zong Z, Zhou Y, Qin D, Hou J. Pharmacokinetics and Safety Study of HN0141, a Novel Anti-Human Cytomegalovirus Inhibitor, in Healthy Volunteers. Clin Pharmacol Drug Dev 2025. [PMID: 40377417 DOI: 10.1002/cpdd.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 05/18/2025]
Abstract
HN0141 is a human cytomegalovirus (HCMV) DNA terminase complex inhibitor being developed for prophylaxis and/or preemptive treatment of HCMV infection and diseases. This study evaluated the safety, tolerability, and pharmacokinetics (PK) of HN0141, following oral administration in healthy volunteers. The double-blind, placebo-controlled Phase 1 study comprised Part 1, an escalating, single-dose study involving 50-, 100-, 200-, 300-, 400-, and 525-mg doses; and Part 2, a multiple-dose study over 7 days involving 50-, 100-, 200-, and 400-mg twice-daily doses. HN0141 was rapidly absorbed following oral doses, with median time to maximum concentration achieved within 1-2 hours across all doses. At doses ranging from 50 to 100 mg, the PK profile was reasonably linear, while at doses above 200 mg, the PK profile was more than proportional. The predicted therapeutic dose would be 50-200 mg twice daily, which is at a reasonable linear PK range. All exposures tested (up to 525-mg single dose and 400-mg twice-daily multiple doses) were within the no-observed-adverse-effect level defined in animal toxicity studies. There was a mild accumulation on systemic exposure at steady state, which was achieved within 72 hours of multiple twice-daily dosing. No serious or severe adverse events were reported. HN0141's PK profile favors the twice-daily dosing, which gives a smaller concentration variation during the treatment, and thus could bring a better treatment effect with sufficient convenience. These Phase 1 data in safety and PK profile warrant further drug development in both preemptive and prophylactic treatment in patients with HCMV.
Collapse
Affiliation(s)
- George Hill
- Clinical and Medical Science Department, Phaeno Therapeutics Co. Ltd, Hangzhou, China
| | - Hong Gao
- Clinical and Medical Science Department, Phaeno Therapeutics Co. Ltd, Hangzhou, China
| | - Yingzhe Fan
- Clinical and Medical Science Department, Phaeno Therapeutics Co. Ltd, Hangzhou, China
| | - Rui Zhang
- Clinical and Medical Science Department, Phaeno Therapeutics Co. Ltd, Hangzhou, China
| | - Lu Wang
- Phase I Trial Center, PKU Care Luzhong Hospital, Shandong, China
| | - Zhaoshan Zong
- Phase I Trial Center, PKU Care Luzhong Hospital, Shandong, China
| | - Yi Zhou
- Clinical and Medical Science Department, Phaeno Therapeutics Co. Ltd, Hangzhou, China
| | - Donghui Qin
- Clinical and Medical Science Department, Phaeno Therapeutics Co. Ltd, Hangzhou, China
| | - Jie Hou
- Phase I Trial Center, PKU Care Luzhong Hospital, Shandong, China
| |
Collapse
|
3
|
Westall GP, Gottlieb D, Hughes P, Marinelli T, Rawlinson WD, Ritchie D, Sasadeusz J, Yong MK. Emerging concepts of CMV in transplantation. Intern Med J 2025; 55:12-19. [PMID: 39620697 DOI: 10.1111/imj.16587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025]
Abstract
Cytomegalovirus (CMV) infections continue to be associated with significant morbidity and mortality following solid organ transplantation and haemopoietic stem cell transplantation. Advances in understanding the biology of CMV in the immunosuppressed host will translate into improved management approaches and better clinical outcomes. Updated definitions of resistant and refractory CMV infections will lead to more consistent reporting of CMV outcomes, better inform appropriate antiviral strategies and influence clinical trial design. Improved knowledge of the immunological control of CMV in the immunosuppressed host has led to novel diagnostics, emerging therapeutic cellular therapies and the development of an informed rationale for prophylactic and pre-emptive strategies. As the boundaries of transplantation are extended, new patterns of CMV infection are being recognised. Finally, recent studies support the use of novel antiviral therapies in transplant recipients in the appropriate clinical setting. In this review, we provide an update on important new and emerging concepts in the management of CMV in immunosuppressed transplant recipients.
Collapse
Affiliation(s)
- Glen P Westall
- Department of Respiratory Medicine, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - David Gottlieb
- Blood Transplant and Cell Therapies Program, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hughes
- Department of Nephrology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Tina Marinelli
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - William D Rawlinson
- SAViD (Serology and Virology Division), NSW Health Pathology, The Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - David Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Joe Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle K Yong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Hardinger KL, Brennan DC. Cytomegalovirus Treatment in Solid Organ Transplantation: An Update on Current Approaches. Ann Pharmacother 2024; 58:1122-1133. [PMID: 38501850 DOI: 10.1177/10600280241237534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE The article reviews the safety and efficacy of treatments for cytomegalovirus (CMV) in solid organ transplantation. DATA SOURCES A literature review was conducted in PubMed, MEDLINE, and Clinicaltrials.gov from database inception through January 2024, using terms CMV, therapy, and solid organ transplantation. STUDY SELECTION AND DATA EXTRACTION Clinical trials, meta-analyses, cohort studies, case reports, and guidelines were included. Letters to the editor, reviews, and commentaries were excluded. DATA SYNTHESIS After abstract screening and full-text review of 728 citations for eligibility, 53 were included. Valganciclovir and intravenous ganciclovir are drugs of choice for CMV management and, until recently, the availability of alternative options has been restricted due to toxicity. For instance, foscarnet and cidofovir serve as second-line agents due to potential bone marrow and renal toxicity. In patients with refractory or resistant CMV, maribavir, a novel oral agent, has proven efficacy and a lower adverse effect profile. However, in refractory or resistant CMV, foscarnet and cidofovir are preferred in invasive disease (CMV gastritis, CMV retinitis, and CMV encephalitis), high viral loads, and inability to tolerate oral preparations. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Consensus guidelines have not been revised since approval of novel antivirals in solid organ transplantation. Valganciclovir and ganciclovir remain drugs of choice for initial CMV therapy. Foscarnet, cidofovir, and maribavir are treatments for refractory or resistant-CMV. CONCLUSIONS Selection of CMV antiviral treatment should be determined by patient-specific factors, including severity of illness, resistant or refractory disease, dose-limiting adverse effects, and the preferred route of administration.
Collapse
Affiliation(s)
- Karen L Hardinger
- Division of Pharmacy Practice and Administration, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Daniel C Brennan
- Johns Hopkins Comprehensive Transplant Center, Baltimore, MD, USA
| |
Collapse
|
5
|
Voigt S. Cytomegalovirus in haematopoietic cell transplantation - The troll is still there. Best Pract Res Clin Haematol 2024; 37:101565. [PMID: 39396255 DOI: 10.1016/j.beha.2024.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Patients undergoing allogeneic haematopoietic cell transplantation are prone to complications caused by viral infections. Cytomegalovirus (CMV) considerably impacts transplantation as it frequently requires antiviral intervention that evokes substantial side effects depending on the antiviral drug. Intermittent antiviral treatment may become necessary if CMV DNAemia cannot be permanently suppressed, and drug resistance may emerge that hampers and prolongs treatment. Despite sedulous endeavours, vaccination against CMV is not yet available. This review concisely summarises current approaches in managing CMV infection comprising risk factors, diagnostics including indications for resistance testing, and therapeutic options from antiviral drugs to virus-specific T cells.
Collapse
Affiliation(s)
- Sebastian Voigt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
6
|
Qiu Y, Zhang Y, Teng M, Cheng S, Du Q, Yang L, Wang Q, Wang T, Wang Y, Dong Y, Dong H. Efficacy, Safety, and Cost-effectiveness Analysis of Antiviral Agents for Cytomegalovirus Prophylaxis in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Transplantation 2024; 108:1021-1032. [PMID: 38049935 DOI: 10.1097/tp.0000000000004856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is associated with higher non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). But the preferred drug for preventing cytomegalovirus infection is still controversial. We evaluate the efficacy, safety, and cost-effectiveness of antiviral agents based on the most recent studies. METHODS A pairwise and network meta-analysis was conducted to obtain direct and indirect evidence of antivirals. The cost of allo-HSCT recipients in a teaching hospital was collected, and a cost-effectiveness analysis using a decision tree combined with Markov model was completed from the perspective of allo-HSCT recipients over a lifetime horizon. RESULTS A total of 19 RCTs involving 3565 patients (8 antivirals) were included. In the network meta-analysis, relative to placebo, letermovir, valacyclovir, and ganciclovir significantly reduced CMV infection incidence; ganciclovir significantly reduced CMV disease incidence; ganciclovir significantly increased the incidence of serious adverse event; none of antivirals significantly reduced all-cause mortality. Based on meta-analysis and Chinese medical data, the incremental cost-effectiveness ratios (ICER) per quality-adjusted life year (QALY) saved for maribavir, acyclovir, valacyclovir, ganciclovir, and letermovir relative to placebo corresponded to US$216 635.70, US$11 590.20, US$11 816.40, US$13 049.90, and US$12 189.40, respectively. One-way sensitivity analysis showed the most influential parameter was discount rate. The probabilistic sensitivity analysis indicated a 53.0% probability of letermovir producing an ICER below the willingness-to-pay threshold of US$38 824.23/QALY. The scenario analysis demonstrated prophylaxis with letermovir is considered cost-effective in the United States. CONCLUSIONS Currently, letermovir is an effective and well-tolerated treatment for preventing CMV infection, and it might be a cost-effective choice in allo-HSCT recipients in China.
Collapse
Affiliation(s)
- Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiqi Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haiyan Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Monday LM, Keri V, Chandrasekar PH. Advances in pharmacotherapies for cytomegalovirus infection: what is the current state of play? Expert Opin Pharmacother 2024; 25:685-694. [PMID: 38717943 DOI: 10.1080/14656566.2024.2353627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) remains a serious opportunistic infection in hematopoietic cell transplant (HCT) and solid-organ transplant (SOT) recipients. Traditional anti-CMV drugs are limited by toxicities and the development of resistance. Letermovir and maribavir are newly approved antivirals for the prevention and treatment of CMV. AREAS COVERED Prior reviews have discussed use of letermovir for prevention of CMV after HCT and maribavir for resistant or refractory (R/R) CMV post HCT or SOT. Subsequent data have expanded their use including letermovir for primary CMV prophylaxis in high-risk renal transplant recipients and new recommendations for extending prophylaxis through day + 200 in certain HCT patients. Data on the use of maribavir for first asymptomatic CMV infection post-HCT has also been published. This review compares the pharmacology of anti-CMV agents and discusses the updated literature of these new drugs in the prevention and treatment of CMV. EXPERT OPINION Letermovir and maribavir are much needed tools that spare toxicities of ganciclovir, foscarnet, and cidofovir. High cost is a challenge preventing their integration into clinical practice in resource-limited countries. Transplant centers need to exercise restraint in overuse to avoid resistance, particularly in the setting of high viral loads.
