1
|
Pfeifer NM, Weber M, Wiegand E, Barth SA, Berens C, Menge C. Escherichia coli resistant to the highest priority critically important fluoroquinolone or 3rd and 4th generation cephalosporin antibiotics persist in pigsties. Appl Environ Microbiol 2025:e0138624. [PMID: 40338087 DOI: 10.1128/aem.01386-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Antimicrobial resistance threatens human and animal health, with antimicrobial usage being a key driver of selection, transmission, and spread of resistant bacteria. Livestock represents a potential reservoir for human transmission, leading authorities to restrict veterinary usage of fluoroquinolones and certain cephalosporins. However, growing evidence indicates that the corresponding resistance determinants can be retained even in the drugs' absence. To obtain data on the magnitude and dynamics of this phenomenon in pig farming, we quantitatively and qualitatively assessed fluoroquinolone- and cephalosporin-resistant Escherichia coli in Thuringian pigsties practicing a closed management system to minimize the impact of externally introduced strains. Pooled fecal samples from consecutive fattening runs at one conventional and two organic farms and from 25 piglet groups from another conventional farm were collected over 16 months and screened for E. coli on plates containing enrofloxacin, ceftiofur, or cefquinome. Resistant bacteria were isolated on all farms; their counts varied strongly but were generally higher in piglets and declined with increasing animal age. Phylogenetic comparison of 393 isolates was performed via multiple-locus variable number tandem repeat analysis (MLVA) to follow strain dynamics and persistence. The isolates displayed large phylogenetic heterogeneity, featuring 52 different MLVA patterns. Still, conserved MLVA patterns indicated long-term persistence of specific strains in each farm's environment. This suggests that resistant strains appear well-adapted to the particular farm and its management practices, implying that, beyond restricting usage, further measures, including, e.g., consideration of the type of resistance as well as its persistence and transmission dynamics, will be indispensable to reduce the antimicrobial resistance load in pork production.IMPORTANCEAntimicrobial resistance (AMR) represents a global threat to human and animal health, with animals considered a reservoir for transmission of AMR to humans. Because antimicrobial usage is a driver for resistance, one approach to decrease the AMR burden is to reduce its usage. However, this can, but does not necessarily, lead to lower AMR prevalence. German and EU legislation restrict the use of fluoroquinolones and certain cephalosporins, substance classes designated as highest priority critically important antimicrobials for human medicine, in animal husbandry. Longitudinal sampling of organic and conventional farms in Thuringia for resistance to these antibiotic classes revealed that certain resistant Escherichia coli strains can persist in the farm environment over extended time periods. These strains displayed farm specificity, indicating adaptation to the particular farm and its management practices, so that their elimination might be difficult, requiring either procedures acting generally against Enterobacterales or targeted action against the specific strains.
Collapse
Affiliation(s)
- Nicola M Pfeifer
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Michael Weber
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Elisabeth Wiegand
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
2
|
Farooq A, Rafique A, Han E, Park SM. Global dissemination of the beta-lactam resistance gene blaTEM-1 among pathogenic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178521. [PMID: 39824112 DOI: 10.1016/j.scitotenv.2025.178521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Antibiotic resistance presents a burgeoning global health crisis, with over 70 % of pathogenic bacteria now exhibiting resistance to at least one antibiotic. This study leverages a vast dataset of 618,853 pathogenic bacterial genomes from the NCBI pathogen detection database, offering comprehensive insights into antibiotic resistance patterns, species-specific profiles, and transmission dynamics of resistant pathogens. We centered our investigation on the beta-lactam resistance gene blaTEM-1, found in 43,339 genomes, revealing its extensive distribution across diverse species and isolation sources. The study unveiled the prevalence of 15 prominent antibiotic resistance genes (ARGs), including those conferring resistance to beta-lactam, aminoglycoside, and tetracycline antibiotics. Distinct resistance patterns were observed between Gram-positive and Gram-negative bacteria, indicating the influence of phylogeny on resistance dissemination. Notably, the blaTEM-1 gene demonstrated substantial prevalence across a wide array of bacterial species (8) and a high number of isolation sources (11). Genetic context analysis revealed associations between blaTEM-1 and mobile genetic elements (MGEs) like transposons and insertion sequences. Additionally, we observed recent horizontal transfer events involving clusters of blaTEM-1 genes and MGEs underscore the potential of MGEs in facilitating the mobilization of ARGs. Our findings underscore the importance of adopting a One Health approach to global genomic pathogen surveillance, aiming to uncover the transmission routes of ARGs and formulate strategies to address the escalating antibiotic resistance crisis.
Collapse
Affiliation(s)
- Adeel Farooq
- Research Institute for Basic Sciences (RIBS), Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Republic of Korea.
| | - Asma Rafique
- Department of Microbiology and Immunology, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eunyoung Han
- Department of Biotechnology, College of Applied Life Sciences, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam 50834, Republic of Korea
| | - Soo-Min Park
- Department of Biotechnology, College of Applied Life Sciences, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam 50834, Republic of Korea
| |
Collapse
|
3
|
Basnet A, Kilonzo-Nthenge A. Antibiogram profiles of pathogenic and commensal bacteria in goat and sheep feces on smallholder farm. FRONTIERS IN ANTIBIOTICS 2024; 3:1351725. [PMID: 39816253 PMCID: PMC11732006 DOI: 10.3389/frabi.2024.1351725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/02/2024] [Indexed: 01/18/2025]
Abstract
Introduction The increase of antimicrobial resistance (AMR) in zoonotic pathogens poses a substantial threat to both animal production and human health. Although large-scale animal farms are acknowledged as major reservoirs for AMR, there is a notable knowledge gap concerning AMR in small-scale farms. This study seeks to address this gap by collecting and analyzing 137 fecal samples from goat and sheep farms in Tennessee and Georgia. Method Bacteria were identified using culture-dependent methods and polymerase chain reaction (PCR), and antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer Disk Diffusion method. Results and discussion The prevalence of E. coli (94.9%) in goats and sheep significantly exceeded (p < 0.05) that of S. aureus (81.0%), Shigella (35.0%), S. saprophyticus, and Salmonella (3.0%). Salmonella occurrence in goat feces (2.2%) was higher than in sheep (0.8%). Notably, 27% of goats and 8% of sheep tested positive for Shigella spp., while 60% of goats and 21% of sheep tested positive for S. aureus. Antibiotic resistance was observed primarily against ampicillin (79.4%), vancomycin (65.1%), and gentamycin (63.6%), significantly surpassing (p < 0.05) resistance to tetracycline (41.6%) and imipenem (21.8%). The penicillin (79.4%), glycopeptide (65.1%), and aminoglycoside (63.6%) antibiotic classes displayed significantly higher (p < 0.05) resistance compared to tetracyclines (45.7%) and carbapenem (21.8%). Our findings suggest that goats and sheep feces may serve as source for multidrug-resistant bacteria, raising concerns about the potential introduction of their fecal matter into soil, water, and eventually to the food chain. This highlights the need for proactive measures to address and mitigate AMR in goats and sheep within small-scale farms.
Collapse
|
4
|
Jaleta M, Junker V, Kolte B, Börger M, Werner D, Dolsdorf C, Schwenker J, Hölzel C, Zentek J, Amon T, Nübel U, Kabelitz T. Improvements of weaned pigs barn hygiene to reduce the spread of antimicrobial resistance. Front Microbiol 2024; 15:1393923. [PMID: 38812683 PMCID: PMC11135127 DOI: 10.3389/fmicb.2024.1393923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The spread of antimicrobial resistance (AMR) in animal husbandry is usually attributed to the use of antibiotics and poor hygiene and biosecurity. We therefore conducted experimental trials to improve hygiene management in weaned pig houses and assessed the impact on the spread. For each of the two groups examined, the experimental group (EG) and the control group (CG), three replicate batches of piglets from the same pig breeder, kept in pre-cleaned flat decks, were analyzed. In the flat decks of the experimental groups, the hygiene conditions (cleaning, disinfection, dust removal and fly control) were improved, while regular hygiene measures were carried out in the control groups. The occurrence and spread of AMR were determined in Escherichia coli (E. coli; resistance indicator) using cultivation-dependent (CFU) and -independent (qPCR) methods as well as whole genome sequencing of isolates in samples of various origins, including feces, flies, feed, dust and swabs. Surprisingly, there were no significant differences (p > 0.05) in the prevalence of resistant E. coli between the flat decks managed with conventional techniques and those managed with improved techniques. Selective cultivation delivered ampicillin- and sulfonamide-resistant E. coli proportions of up to 100% and 1.2%, respectively. While 0.5% E. coli resistant to cefotaxime and no ciprofloxacin resistance were detected. There was a significant difference (p < 0.01) in the abundance of the blaTEM-1 gene in fecal samples between EG and CG groups. The colonization of piglets with resistant pathogens before arrival, the movement of flies in the barn and the treatment of bacterial infections with antibiotics obscured the effects of hygiene improvement. Biocide tolerance tests showed no development of resistance to the farm regular disinfectant. Managing hygiene alone was insufficient for reducing antimicrobial resistances in piglet rearing. We conclude that the complex factors contributing to the presence and distribution of AMR in piglet barns underscore the necessity for a comprehensive management strategy.