Collapse
Affiliation(s)
- Lea M Monday
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Vishakh Keri
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
8
|
Papanicolaou GA, Avery RK, Cordonnier C, Duarte RF, Haider S, Maertens J, Peggs KS, Solano C, Young JAH, Fournier M, Murray RA, Wu J, Winston DJ. Treatment for First Cytomegalovirus Infection Post-Hematopoietic Cell Transplant in the AURORA Trial: A Multicenter, Double-Blind, Randomized, Phase 3 Trial Comparing Maribavir With Valganciclovir. Clin Infect Dis 2024; 78:562-572. [PMID: 38036487 PMCID: PMC10954327 DOI: 10.1093/cid/ciad709] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Neutropenia may limit the use of valganciclovir treatment for cytomegalovirus (CMV) infection following hematopoietic cell transplant (HCT). A phase 2 study indicated efficacy of maribavir with fewer treatment-limiting toxicities than valganciclovir. METHODS In this multicenter, double-blind, phase 3 study, patients with first asymptomatic CMV infection post-HCT were stratified and randomized 1:1 to maribavir 400 mg twice daily or valganciclovir (dose-adjusted for renal clearance) for 8 weeks with 12 weeks of follow-up. The primary endpoint was confirmed CMV viremia clearance at week 8 (primary hypothesis of noninferiority margin of 7.0%). The key secondary endpoint was a composite of the primary endpoint with no findings of CMV tissue-invasive disease at week 8 through week 16. Treatment-emergent adverse events (TEAEs) were assessed. RESULTS Among patients treated (273 maribavir; 274 valganciclovir), the primary endpoint of noninferiority of maribavir was not met (maribavir, 69.6%; valganciclovir, 77.4%; adjusted difference: -7.7%; 95% confidence interval [CI]: -14.98, -.36; lower limit of 95% CI of treatment difference exceeded -7.0%). At week 16, 52.7% and 48.5% of patients treated (maribavir and valganciclovir, respectively) maintained CMV viremia clearance without tissue-invasive disease (adjusted difference: 4.4%; 95% CI: -3.91, 12.76). With maribavir (vs valganciclovir), fewer patients experienced neutropenia (16.1% and 52.9%) or discontinued due to TEAEs (27.8% and 41.2%). Discontinuations were mostly due to neutropenia (maribavir, 4.0%; valganciclovir, 17.5%). CONCLUSIONS Although noninferiority of maribavir to valganciclovir for the primary endpoint was not achieved based on the prespecified noninferiority margin, maribavir demonstrated comparable CMV viremia clearance during post-treatment follow-up, with fewer discontinuations due to neutropenia. Clinical Trials Registration. NCT02927067 [AURORA].
Collapse
Affiliation(s)
| | | | - Catherine Cordonnier
- Henri Mondor Hôpital, Assistance Publique-Hopitaux de Paris, and Université Paris-Est-Créteil, Créteil, France
| | - Rafael F Duarte
- Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Shariq Haider
- Hamilton Health Sciences Corporation, Ontario, Canada
| | | | - Karl S Peggs
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Carlos Solano
- Hospital Clínico Universitario, University of Valencia, Valencia, Spain
| | | | - Martha Fournier
- Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Rose Ann Murray
- Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Jingyang Wu
- Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Drew J Winston
- Los Angeles Medical Center, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Valencia Deray KG, Danziger-Isakov LA, Downes KJ. Current and Emerging Antiviral Agents in the Prevention and Treatment of Cytomegalovirus in Pediatric Transplant Recipients. J Pediatric Infect Dis Soc 2024; 13:S14-S21. [PMID: 38417084 PMCID: PMC10901473 DOI: 10.1093/jpids/piad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/16/2023] [Indexed: 03/01/2024]
Abstract
Despite current prophylaxis regimens, cytomegalovirus (CMV) is common in hematopoietic cell transplantation (HCT) and solid organ transplantation (SOT) and remains a significant cause of morbidity and mortality. Newer antiviral medications are reshaping the landscape for prevention and treatment of CMV DNAemia, infection, and disease. Letermovir is approved for CMV prevention in adult HCT patients and is attractive due to the absence of marrow suppression seen with ganciclovir/valganciclovir. Letermovir should not be routinely used for CMV treatment due to its low threshold for resistance. Maribavir is approved for the treatment of refractory or resistant CMV disease in HCT and SOT recipients ≥12 years of age, though it has no current role in CMV prevention. More research is needed to fully elucidate the roles, efficacy, and safety of these newer agents in prevention and treatment of CMV in pediatric transplant recipients.
Collapse
Affiliation(s)
- Kristen G Valencia Deray
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Lara A Danziger-Isakov
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J Downes
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Takenaka K, Fuji S, Matsukawa T, Uchida N, Kobayashi T, Tanaka M, Ara T, Ikegame K, Ozawa Y, Kanda Y, Sawa M, Maruyama Y, Fukuda T, Nakamae H, Kimura T, Ogata M, Seo S, Atsuta Y, Matsuo K, Nakasone H. Outcomes of allogeneic hematopoietic cell transplantation under letermovir prophylaxis for cytomegalovirus infection. Ann Hematol 2024; 103:285-296. [PMID: 37947825 DOI: 10.1007/s00277-023-05474-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Cytomegalovirus (CMV) infection is a major infectious complication following allogeneic hematopoietic cell transplantation (allo-HCT). Although letermovir (LMV) prophylaxis dramatically reduces the incidence of early clinically significant CMV (csCMV) infection, it remains unclear whether it has a beneficial effect on nonrelapse mortality (NRM) and overall survival (OS). Herein, we evaluated the impact of LMV prophylaxis on posttransplant outcomes using the registry database of the Japanese Society for Transplantation and Cellular Therapy. Adult patients who underwent allo-HCT between 2017 and 2019 were analyzed (n = 6004). LMV prophylaxis was administered to 1640 patients (LMV group) and it significantly reduced the incidence of csCMV infection compared with those not administered LMV prophylaxis (15.4% vs 54.1%; p < 0.01). However, it did not improve the 1-year NRM (hazard ratio [HR], 0.93; p = 0.40) and OS (HR, 0.96; p = 0.49). In the LMV group, 74 patients had breakthrough csCMV infection and showed inferior NRM (HR, 3.44; p < 0.01) and OS (HR, 1.93; p = 0.02) compared with those without infection. After completing LMV prophylaxis, 252 patients had late csCMV infection and showed inferior NRM (HR, 1.83; p < 0.01) and OS (HR, 1.58; p < 0.01). Our findings suggest that managing breakthrough and late csCMV infections is important for improving long-term outcomes.
Collapse
Affiliation(s)
- Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shigeo Fuji
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Kazuhiro Ikegame
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Yumiko Maruyama
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Takafumi Kimura
- Preparation Department, Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Masao Ogata
- Department of Hematology, Oita University Hospital, Oita, Japan
| | - Sachiko Seo
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University, School of Medicine, Nagakute, Japan
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
11
|
Pérez AB, Santos Bravo M, Vidal-Verdú E, Páez-Vega A, Vaquero-Barrios JM, Montero JL, Marcos MÁ, Torre-Cisneros J. Real-life experience in two cases of secondary prophylaxis with letermovir for CMV infection in solid organ transplantation. Microbiol Spectr 2023; 11:e0163023. [PMID: 37902387 PMCID: PMC10714737 DOI: 10.1128/spectrum.01630-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE This observation provides comprehensive data on the clinical correlates of both cytomegalovirus (CMV) genotypic follow-up and clinical monitoring and outcomes for two different solid organ transplantation recipients that received letermovir as secondary prophylaxis. Our study emphasizes that monitoring of CMV disease in the patient and early genotypic detection of resistance mutations are essential when using new antiviral drugs for off-label indication in patients experiencing CMV relapses or not responding to standard antiviral therapy. These cases and the bibliography reviewed can be helpful for other researchers and clinicians working in the field to optimize the use of new treatments for transplant recipients since drug-resistant CMV infection is an important emerging problem even with new developments in antiviral treatment.
Collapse
Affiliation(s)
- Ana-Belén Pérez
- Microbiology Service, Reina Sofia University Hospital, Cordoba, Spain
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| | - Marta Santos Bravo
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Microbiology Service, Hospital Clínic, Barcelona, Spain
| | - Elisa Vidal-Verdú
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Infectious Diseases Service, Reina Sofia University Hospital, Cordoba, Spain
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Departament of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, Spain
| | - Aurora Páez-Vega
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
| | - José-Manuel Vaquero-Barrios
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Lung Transplantation Section, Reina Sofia University Hospital, Cordoba, Spain
| | - José-Luis Montero
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Liver Transplantation Section, Reina Sofia University Hospital, Cordoba, Spain
| | - María-Ángeles Marcos
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Microbiology Service, Hospital Clínic, Barcelona, Spain
| | - Julián Torre-Cisneros
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Infectious Diseases Service, Reina Sofia University Hospital, Cordoba, Spain
- Departament of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, Spain
| |
Collapse
|
12
|
Mishra A. Approaches to optimize outcomes in transplant recipients. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:723-730. [PMID: 38066935 PMCID: PMC10727018 DOI: 10.1182/hematology.2023000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Curative therapy with an allogeneic hematopoietic cell transplant (HCT) can now be offered to a wider patient population due to improvements in donor selection, transplant conditioning regimens, and supportive care measures. However, risk of transplant-related morbidity and mortality remains, and thus appropriate transplant candidate workup pre-HCT for risk stratification and a management plan after HCT is crucial for success of the procedure. These include understanding and identifying risk of underlying malignant disease relapse, graft-versus-host disease, and infectious complications a patient may be predisposed toward, irrespective of allogeneic donor type. Progress in these domains with new therapeutic paradigms allows for development of a treatment plan prior to HCT to mitigate these potential risks tailored to the patient's case. Herein, we present case studies to focus on factors that influence decision-making in HCT and the approaches and strategies used to optimize post-HCT outcomes based on the individual HCT recipient's clinical scenario to improve on these high-risk scenarios.