Collapse
Affiliation(s)
- Megarsa Jaleta
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Dahlem Research School, Freie Universität Berlin, Berlin, Germany
| | - Vera Junker
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Baban Kolte
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Maria Börger
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Claudia Dolsdorf
- Teaching and Research Station for Animal Breeding and Husbandry (LVAT), Ruhlsdorf, Germany
| | - Julia Schwenker
- Faculty of Agricultural and Nutritional Sciences Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Hölzel
- Faculty of Agricultural and Nutritional Sciences Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Free University Berlin, Berlin, Germany
| | - Thomas Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Ulrich Nübel
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
5
|
Hyeon JY, Kim J, Chung DH, Helal ZH, Polkowski R, Lee DH, Risatti GR. Genome analysis of Streptococcus spp. isolates from animals in pre-antibiotic era with respect to antibiotic susceptibility and virulence gene profiles. Vet Res 2024; 55:51. [PMID: 38622639 PMCID: PMC11017511 DOI: 10.1186/s13567-024-01302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Lyophilized Streptococcus spp. isolates (n = 50) from animal samples submitted to the diagnostic laboratory at the University of Connecticut in the 1940s were revivified to investigate the genetic characteristics using whole-genome sequencing (WGS). The Streptococcus spp. isolates were identified as follows; S. agalactiae (n = 14), S. dysgalactiae subsp. dysgalactiae (n = 10), S. dysgalactiae subsp. equisimils (n = 5), S. uberis (n = 8), S. pyogenes (n = 7), S. equi subsp. zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus (n = 1). We identified sequence types (ST) of S. agalactiae, S. dysgalactiae, S. uberis, S. pyogenes, and S. equi subsp. zooepidemicus and reported ten novel sequence types of those species. WGS analysis revealed that none of Streptococcus spp. carried antibiotic resistance genes. However, tetracycline resistance was observed in four out of 15 S. dysgalactiae isolates and in one out of four S. equi subsp. zooepidemicus isolate. This data highlights that antimicrobial resistance is pre-existed in nature before the use of antibiotics. The draft genome sequences of isolates from this study and 426 complete genome sequences of Streptococcus spp. downloaded from BV-BRC and NCBI GenBank database were analyzed for virulence gene profiles and phylogenetic relationships. Different Streptococcus species demonstrated distinct virulence gene profiles, with no time-related variations observed. Phylogenetic analysis revealed high genetic diversity of Streptococcus spp. isolates from the 1940s, and no clear spatio-temporal clustering patterns were observed among Streptococcus spp. analyzed in this study. This study provides an invaluable resource for studying the evolutionary aspects of antibiotic resistance acquisition and virulence in Streptococcus spp.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Junwon Kim
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - David H Chung
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Zeinab H Helal
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Robert Polkowski
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| | - Guillermo R Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
6
|
Uzairue LI, Shittu OB, Ojo OE, Obuotor TM, Olanipekun G, Ajose T, Arogbonlo R, Medugu N, Ebruke B, Obaro SK. Antimicrobial resistance and virulence genes of invasive Salmonella enterica from children with bacteremia in north-central Nigeria. SAGE Open Med 2023; 11:20503121231175322. [PMID: 37223673 PMCID: PMC10201152 DOI: 10.1177/20503121231175322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Objectives Bacteremia due to invasive Salmonella enterica has been reported earlier in children in Nigeria. This study aimed to detect the virulence and antibiotic resistance genes of invasive Salmonella enterica from children with bacteremia in north-central Nigeria. Method From June 2015 to June 2018, 4163 blood cultures yielded 83 Salmonella isolates. This is a secondary cross-sectional analysis of the Salmonella isolates. The Salmonella enterica were isolated and identified using standard bacteriology protocol. Biochemical identifications of the Salmonella enterica were made by Phoenix MD 50 identification system. Further identification and confirmation were done with polyvalent antisera O and invA gene. Antimicrobial susceptibility testing was done following clinical and laboratory standard institute guidelines. Resistant genes and virulence genes were determined using a real-time polymerase chain reaction. Result Salmonella typhi 51 (61.4%) was the most prevalent serovar, followed by Salmonella