Collapse
Affiliation(s)
- Asmita Mishra
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
13
|
Zheng H, Webster MJ, Weickert CS, Beasley CL, Paulus MP, Yolken RH, Savitz J. Cytomegalovirus antibodies are associated with mood disorders, suicide, markers of neuroinflammation, and microglia activation in postmortem brain samples. Mol Psychiatry 2023; 28:5282-5292. [PMID: 37391529 PMCID: PMC10756933 DOI: 10.1038/s41380-023-02162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Cytomegalovirus (CMV) is a common, neurotrophic herpesvirus that can be reactivated by inflammation and cause central nervous system disease. We hypothesize that CMV may contribute to the neuroinflammation that underlies some psychiatric disorders by (1) exacerbating inflammation through the induction of anti-viral immune responses, and (2) translating peripheral inflammation into neuroinflammation. We investigated whether the presence of anti-CMV antibodies in blood were associated with mental illness, suicide, neuroinflammation, and microglial density in the dorsolateral prefrontal cortex (DLPFC) in postmortem samples. Data (n = 114 with schizophrenia; n = 78 with bipolar disorder; n = 87 with depression; n = 85 controls) were obtained from the Stanley Medical Research Institute. DLPFC gene expression data from a subset of 82 samples were categorized into "high" (n = 30), and "low" (n = 52) inflammation groups based on a recursive two-step cluster analysis using expression data for four inflammation-related genes. Measurements of the ratio of non-ramified to ramified microglia, a proxy of microglial activation, were available for a subset of 49 samples. All analyses controlled for age, sex, and ethnicity, as well as postmortem interval, and pH for gene expression and microglial outcomes. CMV seropositivity significantly increased the odds of a mood disorder diagnosis (bipolar disorder: OR = 2.45; major depression: OR = 3.70) and among the psychiatric samples, of suicide (OR = 2.09). Samples in the upper tercile of anti-CMV antibody titers were more likely to be members of the "high" inflammation group (OR = 4.41, an effect driven by schizophrenia and bipolar disorder samples). CMV positive samples also showed an increased ratio of non-ramified to ramified microglia in layer I of the DLPFC (Cohen's d = 0.81) as well as a non-significant increase in this ratio for the DLPFC as a whole (d = 0.56). The results raise the possibility that the reactivation of CMV contributes to the neuroinflammation that underlies some cases of psychiatric disorders.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
14
|
Hinman B, Cox J, Umoru G, Kamble R, Musick W. Extended duration letermovir in allogeneic hematopoietic stem cell transplant. Transpl Immunol 2023; 81:101936. [PMID: 37770000 DOI: 10.1016/j.trim.2023.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Despite the use of antiviral prophylaxis in recipients of allogeneic hematopoietic cell transplants (HCT), cytomegalovirus (CMV) is a common clinically significant infection and is associated with significant morbidity and mortality in this patient population. Based on current approval, letermovir is initiated within 28 days following allogeneic HCT for CMV seropositive recipients and continued through 100 days post-transplant. However, it is unknown whether patients who receive extended duration CMV prophylaxis with letermovir would result in less CMV reactivation and reactivation compared to those who do not. This study aimed to evaluate the efficacy of letermovir prophylaxis in CMV seropositive patients when continued for greater than 100 days post-allogeneic stem cell transplant. METHODS A single-center retrospective chart review was conducted on recipients of allogeneic HCT from November 2017 to July 2021. Patients were eligible for inclusion if they were at least 18 years of age, received an allogeneic HCT, CMV seropositive, and initiated letermovir between days 0-28 post-transplant. The primary endpoint of this study is to compare rates of CMV reactivation in patients who stopped letermovir prophylaxis at 100 days post-transplant (standard duration group) versus those who continued letermovir prophylaxis past day 100 (extended duration group). RESULTS A total of 87 patients met the eligibility criteria for inclusion. The median duration of letermovir prophylaxis was 78 days in the standard duration group versus and 132 days in the extended duration group. There were more CMV reactivations in the standard duration group versus the extended duration group, 28% versus 19% respectively. CMV pneumonitis was observed in one of the patients in the standard duration group. All-cause mortality at day 200 post-transplant was similar between the two groups. CONCLUSION The results of this study suggest that extended duration letermovir prophylaxis may be associated with less CMV reactivation compared to the standard duration of prophylaxis.
Collapse
Affiliation(s)
- Breanna Hinman
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - James Cox
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Godsfavour Umoru
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Rammurti Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine and Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Will Musick
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| |
Collapse
|
15
|
Walti CS, Khanna N, Avery RK, Helanterä I. New Treatment Options for Refractory/Resistant CMV Infection. Transpl Int 2023; 36:11785. [PMID: 37901297 PMCID: PMC10600348 DOI: 10.3389/ti.2023.11785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Despite advances in monitoring and treatment, cytomegalovirus (CMV) infections remain one of the most common complications after solid organ transplantation (SOT). CMV infection may fail to respond to standard first- and second-line antiviral therapies with or without the presence of antiviral resistance to these therapies. This failure to respond after 14 days of appropriate treatment is referred to as "resistant/refractory CMV." Limited data on refractory CMV without antiviral resistance are available. Reported rates of resistant CMV are up to 18% in SOT recipients treated for CMV. Therapeutic options for treating these infections are limited due to the toxicity of the agent used or transplant-related complications. This is often the challenge with conventional agents such as ganciclovir, foscarnet and cidofovir. Recent introduction of new CMV agents including maribavir and letermovir as well as the use of adoptive T cell therapy may improve the outcome of these difficult-to-treat infections in SOT recipients. In this expert review, we focus on new treatment options for resistant/refractory CMV infection and disease in SOT recipients, with an emphasis on maribavir, letermovir, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Carla Simone Walti
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Schütz M, Wangen C, Sommerer M, Kögler M, Eickhoff J, Degenhart C, Klebl B, Naing Z, Egilmezer E, Hamilton ST, Rawlinson WD, Sticht H, Marschall M. Cytomegalovirus cyclin-dependent kinase ortholog vCDK/pUL97 undergoes regulatory interaction with human cyclin H and CDK7 to codetermine viral replication efficiency. Virus Res 2023; 335:199200. [PMID: 37591314 PMCID: PMC10445456 DOI: 10.1016/j.virusres.2023.199200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Human cytomegalovirus (HCMV) infection is shaped by a tightly regulated interplay between viral and cellular proteins. Distinct kinase activities, such as the viral cyclin-dependent kinase ortholog (vCDK) pUL97 and cellular CDK7 are both crucial for efficient viral replication. Previously, we reported that both kinases, vCDK/pUL97 and CDK7, interact with cyclin H, thereby achieving an enhanced level of kinase activity and overall functionality in viral replication. Here we provide a variety of novel results, as generated on a methodologically extended basis, and present a concept for the codetermination of viral replication efficiency through these kinase activities: (i) cyclin H expression, in various human cell types, is substantially upregulated by strains of HCMV including the clinically relevant HCMV Merlin; (ii) vCDK/pUL97 interacts with human cyclin H in both HCMV-infected and plasmid-transfected cell systems; (iii) a doxycycline-inducible shRNA-dependent knock-down (KD) of cyclin H significantly reduces pUL97 activity (qSox in vitro kinase assay); (iv) accordingly, pUL97 in vitro kinase activity is seen significantly increased upon addition of recombinant cyclin H; (v) as a point of specific importance, human CDK7 activity shows an increase by vCDK/pUL97-mediated trans-stimulation (whereas pUL97 is not stimulated by CDK7); (vi) phosphosite-specific antibodies indicate an upregulated CDK7 phosphorylation upon HCMV infection, as mediated through a pUL97-specific modulatory effect (i.e. shown by pUL97 inhibitor treatment or pUL97-deficient viral mutant); (vii) finally, an efficient KD of cyclin H in primary fibroblasts generally results in an impaired HCMV replication efficiency as measured on protein and genomic levels. These results show evidence for the codetermination of viral replication by vCDK/pUL97, cyclin H and CDK7, thus supporting the specific importance of cyclin H as a central regulatory factor, and suggesting novel targeting options for antiviral drugs.
Collapse
Affiliation(s)
- Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany
| | - Mona Sommerer
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany
| | - Melanie Kögler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany
| | | | | | - Bert Klebl
- Lead Discovery Center GmbH, Dortmund, Germany
| | - Zin Naing
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Women's and Children's Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney, Australia
| | - Ece Egilmezer
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Women's and Children's Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney, Australia
| | - Stuart T Hamilton
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Women's and Children's Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney, Australia
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Women's and Children's Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney, Australia
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany.
| |
Collapse
|
17
|
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are available online to subscribers. Monographs can be customized to meet the needs of a facility. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, contact Wolters Kluwer customer service at 866-397-3433.
Collapse
|
18
|
Li QY, van den Anker J, Wu YE, Hao GX, Zhao W. Optimizing ganciclovir and valganciclovir dosing regimens in pediatric patients with cytomegalovirus infection: a spotlight on therapeutic drug monitoring. Expert Rev Clin Pharmacol 2023; 16:727-739. [PMID: 36794592 DOI: 10.1080/17512433.2023.2181161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
INTRODUCTION Infants and immunocompromised children with cytomegalovirus (CMV) infection have significant morbidity and mortality. Ganciclovir (GCV) and its oral prodrug valganciclovir (VGCV) are the major antiviral options of choice for the prophylaxis and treatment of CMV infection. However, with the currently recommended dosing regimens used in pediatric patients, large intra- and inter-individual variability of pharmacokinetic (PK) parameters and exposure are observed. AREAS COVERED This review describes the PK and pharmacodynamic (PD) characteristics of GCV and VGCV in pediatrics. Moreover, the role of therapeutic drug monitoring (TDM) and current clinical practice for GCV and VGCV dosing regimens optimization in pediatrics are discussed. EXPERT OPINION GCV/VGCV TDM has shown the potential value to improve the benefit/risk ratio in pediatrics when using the therapeutic ranges derived from adults. However, well-designed studies are required to evaluate the relationship of TDM with clinical outcomes. Furthermore, studies to explore the children-specific dose-response-effect relationships will be helpful to facilitate the TDM practice. In the clinical setting, optimal sampling methods such as limited sampling strategies for pediatrics can be used in TDM and intracellular ganciclovir triphosphate may be used as an alternative TDM marker.
Collapse
Affiliation(s)
- Qiu-Yue Li
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Medical Center, Washington, DC, USA
- Departments of Pediatrics, Pharmacology & Physiology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
- Department of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
19
|
Hume J, Sweeney EL, Lowry K, Fraser C, Clark JE, Whiley DM, Irwin AD. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: a diagnostic and therapeutic approach to antiviral resistance. Front Pediatr 2023; 11:1180392. [PMID: 37325366 PMCID: PMC10267881 DOI: 10.3389/fped.2023.1180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy individuals. In immunocompromised individuals, such as children receiving haematopoietic stem cell transplantation, CMV can reactivate, causing serious disease and increasing the risk of death. CMV can be effectively treated with antiviral drugs, but antiviral resistance is an increasingly common complication. Available therapies are associated with adverse effects such as bone marrow suppression and renal impairment, making the choice of appropriate treatment challenging. New agents are emerging and require evaluation in children to establish their role. This review will discuss established and emerging diagnostic tools and treatment options for CMV, including antiviral resistant CMV, in children undergoing haematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Jocelyn Hume
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Emma L. Sweeney
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Julia E. Clark
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - David M. Whiley
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Adam D. Irwin
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Zakhour J, Allaw F, Haddad SF, Kanj SS. The Ten Most Common Questions on Cytomegalovirus Infection in Hematopoietic Stem Cell Transplant Patients. Clin Hematol Int 2023; 5:21-28. [PMID: 36577863 PMCID: PMC9797381 DOI: 10.1007/s44228-022-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022] Open
Abstract
With the rising number of patients undergoing hematopoietic stem cell transplantation (HSCT), clinicians are more likely to encounter infectious complications in immunocompromised hosts, particularly cytomegalovirus (CMV) infection. Besides the high mortality of CMV end-organ disease, patients with detectable CMV viremia may have worse outcomes and decreased survival even in the absence of end-organ disease. In view of the implications on morbidity and mortality, clinicians should maintain a high index of suspicion and initiate antiviral drugs promptly when CMV infection is confirmed. High-risk patients should be identified in order to provide optimal management. Additionally, novel antiviral agents with a good safety profile and minor adverse events are now available for prophylaxis in high-risk patients and for treatment of resistant or refractory CMV infection. The following review provides concise, yet comprehensive, guidance on the burden and risk factors of CMV in this population, as well as an update on the latest evidence for the management of CMV infection.
Collapse
Affiliation(s)
- Johnny Zakhour
- Internal Medicine Department, Infectious Diseases Division, Center of Infectious Disease Research, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Fatima Allaw
- Internal Medicine Department, Infectious Diseases Division, Center of Infectious Disease Research, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Sara F Haddad
- Internal Medicine Department, Infectious Diseases Division, Center of Infectious Disease Research, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Souha S Kanj
- Internal Medicine Department, Infectious Diseases Division, Center of Infectious Disease Research, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
21
|
Huntjens DW, Dijkstra JA, Verwiel LN, Slijkhuis M, Elbers P, Welkers MRA, Veldkamp AI, Kuijvenhoven MA, de Leeuw DC, Abdullah-Koolmees H, Kuipers MT, Bartelink IH. Optimizing Antiviral Dosing for HSV and CMV Treatment in Immunocompromised Patients. Pharmaceutics 2023; 15:pharmaceutics15010163. [PMID: 36678792 PMCID: PMC9863155 DOI: 10.3390/pharmaceutics15010163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and cytomegalovirus (CMV) are DNA viruses that are common among humans. Severely immunocompromised patients are at increased risk of developing HSV or CMV disease due to a weakened immune system. Antiviral therapy can be challenging because these drugs have a narrow therapeutic window and show significant pharmacokinetic variability. Above that, immunocompromised patients have various comorbidities like impaired renal function and are exposed to polypharmacy. This scoping review discusses the current pharmacokinetic (PK) and pharmacodynamic (PD) knowledge of antiviral drugs for HSV and CMV treatment in immunocompromised patients. HSV and CMV treatment guidelines are discussed, and multiple treatment interventions are proposed: early detection of drug resistance; optimization of dose to target concentration by therapeutic drug monitoring (TDM) of nucleoside analogs; the introduction of new antiviral drugs; alternation between compounds with different toxicity profiles; and combinations of synergistic antiviral drugs. This research will also serve as guidance for future research, which should focus on prospective evaluation of the benefit of each of these interventions in randomized controlled trials.
Collapse
Affiliation(s)
- Daan W. Huntjens
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacob A. Dijkstra
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-444-3524
| | - Lisanne N. Verwiel
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Mirjam Slijkhuis
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Paul Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence (LCCI), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Science (ACS), Amsterdam Institute for Infection and Immunity (AII), Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Matthijs R. A. Welkers
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Agnes I. Veldkamp
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marianne A. Kuijvenhoven
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - David C. de Leeuw
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Heshu Abdullah-Koolmees
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Postbus 85500, 3508 GA Utrecht, The Netherlands
- Clinical Pharmacy, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Maria T. Kuipers
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
New trends in the management of cytomegalovirus infection after allogeneic hematopoietic cell transplantation: a survey of the Infectious Diseases Working Pary of EBMT. Bone Marrow Transplant 2023; 58:203-208. [PMID: 36396949 PMCID: PMC9672643 DOI: 10.1038/s41409-022-01863-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
The management of cytomegalovirus (CMV) infection was assessed with a survey performed in 2020 by the Infectious Diseases Working Party of European Society for Blood and Marrow Transplantation (EBMT). One-hundred-eighty of the 579 EBMT centres (31%) responded. CMV monitoring with quantitative PCR for CMV-DNAemia was used by 97% of centres while the duration of monitoring was variable according to the patient immune recovery and the ongoing immunosuppressive therapy. CMV prophylaxis for high-risk patients was used in 101 (56%) of centres: letermovir in 62 centres (61%), aciclovir/valaciclovir in 19 centres (19%), ganciclovir/valganciclovir in 17 centres (17%), foscarnet in 3 (3%). The most used trigger for pre-emptive therapy was a threshold of >103 copies/ml or >103 IU/ml. Ganciclovir/valganciclovir confirmed the preferred first line treatment both for pre-emptive and CMV disease therapy. CMV-cytotoxic T-cells were used mainly in the setting of relapsing/refractory CMV disease. Forty-eight centres reported CMV refractory/resistant infection due to mutated CMV strain.This survey showed that letermovir prophylaxis is adopted by more than half of centres using a prophylaxis approach for CMV infection. How letermovir prophylaxis will modify other important pillars of daily CMV management, such as frequency of CMV-DNAemia monitoring and preemptive therapy, remain a matter of investigation.
Collapse
|
23
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
24
|
Khawaja F, Spallone A, Kotton CN, Chemaly RF. Cytomegalovirus infection in transplant recipients: newly approved additions to our armamentarium. Clin Microbiol Infect 2023; 29:44-50. [PMID: 35843567 DOI: 10.1016/j.cmi.2022.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND The burden that cytomegalovirus (CMV) portends for haematopoietic and solid-organ transplant recipients cannot be understated. Valganciclovir and ganciclovir have successfully been used for prevention and treatment of CMV infections, although with serious side effects such as leucopenia and some development of resistance. Until recently, available therapies for ganciclovir-resistant CMV have significant toxicities. Although advances have been made in the field, the unmet medical needs for effective and well-tolerated therapies are significant. OBJECTIVES This review aims to summarise the current and emerging CMV antiviral drugs and discusses future perspectives in the field. SOURCES We searched for relevant articles with pertinent keywords: "Cytomegalovirus OR CMV", "Transplant" and "Antiviral". Articles published after 2019 were given preference. Articles were reviewed by the authors for relevance and impact to the subject of interest. CONTENT We outline in this review current advances in prophylaxis of CMV infection with letermovir, breakthrough CMV infections while on or after prophylaxis, the development of resistant and refractory CMV infections, and the newly approved anti-CMV agent, maribavir, in haematopoietic and solid-organ transplant recipients. IMPLICATIONS Prevention of CMV infections after transplant has improved greatly over the past few years. Despite major advancements, breakthrough CMV infections and development of refractory and resistant CMV infections remain major complications post transplantation. We highlight emerging therapeutics that tolerably and effectively prevent and treat CMV infections, especially refractory and resistant cases.
Collapse
Affiliation(s)
- Fareed Khawaja
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Spallone
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Camille N Kotton
- Transplant Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Kotton CN, Torre-Cisneros J, Aguado JM, Alain S, Baldanti F, Baumann G, Boeken U, de la Calle M, Carbone J, Ciceri F, Comoli P, Couzi L, Danziger-Isakov L, Fernández-Ruiz M, Girmenia C, Grossi PA, Hirsch HH, Humar A, Kamar N, Kotton C, Ljungman P, Malagola M, Mira E, Mueller N, Sester M, Teng CLJ, Torre-Cisneros J, Ussetti P, Westall G, Wolf D, Zamora M. Cytomegalovirus in the transplant setting: Where are we now and what happens next? A report from the International CMV Symposium 2021. Transpl Infect Dis 2022; 24:e13977. [PMID: 36271650 PMCID: PMC10078482 DOI: 10.1111/tid.13977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
Abstract
The CMV Symposium in September 2021 was an international conference dedicated to cytomegalovirus (CMV) infection after solid organ or hematopoietic stem cell transplantation. This review provides an overview of the presentations given by the expert faculty, supplemented with educational clinical cases. Topics discussed include CMV epidemiology and diagnosis, the burden of CMV infection and disease, CMV-specific immunity and management of CMV in transplant settings. Major advances in the prevention and treatment of CMV in the past decade and increased understanding of CMV immunity have led to improved patient outcomes. In the future, management algorithms may be individualized based on the transplant recipient's immune profile, which will mark the start of a new era for patients with CMV.
Collapse
Affiliation(s)
- Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julián Torre-Cisneros
- Maimónides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba (UCO), Cordoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - José Maria Aguado
- University Hospital 12 de Octubre, CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sophie Alain
- French References Center for Herpes Viruses, Microbiology Department, CHU-Limoges, Limoges, France
| | - Fausto Baldanti
- Università di Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Udo Boeken
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Javier Carbone
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Fabio Ciceri
- IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | - Patrizia Comoli
- Cell Factory and Center for Advanced Therapies and Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, CHU Bordeaux CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lara Danziger-Isakov
- Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, USA
| | | | | | | | | | | | | | | | - Per Ljungman
- Karolinska Hospital and Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | - Dana Wolf
- Hadassah University Medical Center, Jerusalem, Israel
| | - Marty Zamora
- University of Colorado at Denver Anschutz Medical Center, Colorado, USA
| |
Collapse
|
26
|
Yue Y, Meng L, Ling J, Fan L, Zhang Y, Hu Y, Chang AH, Hu S. Natural killer cell infusion for cytomegalovirus infection in pediatric patients with Wiskott-Aldrich syndrome following cord blood transplantation: A case report and literature review. Front Med (Lausanne) 2022; 9:988847. [PMID: 36300184 PMCID: PMC9588986 DOI: 10.3389/fmed.2022.988847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
NK cells have important functions in resisting cytomegalovirus infection, as they proliferate after viral infection and have certain immunological memory. Here, we report infusion of haploid donor-derived natural killer cells to treat two pediatric patients with Wiskott-Aldrich syndrome (WAS) who were infected with cytomegalovirus after cord blood transplantation (CBT), which successfully cleared the viral infection in both patients.
Collapse
Affiliation(s)
- Yongwei Yue
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Lijun Meng
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Fan
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yanlei Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai YaKe Biotechnology Ltd., Shanghai, China
| | - Yixin Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Alex H. Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai YaKe Biotechnology Ltd., Shanghai, China,*Correspondence: Alex H. Chang
| | - Shaoyan Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China,Shaoyan Hu
| |
Collapse
|
27
|
Cui J, Zhao K, Sun Y, Wen R, Zhang X, Li X, Long B. Diagnosis and treatment for the early stage of cytomegalovirus infection during hematopoietic stem cell transplantation. Front Immunol 2022; 13:971156. [PMID: 36211358 PMCID: PMC9537469 DOI: 10.3389/fimmu.2022.971156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cytomegalovirus (CMV) infection remains a frequent complication after hematopoietic stem cell transplantation (HSCT) and causes significant morbidity and mortality in transplantation recipients. In this review, we highlight the role of major risk factors that are associated with the incidence of CMV infection. Advances in immunosurveillance may predict CMV infection, allowing early interventions to prevent severe infection. Furthermore, numerous therapeutic strategies against CMV infection after HSCT are summarized. A comprehensive understanding of the current situation of CMV treatment may provide a hint for clinical practice and even promote the development of novel strategies for precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Li
- *Correspondence: Bing Long, longb3@ mail.sysu.edu.cn; Xudong Li,
| | - Bing Long
- *Correspondence: Bing Long, longb3@ mail.sysu.edu.cn; Xudong Li,
| |
Collapse
|
28
|
Abstract
Maribavir was approved by the U.S. Food and Drug Administration in November 2021 for the treatment of adult and pediatric patients with post-transplant cytomegalovirus (CMV) infection/disease that is refractory to treatment (with or without genotypic resistance) with ganciclovir, valganciclovir, cidofovir, or foscarnet. Maribavir is an oral benzimidazole riboside with potent and selective multimodal anti-CMV activity. It utilizes a novel mechanism of action which confers activity against CMV strains that are resistant to traditional anti-CMV agents, and also offers a more favorable safety profile relative to the dose-limiting side effects of previously available therapies. Maribavir was initially studied as an agent for CMV prophylaxis in solid organ and hematopoietic stem cell recipients, but initial phase III trials failed to meet clinical efficacy endpoints. It has been more recently studied as a therapeutic agent at higher doses for refractory-resistant (R-R) CMV infections with favorable outcomes. After an overview of maribavir's chemistry and clinical pharmacology, this review will summarize clinical efficacy, safety, tolerability, and resistance data associated with maribavir therapy.