species 13 (15.7%), choleraesuis 8 (9.6%), enteritidis 6 (7.2%), and typhimurium 5 (6.1%). Fifty-one (61.4%) of 83 Salmonella enterica were typhoidal, while 32 (38.6%) were not. Sixty-five (78.3%) of the 83 Salmonella enterica isolates were resistant to ampicillin and trimethoprim-sulfamethoxazole, followed by chloramphenicol 39 (46.7%), tetracycline 41 (41.4%), piperacillin 33 (33.9%), amoxicillin-clavulanate, and streptomycin 21 (25.3%), while cephalothin was 19 (22.9%). Thirty-nine (46.9%) of the 83 Salmonella enterica isolates were multi-drug resistant, and none were extensive drug resistant or pan-drug resistant. A blaTEM 42 (50.6%), floR 32 (38.6%), qnrA 24 (28.9%), tetB 20 (20.1%), tetA 10 (10.0%), and tetG 5 (6.0%) were the antibiotic resistance genes detected. There were perfect agreement between phenotypic and genotypic detection of antimicrobial resistance in tetracycline, ciprofloxacin, and chloramphenicol, while beta-lactam showed κ = 0.60 agreement. All of the Salmonella enterica isolates had the virulence genes invA, sopB, mgtC, and sip4D, while 33 (39.8%), 45 (51.8%), and 2 (2.4%) had ssaQ, spvC, and ljsGI-1, respectively. Conclusion Our findings showed multi-drug resistant Salmonella enterica in children with bacteremia in northern Nigeria. In addition, significant virulence and antimicrobial resistance genes were found in invasive Salmonella enterica in northern Nigeria. Thus, our study emphasizes the need to monitor antimicrobial resistance in Salmonella enterica from invasive sources in Nigeria and supports antibiotic prudence.
Collapse
Affiliation(s)
- Leonard I Uzairue
- Department of Microbiology, Federal
University of Agriculture, Abeokuta, Ogun State, Nigeria
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
- Department of Medical Laboratory
Sciences, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Olufunke B Shittu
- Department of Microbiology, Federal
University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Olufemi E Ojo
- Department of Veterinary Microbiology
and Parasitology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Tolulope M Obuotor
- Department of Microbiology, Federal
University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Grace Olanipekun
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
| | - Theresa Ajose
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
| | - Ronke Arogbonlo
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
| | - Nubwa Medugu
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
- Department of Microbiology and
Parasitology, National Hospital, Abuja, FCT, Nigeria
| | - Bernard Ebruke
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
| | - Stephen K Obaro
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
- Pediatric Infectious Division, the
University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
7
|
Abbas AM, Fisal SR, Radwan A, Makhlouf M, Orabi AS. Novel action for ampicillin derivative and its complexes: Physicochemical, thermal analysis, DNA interaction, docking with FabH protein, in silico, and in vitro studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Müller AR, Leite BR, Corção G. Analysis of Antibiotic Resistance and Biofilm-Forming Capacity in Tetracycline-Resistant Bacteria from a Coastal Lagoon. Microb Drug Resist 2022; 28:654-659. [PMID: 35325574 DOI: 10.1089/mdr.2021.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Concerns have been raised regarding co-selection for antibiotic resistance among bacteria exposed to antibiotics used as growth promoters for some livestock and poultry species. Tetracycline had been commonly used for this purpose worldwide, and its residue has been associated with selection of resistant bacteria in aquatic biofilms. This study aimed to determine the resistance profile, the existence of some beta-lactamases genes and the capacity to form biofilm of bacteria isolated from water samples previously exposed to tetracycline (20 mg/L). Thirty-seven tetracycline-resistant bacterial strains were identified as Serratia marcescens, Escherichia coli, Morganella morganii, Pseudomonas aeruginosa, Citrobacter freundii, Providencia alcalifaciens, and Enterococcus faecium. The highest percentage of resistance was for ampicillin (75.75%) and amoxicillin/clavulanic acid (66.66%) in the Gram-negative bacteria and an E. faecium strain showed high resistance to vancomycin (minimum inhibitory concentration 250 μg/mL). Among the strains analyzed, 81.09% had multidrug resistance and eight Gram-negatives carried the blaOXA-48 gene. All strains were able to form biofilm and 43.23% were strong biofilm formers. This study suggests that resistant bacteria can be selected under selection pressure of tetracycline, and that these bacteria could contribute to the maintenance and spread of antimicrobial resistance in this environment.