Collapse
|
29
|
Kleiboeker HL, Descourouez JL, Schulz LT, Mandelbrot DA, Odorico JS, Rice JP, Saddler CM, Smith JA, Jorgenson MR. Maribavir for the Management of Cytomegalovirus in Adult Transplant Recipients: A Review of the Literature and Practical Considerations. Ann Pharmacother 2022; 57:597-608. [PMID: 36003036 DOI: 10.1177/10600280221118959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To review the efficacy and safety of maribavir for management of cytomegalovirus (CMV) in solid organ transplant recipients. DATA SOURCES A literature search of PubMed and the Cochrane Controlled Trials Register (1960 to early July 2022) was performed using the following search terms: maribavir, 1263W94, and cytomegalovirus. STUDY SELECTION AND DATA EXTRACTION All relevant English-language studies were reviewed and considered, with a focus on phase 3 trials. DATA SYNTHESIS Maribavir, an orally available benzimidazole riboside with minimal adverse effects, was originally studied for universal prophylaxis in phase 3 trials but failed to demonstrate noninferiority over placebo and oral ganciclovir. It was effective for preemptive treatment in a dose-finding Phase 2 study. Maribavir is FDA approved for treatment of refractory/resistant CMV infection based on improved response rate at 8 weeks compared with investigator-assigned therapy (IAT) when initiated at median viral loads less than approximately 10 000 IU/mL (55.7% vs 23.9%, P < 0.001). Recurrence after 8-week treatment for refractory/resistant CMV was high (maribavir 50% vs IAT 39%). Significant drug interactions exist and must be managed by a pharmacotherapy expert to prevent harm. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE The addition of maribavir to the antiviral armamentarium should improve the management of refractory/resistant CMV, allowing early transition from toxic, high-cost, intravenous agents such as foscarnet and outpatient management. Optimal timing of initiation, duration, and potential alternative uses are unclear. CONCLUSION Future studies are needed to fully elucidate the role of maribavir in the management of CMV after transplant.
Collapse
Affiliation(s)
- Hanna L Kleiboeker
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Jillian L Descourouez
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Lucas T Schulz
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Didier A Mandelbrot
- Department of Medicine, Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jon S Odorico
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John P Rice
- Department of Medicine, Division of Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christopher M Saddler
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jeannina A Smith
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| |
Collapse
|
30
|
Ong DSY, Chong GLM, Chemaly RF, Cremer OL. Comparative clinical manifestations and immune effects of cytomegalovirus infections following distinct types of immunosuppression. Clin Microbiol Infect 2022; 28:1335-1344. [PMID: 35709902 DOI: 10.1016/j.cmi.2022.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a well-recognized complication of solid organ and hematopoietic cell transplantation. However, CMV infection also occurs in patients with human immunodeficiency virus (HIV) infection, previously immunocompetent intensive care unit (ICU) patients, and individuals on immunosuppressive medications for various underlying diseases. OBJECTIVES This review describes the comparative effects of CMV infection in distinct types of acquired immunosuppression. SOURCES Selected peer-reviewed publications on CMV infections published until December 2021. CONTENT CMV infection affects various organ systems through direct cytolytic mechanisms, but may also exert indirect effects by promoting pro-inflammatory and immunosuppressive responses. This has been well studied in transplant recipients, for whom antiviral prophylaxis and pre-emptive therapy have now become standard practice. These strategies not only prevent direct CMV disease manifestations, but also mitigate various immunopathological processes to reduce graft-versus-host disease, graft rejection, and the occurrence of secondary bacterial and fungal infections. The efficacy of neither prophylactic nor pre-emptive treatment of CMV infection has been demonstrated for patients with critical illness- or medication-induced immunosuppression. Many observational studies have shown an independent association between CMV reactivation and a prolonged duration of mechanical ventilation or increased mortality in the ICU. Furthermore, data suggest that CMV reactivation may increase pulmonary inflammation and prolong the duration of mechanical ventilation. IMPLICATIONS A large number of observational and experimental studies suggest attributable morbidity and mortality related to CMV infection, not only in transplant recipients and patients with HIV infection but also in patients with critically illness- or medication-induced immunosuppression. Adequately powered randomized controlled trials investigating the efficacy of prophylaxis or pre-emptive treatment of CMV infection in these patients are lacking, with a notable exception for transplant recipients.
Collapse
Affiliation(s)
- David S Y Ong
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Ga-Lai M Chong
- Erasmus University Medical Center, Department of Medical Microbiology & Infectious Diseases, Rotterdam, the Netherlands
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Gandhi RG, Kotton CN. Evaluating the Safety of Maribavir for the Treatment of Cytomegalovirus. Ther Clin Risk Manag 2022; 18:223-232. [PMID: 35308097 PMCID: PMC8926008 DOI: 10.2147/tcrm.s303052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose of Review Cytomegalovirus (CMV) infections are a common complication in solid organ (SOT) and hematopoietic stem cell transplant (HSCT) recipients, leading to increased morbidity and mortality. Currently available treatment options have reduced the burden of infection, but utilization of these agents can be limited by toxicities such as nephrotoxicity and/or myelosuppression as well as emergence of resistance. The expansion of our current armamentarium towards CMV infection is crucial. Here, we review an emerging therapy, maribavir, and the safety and efficacy of this potential new agent for the prophylaxis and treatment of CMV infections including resistant/refractory disease. Recent Findings Maribavir is a novel agent with CMV activity approved by Federal Food and Drug Administration (FDA) in December 2021 for resistant/refractory disease. Compared to currently available treatment for CMV infection, maribavir has a unique mechanism of action, retains activity against most (val)ganciclovir resistant strains, provides a more predictable pharmacokinetic profile, and fewer severe toxicities. Maribavir has been studied in phase 2 and 3 studies with ongoing phase 3 studies. While maribavir failed to meet the primary endpoints in the initial phase 3 study for prophylaxis therapy in allogeneic-HSCT and liver transplant recipients, results from the phase 2 study when used for pre-emptive therapy after HSCT show similar efficacy to valganciclovir, and results from the phase 3 study examining resistant/refractory disease demonstrate superiority to investigator-initiated therapy of (val)ganciclovir, foscarnet, or cidofovir. Summary Maribavir provides a new agent for the management of resistant/refractory CMV infection. Results of the recently published phase 3 study provide further insight into the role of this novel therapy.
Collapse
Affiliation(s)
- Ronak G Gandhi
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
- Correspondence: Ronak G Gandhi, Senior Attending Pharmacist – Infectious Diseases, Department of Pharmacy, Massachusetts General Hospital, 55 Fruit Street, GRB 005, Boston, MA02114, USA, Tel +1 617-643-6570, Fax +1 617-726-9232, Email
| | - Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Abstract
Recipients of solid organ and hematopoietic stem cell transplantation undergo substantial immune suppression, placing them at risk for opportunistic viral infection. Few randomized controlled trials have been dedicated to the treatment of viral infections in children, and current practices are extrapolated from data generated from adult patients. Here we discuss the prevention and treatment of viral infections using available antiviral drugs, as well as novel agents that may provide benefit to pediatric patients in the future.
Collapse
Affiliation(s)
- William R Otto
- Division of Infectious Diseases, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA
| | - Abby Green
- Division of Infectious Diseases, Department of Pediatrics, Washington University, 425 S. Euclid Avenue, McDonnell Pediatric Research Building, #5105, St Louis, MO 63106, USA.
| |
Collapse
|
33
|
Beauvais D, Robin C, Thiebaut A, Alain S, Coiteux V, Ducastelle-Lepretre S, Marçais A, Ceballos P, Xhaard A, Redjoul R, Nguyen S, Brissot E, Joris M, Turlure P, Rubio MT, Chevallier P, Bénard N, Liautard C, Yakoub-Agha I. Effective Letermovir Prophylaxis of CMV infection post allogeneic hematopoietic cell transplantation: Results from the French temporary authorization of use compassionate program. J Clin Virol 2022; 148:105106. [PMID: 35182958 DOI: 10.1016/j.jcv.2022.105106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
Abstract
We report the results of the French Temporary Authorization of Use (ATU) compassionate program of letermovir for primary prophylaxis conducted in 21 transplant centers. Patients were CMV seropositive allogeneic hematopoietic cell transplantation recipients and at high risk for CMV infection. Primary prophylaxis was defined as initiation of letermovir between day 0 and day +28 post-transplant. Between November 2017 and January 2019, 96 patients with a median age of 56 years received letermovir and follow-up data were available for 78 patients. The median time from transplant to letermovir initiation was 4 days, and the median duration of exposure to letermovir was 78 days, with 57 patients still on treatment at the cutoff date. Letermovir was temporarily discontinued in 4 patients (5.1%) and stopped in 39 patients (50.0%), in most cases due to planned end of treatment (n = 16, 20.5%). Fifteen patients (19.2%) each presented one positive CMV PCR, in median 13 days after letermovir initiation. Clinically significant CMV infection was reported in 5 patients (6.4%). No CMV disease was reported. At least one adverse drug reaction was reported for 12 patients (15.4%). In this early access program, letermovir was effective with comparable results of the phase 3 study with a low rate of clinically significant CMV infection, including in patients who were at high-risk for CMV infection.
Collapse
Affiliation(s)
- David Beauvais
- Univ Lille, CHU Lille, Hematology Department, Inserm, Infinite U1286, Lille, France.
| | - Christine Robin
- University Paris-Est-Créteil, Hematology Department, Assistance Publique-Hopitaux de Paris (AP-HP), Henri Mondor Hospital, Créteil, France
| | - Anne Thiebaut
- Hematology Department, CHU Grenoble, Grenoble, France
| | - Sophie Alain
- INSERM, CHU Limoges, RESINFIT, U1092, National Reference Center for Herpesviruses, Limoges University, Limoges, France
| | - Valérie Coiteux
- Univ Lille, CHU Lille, Hematology Department, Inserm, Infinite U1286, Lille, France
| | | | - Ambroise Marçais
- Department of adult hematology, Assistance Publique-Hôpitaux de Paris, university hospital Necker, Paris, France
| | - Patrice Ceballos
- Hematology Department, Saint-Eloi University Hospital, Montpellier, France
| | - Alienor Xhaard
- Hematology and transplantation unit, Saint Louis Hospital, APHP, Paris, France
| | - Rabah Redjoul
- University Paris-Est-Créteil, Hematology Department, Assistance Publique-Hopitaux de Paris (AP-HP), Henri Mondor Hospital, Créteil, France
| | - Stéphanie Nguyen
- Department of Hematology, AP-HP, Hôpital Pitié-Salpétrière, Sorbonne Université, Paris, France
| | - Eolia Brissot
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Sorbonne Université, INSERM UMRs 938, Paris, France
| | - Magalie Joris
- Department of Haematology, Amiens University Medical Center, Amiens, France
| | - Pascal Turlure
- CHU Limoges, Univ. Limoges, Department of Hematology, Limoges, France
| | | | | | | | | | - Ibrahim Yakoub-Agha
- Univ Lille, CHU Lille, Hematology Department, Inserm, Infinite U1286, Lille, France
| |
Collapse
|
34
|
Busca A, Marchesi F, Cattaneo C, Trecarichi EM, Delia M, Del Principe MI, Candoni A, Pagano L. When Viruses Meet Fungi: Tackling the Enemies in Hematology. J Fungi (Basel) 2022; 8:jof8020184. [PMID: 35205938 PMCID: PMC8875273 DOI: 10.3390/jof8020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
The association of invasive fungal infections (IFI) and viral infections has been described in patients with hematologic malignancies (HM), in particular in hematopoietic stem cell transplant recipients. Regrettably, the diagnosis is often challenging, making the treatment inappropriate in some circumstances. The present review takes into consideration the viral infections commonly associated with IFI. Clinical presentation of IFI and viral infections, risk factors, and impact on the outcome of HM patients are discussed throughout the paper.
Collapse
Affiliation(s)
- Alessandro Busca
- Stem Cell Transplant Unit, AOU Citta’ della Salute e della Scienza, 10126 Torino, Italy
- Correspondence:
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | | | - Enrico Maria Trecarichi
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, University “Magna Graecia”—“Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Mario Delia
- Hematology and Stem Cell Transplantation Unit, AOUC Policlinico, 70124 Bari, Italy;
| | | | - Anna Candoni
- Division of Hematology and Stem Cell Transplantation, University of Udine-ASUFC, 33100 Udine, Italy;
| | - Livio Pagano
- Unità di Ematologia Geriatrica ed Emopatie Rare, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
35
|
Abstract
Maribavir (LIVTENCITYTM), a cytomegalovirus (CMV) enzyme pUL97 kinase inhibitor, is being developed by Takeda Pharmaceuticals for the treatment of CMV infections. Maribavir was recently approved in the USA for the treatment of post-transplant CMV infection/disease that is refractory to treatment (with or without genotypic resistance) with ganciclovir, valganciclovir, cidofovir or foscarnet in adults and paediatric (≥ 12 years of age and weighing ≥ 35 kg) patients. This article summarizes the milestones in the development of maribavir leading to this first approval for CMV infections.
Collapse
Affiliation(s)
- Connie Kang
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
36
|
Gupta M, Manek G, Dombrowski K, Maiwall R. Newer developments in viral hepatitis: Looking beyond hepatotropic viruses. World J Meta-Anal 2021; 9:522-542. [DOI: 10.13105/wjma.v9.i6.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis in the entirety of its clinical spectrum is vast and most discussion are often restricted to hepatotropic viral infections, including hepatitis virus (A to E). With the advent of more advanced diagnostic techniques, it has now become possible to diagnose patients with non-hepatotropic viral infection in patients with hepatitis. Majority of these viruses belong to the Herpes family, with characteristic feature of latency. With the increase in the rate of liver transplantation globally, especially for the indication of acute hepatitis, it becomes even more relevant to identify non hepatotropic viral infection as the primary hepatic insult. Immunosuppression post-transplant is an established cause of reactivation of a number of viral infections that could then indirectly cause hepatic injury. Antiviral agents may be utilized for treatment of most of these infections, although data supporting their role is derived primarily from case reports. There are no current guidelines to manage patients suspected to have viral hepatitis secondary to non-hepatotropic viral infection, a gap that needs to be addressed. In this review article, the authors analyze the common non hepatotropic viral infections contributing to viral hepatitis, with emphasis on recent advances on diagnosis, management and role of liver transplantation.
Collapse
Affiliation(s)
- Manasvi Gupta
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Gaurav Manek
- Department of Pulmonology and Critical Care, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Kaitlyn Dombrowski
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
37
|
Yin Z, Sun J, Yang Y, Xu N, Jiang L, Fan Z, Huang F, Shi P, Wang Z, Xuan L, Xu J, Liu Q, Yu G. Cidofovir, a choice for salvage treatment of CMV infection in patients with haploidentical hematopoietic stem cell transplantation. Transpl Infect Dis 2021; 24:e13776. [PMID: 34941004 DOI: 10.1111/tid.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cidofovir (CDV) is a nucleotide analogue with broad antiviral activities. It remains unclear about the CDV administration for anti-cytomegalovirus (CMV) treatment in patients with haploidentical hematopoietic stem cell transplantation (haplo-HSCT). PATIENTS AND METHODS In this study, 31 out of 101 haplo-HSCT recipients suffered CMV infection in the CT group (conventional treatment) were enrolled into the CDV-ST group (CDV-second-line treatment). These patients were treated with CDV as they failed conventional treatment or they were unavailable to the preemptive antiviral therapy. Nine patients with CMV infection were enrolled into the CDV-FT group (CDV-frontline treatment) and received CDV preemptive therapy. RESULTS In the CDV-ST group, 23/28(82.1%) patients were observed treatment response with a median time of 9 (2-23) days, and 20 (71.8%) among these patients obtained complete response (CR). In the CDV-FT group, 6/8 (75.0%) patients acquired CR with a median of 6 (4-25) days. The treatment response in CDV-treated groups was comparable with those in CT groups. Besides, there was no statistical difference in CMV-related mortality between the three groups (P>0.05). During the follow-up period (Median follow-up:10 (1-28) months), a total of 8/22 (36.4%) patients experienced CMV reactivation in the CDV-ST group, versus 23/62 (37.1%) in CT group (P>0.05). CDV-related toxicities occurred in 13/40 (32.5%) patients, including 6 (15%) reversible nephrotoxicity. CONCLUSION Our study suggests that CDV is potentially an option for the salvage treatment of CMV infection in the haplo-HSCT patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Falci Finardi N, Kim H, Hernandez LZ, Russell MRG, Ho CMK, Sreenu VB, Wenham HA, Merritt A, Strang BL. Identification and characterization of bisbenzimide compounds that inhibit human cytomegalovirus replication. J Gen Virol 2021; 102. [PMID: 34882533 PMCID: PMC8744270 DOI: 10.1099/jgv.0.001702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.
Collapse
Affiliation(s)
- Nicole Falci Finardi
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Lee Z Hernandez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Catherine M-K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Vattipally B Sreenu
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Hannah A Wenham
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Andy Merritt
- Centre for Therapeutic Discovery, LifeArc, Stevenage, UK
| | - Blair L Strang
- Institute of Infection & Immunity, St George's, University of London, London, UK.,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Avery RK, Alain S, Alexander BD, Blumberg EA, Chemaly RF, Cordonnier C, Duarte RF, Florescu DF, Kamar N, Kumar D, Maertens J, Marty FM, Papanicolaou GA, Silveira FP, Witzke O, Wu J, Sundberg AK, Fournier M, SOLSTICE Trial Investigators. Maribavir for Refractory Cytomegalovirus Infections With or Without Resistance Post-Transplant: Results From a Phase 3 Randomized Clinical Trial. Clin Infect Dis 2021; 75:690-701. [PMID: 34864943 PMCID: PMC9464078 DOI: 10.1093/cid/ciab988] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Therapies for refractory cytomegalovirus infections (with or without resistance [R/R]) in transplant recipients are limited by toxicities. Maribavir has multimodal anti-cytomegalovirus activity through the inhibition of UL97 protein kinase. METHODS In this phase 3, open-label study, hematopoietic-cell and solid-organ transplant recipients with R/R cytomegalovirus were randomized 2:1 to maribavir 400 mg twice daily or investigator-assigned therapy (IAT; valganciclovir/ganciclovir, foscarnet, or cidofovir) for 8 weeks, with 12 weeks of follow-up. The primary endpoint was confirmed cytomegalovirus clearance at end of week 8. The key secondary endpoint was achievement of cytomegalovirus clearance and symptom control at end of week 8, maintained through week 16. RESULTS 352 patients were randomized (235 maribavir; 117 IAT). Significantly more patients in the maribavir versus IAT group achieved the primary endpoint (55.7% vs 23.9%; adjusted difference [95% confidence interval (CI)]: 32.8% [22.80-42.74]; P < .001) and key secondary endpoint (18.7% vs 10.3%; adjusted difference [95% CI]: 9.5% [2.02-16.88]; P = .01). Rates of treatment-emergent adverse events (TEAEs) were similar between groups (maribavir, 97.4%; IAT, 91.4%). Maribavir was associated with less acute kidney injury versus foscarnet (8.5% vs 21.3%) and neutropenia versus valganciclovir/ganciclovir (9.4% vs 33.9%). Fewer patients discontinued treatment due to TEAEs with maribavir (13.2%) than IAT (31.9%). One patient per group had fatal treatment-related TEAEs. CONCLUSIONS Maribavir was superior to IAT for cytomegalovirus viremia clearance and viremia clearance plus symptom control maintained post-therapy in transplant recipients with R/R cytomegalovirus. Maribavir had fewer treatment discontinuations due to TEAEs than IAT. Clinical Trials Registration. NCT02931539 (SOLSTICE).
Collapse
Affiliation(s)
- Robin K Avery
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sophie Alain
- Department of Virology and National Reference Center for Herpesviruses, Limoges University Hospital, UMR Inserm 1092, University of Limoges, Limoges, France
| | - Barbara D Alexander
- Division of Infectious Diseases and International Health, Duke University, Durham, North Carolina, USA
| | - Emily A Blumberg
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Catherine Cordonnier
- Haematology Department, Henri Mondor Hospital and University Paris-Est-Créteil, Créteil, France
| | - Rafael F Duarte
- Department of Haematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Diana F Florescu
- Infectious Diseases Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INFINITY-Inserm U1291-CNRS U5051, University Paul Sabatier, Toulouse, France
| | - Deepali Kumar
- Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Johan Maertens
- Haematology Department, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Fernanda P Silveira
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jingyang Wu
- Biostatistics, Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Aimee K Sundberg
- Clinical Sciences, Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Martha Fournier
- Correspondence: M. Fournier, Takeda Development Center Americas, Inc, 300 Shire Way, Lexington, MA 02421 ()
| | | |
Collapse
|
40
|
Hahn F, Hamilton ST, Wangen C, Wild M, Kicuntod J, Brückner N, Follett JEL, Herrmann L, Kheimar A, Kaufer BB, Rawlinson WD, Tsogoeva SB, Marschall M. Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. Int J Mol Sci 2021; 22:12858. [PMID: 34884662 PMCID: PMC8657773 DOI: 10.3390/ijms222312858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development.
Collapse
Affiliation(s)
- Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Stuart T. Hamilton
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, Schools of Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (S.T.H.); (J.E.L.F.); (W.D.R.)