Collapse
Affiliation(s)
- Aline Reis Müller
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Belize Rodrigues Leite
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Gertrudes Corção
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Monteiro GP, de Melo RT, Guidotti-Takeuchi M, Dumont CF, Ribeiro RAC, Guerra W, Ramos LMS, Paixão DA, dos Santos FAL, Rodrigues DDP, Boleij P, Hoepers PG, Rossi DA. A Ternary Copper (II) Complex with 4-Fluorophenoxyacetic Acid Hydrazide in Combination with Antibiotics Exhibits Positive Synergistic Effect against Salmonella Typhimurium. Antibiotics (Basel) 2022; 11:388. [PMID: 35326852 PMCID: PMC8944508 DOI: 10.3390/antibiotics11030388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella spp. continues to figure prominently in world epidemiological registries as one of the leading causes of bacterial foodborne disease. We characterised 43 Brazilian lineages of Salmonella Typhimurium (ST) strains, characterized drug resistance patterns, tested copper (II) complex as control options, and proposed effective antimicrobial measures. The minimum inhibitory concentration was evaluated for seven antimicrobials, isolated and combined with the copper (II) complex [Cu(4-FH)(phen)(ClO4)2] (4-FH = 4-fluorophenoxyacetic acid hydrazide and phen = 1,10-phenanthroline), known as DRI-12, in planktonic and sessile ST. In parallel, 42 resistance genes were screened (PCR/microarray). All strains were multidrug resistant (MDR). Resistance to carbapenems and polymyxins (86 and 88%, respectively) have drawn attention to the emergence of the problem in Brazil, and resistance is observed also to CIP and CFT (42 and 67%, respectively), the drugs of choice in treatment. Resistance to beta-lactams was associated with the genes blaTEM/blaCTX-M in 39% of the strains. Lower concentrations of DRI-12 (62.7 mg/L, or 100 μM) controlled planktonic and sessile ST in relation to AMP/SUL/TET and AMP/SUL/TET/COL, respectively. The synergistic effect provided by DRI-12 was significant for COL/CFT and COL/AMP in planktonic and sessile ST, respectively, and represents promising alternatives for the control of MDR ST.
Collapse
Affiliation(s)
- Guilherme Paz Monteiro
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Rosanne Aparecida Capanema Ribeiro
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Wendell Guerra
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Luana Munique Sousa Ramos
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Drielly Aparecida Paixão
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Fernanda Aparecida Longato dos Santos
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | | | - Peter Boleij
- Check-Points B.V., 6709 PD Wageningen, The Netherlands;
| | - Patrícia Giovana Hoepers
- Postgraduate Program in Veterinary Science, Federal University of Uberlândia, Uberlândia 38402-018, Brazil;
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| |
Collapse
|
10
|
Shittu OB, Uzairue LI, Ojo OE, Obuotor TM, Folorunso JB, Raheem-Ademola RR, Olanipekun G, Ajose T, Medugu N, Ebruke B, Obaro SK. Antimicrobial resistance and virulence genes in Salmonella enterica serovars isolated from droppings of layer chicken in two farms in Nigeria. J Appl Microbiol 2022; 132:3891-3906. [PMID: 35129256 DOI: 10.1111/jam.15477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
AIM This study aimed to investigate the isolation rate, antibiotic resistance, and virulence genes of Salmonella enterica serovar from two commercial farms in Nigeria. METHODS AND RESULTS Salmonella isolation was performed according to the United States Food and Drug Agency (USFDA) method. Serotyping, antimicrobial susceptibility testing, detection of resistance and virulence genes were done using the Kauffman-White Scheme, disc diffusion, minimum inhibitory concentration, and real-time polymerase chain reaction techniques. Salmonella serovars were isolated from only farm A at 22/50 (44.0%) while none were isolated from farm B. Salmonella Typhi, 9 (40.9%); Salmonella Typhimurium, 2 (9.1%), Salmonella Enteritidis, 2 (9.1%), Salmonella Pullorum, 1 (4.5%), Salmonella Kentucky, 4 (18.2%) were identified while 4 (18.2%) were untypable. Sixteen isolates (72.7%) showed multiple drug resistance and 17 different resistance profile types with AMP-CHL-TRM-SXT as the most prevalent