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Nadine Brückner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Jasmine E. L. Follett
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, Schools of Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (S.T.H.); (J.E.L.F.); (W.D.R.)
| | - Lars Herrmann
- Institute of Organic Chemistry I, FAU, 91058 Erlangen, Germany; (L.H.); (S.B.T.)
| | - Ahmed Kheimar
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (A.K.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (A.K.); (B.B.K.)
| | - William D. Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, Schools of Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (S.T.H.); (J.E.L.F.); (W.D.R.)
| | - Svetlana B. Tsogoeva
- Institute of Organic Chemistry I, FAU, 91058 Erlangen, Germany; (L.H.); (S.B.T.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| |
Collapse
|
41
|
Cytomegalovirus gastroenteritis in patients with acute graft-versus-host disease. Blood Adv 2021; 6:574-584. [PMID: 34788389 PMCID: PMC8791573 DOI: 10.1182/bloodadvances.2021005885] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
A pre-emptive strategy has successfully decreased cytomegalovirus (CMV) disease after allogeneic hematopoietic cell transplantation (HCT). However, some recipients still develop CMV gastroenteritis, especially after acute graft-versus-host disease (aGVHD), and its incidence, risk factors, and prognostic impact remain to be elucidated. We retrospectively analyzed 3759 consecutive adult patients who developed grade II-IV aGVHD using a Japanese registry database. The cumulative incidence of CMV gastroenteritis was 5.7% by day 365 from the development of grade II-IV aGVHD. Advanced age (hazard ratio [HR], 1.60; 95% confidence interval [CI], 1.16-2.22; P = 0.004), GVHD prophylaxis with mycophenolate mofetil and calcineurin inhibitor (HR, 1.73; 95% CI, 1.08-2.77; P = 0.024), lower-gut aGVHD (HR, 2.17; 95% CI, 1.58-2.98; P < 0.001), and the use of systemic steroids (HR, 1.78; 95% CI, 1.16-2.74; P = 0.008) were independent risk factors for CMV gastroenteritis. Development of CMV gastroenteritis was associated with an increased risk of nonrelapse mortality (HR, 1.89; 95% CI, 1.50-2.39; P < 0.001). Moreover, letermovir prophylaxis significantly reduced both the incidence of CMV gastroenteritis (HR, 0.50; 95% CI, 0.25-0.99; P = 0.047) and the risk of nonrelapse mortality (HR, 0.72; 95% CI, 0.52-0.99; P = 0.043). In summary, CMV gastroenteritis is a life-threatening complication that sets the need for preventive strategies with letermovir and targeted surveillance.
Collapse
|
42
|
Jinnouchi F, Mori Y, Yoshimoto G, Yamauchi T, Nunomura T, Yurino A, Hayashi M, Yuda J, Shima T, Odawara J, Takashima S, Kamezaki K, Kato K, Miyamoto T, Akashi K, Takenaka K. Incidence of refractory cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2021; 115:96-106. [PMID: 34652633 DOI: 10.1007/s12185-021-03218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Post-transplant cytomegalovirus (CMV) disease can be almost completely avoided by current infection control procedures. However, CMV reactivation occurs in more than half of patients, and some patients can develop clinically resistant CMV infections. Whether resistance is due to the host's immune status or a viral resistance mutation is challenging to confirm. Therefore, a prospective observational analysis of refractory CMV infection was conducted in 199 consecutive patients who received allogeneic hematopoietic stem cell transplantation at a single institution. Among them, 143 (72%) patients received anti-CMV drugs due to CMV reactivation, and only 17 (8.5%) exhibited refractory CMV infection. These patients had clinically refractory infection. However, viral genome analysis revealed that only one patient exhibited a mutation associated with the anti-CMV drug resistance. Clinical resistance was mainly correlated with host immune factors, and the incidence of resistance caused by gene mutations was low at the early stage after a transplantation.
Collapse
Affiliation(s)
- Fumiaki Jinnouchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Goichi Yoshimoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takuya Nunomura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Ayano Yurino
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Masayasu Hayashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Junichiro Yuda
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takahiro Shima
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Jun Odawara
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Shuichiro Takashima
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Kenjiro Kamezaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
43
|
Martino M, Pitino A, Gori M, Bruno B, Crescimanno A, Federico V, Picardi A, Tringali S, Ingrosso C, Carluccio P, Pastore D, Musuraca G, Paviglianiti A, Vacca A, Serio B, Storti G, Mordini N, Leotta S, Cimminiello M, Prezioso L, Loteta B, Ferreri A, Colasante F, Merla E, Giaccone L, Busca A, Musso M, Scalone R, Di Renzo N, Marotta S, Mazza P, Musto P, Attolico I, Selleri C, Canale FA, Pugliese M, Tripepi G, Porto G, Martinelli G, Carella AM, Cerchione C. Letermovir Prophylaxis for Cytomegalovirus Infection in Allogeneic Stem Cell Transplantation: A Real-World Experience. Front Oncol 2021; 11:740079. [PMID: 34616684 PMCID: PMC8489185 DOI: 10.3389/fonc.2021.740079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Despite effective treatments, cytomegalovirus (CMV) continues to have a significant impact on morbidity and mortality in allogeneic stem cell transplant (allo-SCT) recipients. This multicenter, retrospective, cohort study aimed to evaluate the reproducibility of the safety and efficacy of commercially available letermovir for CMV prophylaxis in a real-world setting. Endpoints were rates of clinically significant CMV infection (CSCI), defined as CMV disease or CMV viremia reactivation within day +100-+168. 204 adult CMV-seropositive allo-SCT recipients from 17 Italian centres (median age 52 years) were treated with LET 240 mg/day between day 0 and day +28. Overall, 28.9% of patients underwent a haploidentical, 32.4% a matched related, and 27.5% a matched unrelated donor (MUD) transplant. 65.7% were considered at high risk of CSCI and 65.2% had a CMV seropositive donor. Low to mild severe adverse events were observed in 40.7% of patients during treatment [gastrointestinal toxicity (36.3%) and skin rash (10.3%)]. Cumulative incidence of CSCI at day +100 and day +168 was 5.4% and 18.1%, respectively, whereas the Kaplan-Meier event rate was 5.8% (95% CI: 2.4-9.1) and 23.3% (95% CI: 16.3-29.7), respectively. Overall mortality was 6.4% at day +100 and 7.3% at day +168. This real-world experience confirms the efficacy and safety of CMV.
Collapse
Affiliation(s)
- Massimo Martino
- Centro Unico Regionale Trapianti Cellule Staminali e Terapie Cellulari (CTMO), Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Annalisa Pitino
- Istituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Mercedes Gori
- Istituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Benedetto Bruno
- Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Divisione di Ematologia, Università di Torino, Torino, Italy
| | | | - Vincenzo Federico
- Ematologia e Trapianto di Cellule Staminali, Polo Ospedaliero "Vito Fazzi", Lecce, Italy
| | - Alessandra Picardi
- UOC Ematologia con Trapianto CSE, AORN "Antonio Cardarelli", Napoli, Italy.,Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Roma, Italy
| | | | - Claudia Ingrosso
- Ematologia e Trapianto di Midollo Osseo, Ospedale "San Giuseppe Moscati", Taranto, Italy
| | - Paola Carluccio
- UOC di Ematologia con Trapianto, Dipartimento di Emergenza e Trapianti d'Organo, Università degli Studi "Aldo Moro" e AOUC Policlinico di Bari, Bari, Italy
| | - Domenico Pastore
- Divisione di Ematologia, Ospedale "Antonio Perrino", Brindisi, Italy
| | - Gerardo Musuraca
- Unità di Ematologia, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Annalisa Paviglianiti
- Centro Unico Regionale Trapianti Cellule Staminali e Terapie Cellulari (CTMO), Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Adriana Vacca
- UO Ematologia - CTMO, Polo Ospedaliero "Armando Businco", Cagliari, Italy
| | - Bianca Serio
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università di Salerno, Salerno, Italy
| | - Gabriella Storti
- Unità di Ematologia, Azienda Ospedaliera "San Giuseppe Moscati", Avellino, Italy
| | - Nicola Mordini
- SC Ematologia, Azienda Ospedaliera "S. Croce e Carle", Cuneo, Italy
| | - Salvatore Leotta
- Programma di Trapianto Emopoietico, Azienda Policlinico "Vittorio Emanuele", Catania, Italy
| | | | - Lucia Prezioso
- Ematologia e Centro Trapianti Midollo Osseo (CTMO), Dipartimento ad Attività Integrata Medicina Generale e Specialistica, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Barbara Loteta
- Centro Unico Regionale Trapianti Cellule Staminali e Terapie Cellulari (CTMO), Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Anna Ferreri
- Centro Unico Regionale Trapianti Cellule Staminali e Terapie Cellulari (CTMO), Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Fabrizia Colasante
- Ospedale I.R.C.C.S. Casa Sollievo della Sofferenza - Centro Trapianti di Cellule Staminali, San Giovanni Rotondo, Italy
| | - Emanuela Merla
- Ospedale I.R.C.C.S. Casa Sollievo della Sofferenza - Centro Trapianti di Cellule Staminali, San Giovanni Rotondo, Italy
| | - Luisa Giaccone
- Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Divisione di Ematologia, Università di Torino, Torino, Italy
| | - Alessandro Busca
- Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maurizio Musso
- Unità Operativa di Oncoematologia e TMO, Istituto "La Maddalena", Palermo, Italy
| | - Renato Scalone
- Unità Operativa di Oncoematologia e TMO, Istituto "La Maddalena", Palermo, Italy
| | - Nicola Di Renzo
- Ematologia e Trapianto di Cellule Staminali, Polo Ospedaliero "Vito Fazzi", Lecce, Italy
| | - Serena Marotta
- UOC Ematologia con Trapianto CSE, AORN "Antonio Cardarelli", Napoli, Italy
| | - Patrizio Mazza
- Ematologia e Trapianto di Midollo Osseo, Ospedale "San Giuseppe Moscati", Taranto, Italy
| | - Pellegrino Musto
- UOC di Ematologia con Trapianto, Dipartimento di Emergenza e Trapianti d'Organo, Università degli Studi "Aldo Moro" e AOUC Policlinico di Bari, Bari, Italy
| | - Immacolata Attolico
- UOC di Ematologia con Trapianto, Dipartimento di Emergenza e Trapianti d'Organo, Università degli Studi "Aldo Moro" e AOUC Policlinico di Bari, Bari, Italy
| | - Carmine Selleri
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università di Salerno, Salerno, Italy
| | - Filippo Antonio Canale
- Centro Unico Regionale Trapianti Cellule Staminali e Terapie Cellulari (CTMO), Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Marta Pugliese
- Centro Unico Regionale Trapianti Cellule Staminali e Terapie Cellulari (CTMO), Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Giovanni Tripepi
- Istituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche (CNR), Reggio Calabria, Italy
| | - Gaetana Porto
- Centro Unico Regionale Trapianti Cellule Staminali e Terapie Cellulari (CTMO), Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Giovanni Martinelli
- Unità di Ematologia, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Angelo Michele Carella
- Ospedale I.R.C.C.S. Casa Sollievo della Sofferenza - Centro Trapianti di Cellule Staminali, San Giovanni Rotondo, Italy
| | - Claudio Cerchione
- Unità di Ematologia, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
44
|
Duke ER, Williamson BD, Borate B, Golob JL, Wychera C, Stevens-Ayers T, Huang ML, Cossrow N, Wan H, Mast TC, Marks MA, Flowers ME, Jerome KR, Corey L, Gilbert PB, Schiffer JT, Boeckh M. CMV viral load kinetics as surrogate endpoints after allogeneic transplantation. J Clin Invest 2021; 131:133960. [PMID: 32970635 DOI: 10.1172/jci133960] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUNDViral load (VL) surrogate endpoints transformed development of HIV and hepatitis C therapeutics. Surrogate endpoints for CMV-related morbidity and mortality could advance development of antiviral treatments. Although observational data support using CMV VL as a trial endpoint, randomized controlled trials (RCTs) demonstrating direct associations between virological markers and clinical endpoints are lacking.METHODSWe performed CMV DNA PCR on frozen serum samples from the only placebo-controlled RCT of ganciclovir for early treatment of CMV after hematopoietic cell transplantation (HCT). We used established criteria to assess VL kinetics as surrogates for CMV disease or death by weeks 8, 24, and 48 after randomization and quantified antiviral effects captured by each marker. We used ensemble-based machine learning to assess the predictive ability of VL kinetics and performed this analysis on a ganciclovir prophylaxis RCT for validation.RESULTSVL suppression with ganciclovir reduced cumulative incidence of CMV disease and death for 20 years after HCT. Mean VL, peak VL, and change in VL during the first 5 weeks of treatment fulfilled the Prentice definition for surrogacy, capturing more than 95% of ganciclovir's effect, and yielded highly sensitive and specific predictions by week 48. In the prophylaxis trial, the viral shedding rate satisfied the Prentice definition for CMV disease by week 24.CONCLUSIONSOur results support using CMV VL kinetics as surrogates for CMV disease, provide a framework for developing CMV preventative and therapeutic agents, and support reductions in VL as the mechanism through which antivirals reduce CMV disease.FUNDINGMerck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.
Collapse
Affiliation(s)
- Elizabeth R Duke
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington, Seattle, Washington, USA
| | | | - Bhavesh Borate
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jonathan L Golob
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington, Seattle, Washington, USA
| | - Chiara Wychera
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Hong Wan
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | - Mary E Flowers
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington, Seattle, Washington, USA
| | - Lawrence Corey
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington, Seattle, Washington, USA
| | - Peter B Gilbert
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington, Seattle, Washington, USA
| | - Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington, Seattle, Washington, USA
| | - Michael Boeckh
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Imlay HN, Kaul DR. Letermovir and Maribavir for the Treatment and Prevention of Cytomegalovirus Infection in Solid Organ and Stem Cell Transplant Recipients. Clin Infect Dis 2021; 73:156-160. [PMID: 33197929 DOI: 10.1093/cid/ciaa1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Until recently, available drugs for cytomegalovirus (CMV) prevention and treatment in transplant patients included (val)ganciclovir, foscarnet, and cidofovir. Use of these drugs is limited by toxicity and the development of resistance. The 2017 approval of letermovir for prevention of CMV after stem cell transplant marked the first approval of an anti-CMV agent since 2003. The role of letermovir in treatment of established CMV infection or disease remains largely unstudied, although early reports suggest that a low barrier to resistance will likely limit efficacy as primary therapy for patients with refractory or resistant disease. The investigational agent maribavir has shown promise as preemptive treatment; in patients with refractory or resistant disease the emergence of resistance while on treatment has been observed and ongoing studies will define efficacy in this population. Both agents have unique mechanisms of action limiting cross resistance, and neither exhibit myelotoxicity or nephrotoxicity.
Collapse
Affiliation(s)
- Hannah N Imlay
- University of Utah, Department of Internal Medicine, Division of Infectious Diseases, Salt Lake City, Utah, USA
| | - Daniel R Kaul
- University of Michigan, Department of Internal Medicine, Division of Infectious Diseases, Ann Arbor, Michigan, USA
| |
Collapse
|
46
|
Koo S, Bold TD, Cheng MP, Farmakiotis D, Hill JA, Knoll B, Koullias Y, Letourneau AR, Little J, Moulton EA, Weiss ZF, Hammond SP. A eulogy for Dr Francisco Miguel Marty Forero. Transpl Infect Dis 2021; 23:e13645. [PMID: 34022099 DOI: 10.1111/tid.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
As some of those who were lucky enough to have been mentored by Dr Francisco Marty in transplant infectious diseases, we stand with the larger medical community in mourning his untimely death and in commemorating him as a uniquely exceptional and talented physician, investigator, teacher, mentor, friend, artist, and human being.
Collapse
Affiliation(s)
- Sophia Koo
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Tyler D Bold
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Matthew Pellan Cheng
- Division of Infectious Diseases, McGill University Health Centre, Montréal, QC, Canada
| | - Dimitrios Farmakiotis
- Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.,Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Bettina Knoll
- Division of Infectious Diseases, Westchester Medical Center, Valhalla, NY, USA
| | - Yiannis Koullias
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Alyssa R Letourneau
- Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Little
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Moulton
- Division of Infectious Diseases, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - Zoe Freeman Weiss
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah P Hammond
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
47
|
Abstract
Herpesviruses such as herpes simplex virus (HSV) type 1 and 2, varicella-zoster virus (VZV), and cytomegalovirus (CMV) maintain lifelong latency in the host after primary infection and can reactivate periodically either as asymptomatic viral shedding or as clinical disease. Immunosuppression, including biologic therapy, may increase frequency and severity of herpesvirus reactivation and infection. Licensed biologics are reviewed regarding their risks of potentiating HSV, VZV, and CMV reactivation and infection. Approaches to prophylaxis against HSV, VZV, and CMV infection or reactivation are discussed.
Collapse
Affiliation(s)
- Dora Y Ho
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building L-135, Stanford, CA 94305-5107, USA.
| | - Kyle Enriquez
- Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Ashrit Multani
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue CHS 37-121, Los Angeles, CA 90095-1688, USA
| |
Collapse
|
48
|
Choudhary S, Arora M, Verma H, Kumar M, Silakari O. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile. Eur J Pharmacol 2021; 899:174027. [PMID: 33731294 DOI: 10.1016/j.ejphar.2021.174027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The fused heterocyclic ring system has been recognized as a privileged structure that is used as a template in medicinal chemistry for drug discovery. Benzimidazole is one of the common scaffolds found in several natural products such as histidine, purines, and an integral part of vitamin B12. This hetero-aromatic bicyclic ring system acts as a pharmacophore in various drugs of therapeutic interest and has a broad spectrum of activity. Literature reports suggest that diversely substituted benzimidazoles possess distinct pharmacological profiles with multi-targeting potential, thereby, an indispensable anchor for the development of novel therapeutic agents against complex diseases such as cancer, malaria, inflammatory disorders, microbial diseases, hypertension, etc. Thus, lots of efforts have been diverted towards exploring the therapeutic potential of benzimidazoles. Despite great efforts made by the research community, still, some multi-factorial diseases continue to progress due to their complex pathophysiology. Under these sets of circumstances, there is a need to explore this nucleus for hybrid designing with multi-targeting potential against complex diseases. Benzimidazole-based hybrids have been reported to treat multifactorial diseases, making it a scaffold of interest for various pharmaceutical companies and research groups. In this write-up, we shed light on the recent pharmacological profiles, various designing strategies, and structure-activity relationships (SAR) of different benzimidazole-based hybrids.
Collapse
Affiliation(s)
- Shalki Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Mohit Arora
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
49
|
Li PH, Lin CH, Lin YH, Chen TC, Hsu CY, Teng CLJ. Cytomegalovirus prophylaxis using low-dose valganciclovir in patients with acute leukemia undergoing allogeneic hematopoietic stem-cell transplantation. Ther Adv Hematol 2021; 12:2040620721998124. [PMID: 33747424 PMCID: PMC7940724 DOI: 10.1177/2040620721998124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Background Letermovir prophylaxis is currently the standard of care for the prevention of cytomegalovirus (CMV) infections in allogeneic hematopoietic stem-cell transplantation (allo-HSCT). However, drug-drug interactions between letermovir and azoles or calcineurin inhibitors and the high financial burden of letermovir remain problematic, especially in resource-limited countries. It has not been clarified whether a lower dose of valganciclovir would constitute an effective strategy for CMV prevention in patients with acute leukemia undergoing allo-HSCT. Methods We retrospectively assessed 84 consecutive adult patients with acute leukemia who underwent allo-HSCT. These 84 patients were stratified into a valganciclovir prophylaxis group (n = 20) and a non-valganciclovir prophylaxis group (n = 64). Results Patients in the valganciclovir prophylaxis group had a lower possibility of CMV DNAemia at week 14 after allo-HSCT than those in the non-valganciclovir prophylaxis group (15.0% versus 50.0%; p = 0.012). The cumulative incidence of CMV DNAemia at week 14 was also lower in patients with valganciclovir CMV prophylaxis than in those without (15.0% versus 50.4%; p = 0.006). Multivariate analysis validated these data, showing that a low dose of valganciclovir significantly reduced the risk of CMV DNAemia at week 14 by 88% (hazard ratio: 0.12; 95% confidence interval: 0.04-0.42; p = 0.001). However, these two groups had similar overall survival rates at week 48 (75.0% versus 76.6%; p = 0.805). Four of 20 (20%) patients discontinued valganciclovir prophylaxis because of adverse events. Conclusion Low-dose valganciclovir prophylaxis could be an alternative to letermovir to prevent CMV infection in allo-HSCT, especially in resource-limited countries.
Collapse
Affiliation(s)
- Po-Hsien Li
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung
| | - Cheng-Hsien Lin
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung
| | - Yu-Hui Lin
- Division of Infectious Diseases, Department of Medicine, Taichung Veterans General Hospital, Taichung
| | - Tsung-Chih Chen
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung
| | - Chiann-Yi Hsu
- Biostatistics Task Force, Taichung Veterans General Hospital, Taichung
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Blvd., Taichung, 40705
| |
Collapse
|
50
|
Acosta E, Bowlin T, Brooks J, Chiang L, Hussein I, Kimberlin D, Kauvar LM, Leavitt R, Prichard M, Whitley R. Advances in the Development of Therapeutics for Cytomegalovirus Infections. J Infect Dis 2021; 221:S32-S44. [PMID: 32134483 DOI: 10.1093/infdis/jiz493] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of therapeutics for cytomegalovirus (CMV) infections, while progressing, has not matched the pace of new treatments of human immunodeficiency virus (HIV) infections; nevertheless, recent developments in the treatment of CMV infections have resulted in improved human health and perhaps will encourage the development of new therapeutic approaches. First, the deployment of ganciclovir and valganciclovir for both the prevention and treatment of CMV infections and disease in transplant recipients has been further improved with the licensure of the efficacious and less toxic letermovir. Regardless, late-onset CMV disease, specifically pneumonia, remains problematic. Second, the treatment of congenital CMV infections with valganciclovir has beneficially improved both hearing and neurologic outcomes, both fundamental advances for these children. In these pediatric studies, viral load was decreased but not eliminated. Thus, an important lesson learned from studies in both populations is the need for new antiviral agents and the necessity for combination therapies as has been shown to be beneficial in the treatment of HIV infections, among others. The development of monoclonal antibodies, sirtuins, and cyclopropovir may provide new treatment options.
Collapse
Affiliation(s)
- Edward Acosta
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | - David Kimberlin
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Mark Prichard
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard Whitley
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|