pattern. Resistance genes (blaTEM, 12/22 (54.5%) and virulence genes (InvA, sopB, mgtC, and spi4D, 22/22 (100.0%), ssaQ, 16/22 (72.7%), and spvC, 13/22 (59.1%) were found, while blaSHV, blaCTX-M, floR, tetA, tetB, tetG, and LJSGI-1 genes were absent. CONCLUSION Pathogenic Salmonella were isolated from the chicken droppings in this study. Most of these strains were resistant to antibiotics and possessed characteristics of virulence. SIGNIFICANCE AND IMPACT OF THE STUDY Chicken droppings from this study area contained pathogenic strains of Salmonella and a rare occurrence of Salmonella Typhi. The study revealed that the environment and the food chain could be at risk of contamination of highly virulent and antimicrobial-resistant strains of Salmonella. These could affect the profitability of the poultry industry and food consumption. There is a need for caution in indiscriminate disposal of poultry waste and the use of uncomposted chicken droppings in soil amendment.
Collapse
Affiliation(s)
- Olufunke B Shittu
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Leonard I Uzairue
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.,International Foundation Against Infectious Disease in Nigeria(IFAIN), Abuja, Nigeria.,Department of Medical Laboratory Sciences, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Olufemi E Ojo
- Department of Veterinary Microbiology and Parasitology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Tolulope M Obuotor
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Jamiu B Folorunso
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.,Department of Community Medicine, Olabisi Onabanjo Teaching Hospital, Nigeria
| | | | - Grace Olanipekun
- International Foundation Against Infectious Disease in Nigeria(IFAIN), Abuja, Nigeria
| | - Theresa Ajose
- International Foundation Against Infectious Disease in Nigeria(IFAIN), Abuja, Nigeria
| | - Nubwa Medugu
- International Foundation Against Infectious Disease in Nigeria(IFAIN), Abuja, Nigeria.,Department of Microbiology and Parasitology, National Hospital, Abuja, Nigeria
| | - Bernard Ebruke
- International Foundation Against Infectious Disease in Nigeria(IFAIN), Abuja, Nigeria
| | - Stephen K Obaro
- International Foundation Against Infectious Disease in Nigeria(IFAIN), Abuja, Nigeria.,Pediatric Infectious Division, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
11
|
Ksibi B, Ktari S, Ghedira K, Othman H, Maalej S, Mnif B, Fabre L, Rhimi F, Hello SL, Hammami A. Antimicrobial resistance genes, virulence markers and prophage sequences in Salmonella enterica serovar Enteritidis isolated in Tunisia using whole genome sequencing. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100151. [PMID: 35909609 PMCID: PMC9325895 DOI: 10.1016/j.crmicr.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antimcrobial resistance genes, virulence factors and prophage sequences were studied in WGS of 45 Salmonella Enteritidis from different sources. WGS is most powerful tool for determining genomic variation in S. Enteritidis. Two major lineages of S. Enteritidis were detected in Tunisia. Missense mutations identified in virulence genes were mostly detected in lineage B. Salmon118970_sal3 and RE_2010 phages were detected in lineage A and lineage B, respectively.
Salmonella Enteritidis causes a major public health problem in the world. Whole genome sequencing can give us a lot of information not only about the phylogenetic relatedness of these bacteria but also in antimicrobial resistance and virulence gene predictions. In this study, we analyzed the whole genome data of 45 S. Enteritidis isolates recovered in Tunisia from different origins, human, animal, and foodborne samples. Two major lineages (A and B) were detected based on 802 SNPs differences. Among these SNPs, 493 missense SNPs were identified. A total of 349 orthologue genes mutated by one or two missense SNPs were classified in 22 functional groups with the prevalence of carbohydrate transport and metabolism group. A good correlation between genotypic antibiotic resistance profiles and phenotypic analysis were observed. Only resistant isolates carried the respective molecular resistant determinants. The investigation of virulence markers showed the distribution of 11 Salmonella pathogenicity islands (SPI) out of 23 previously described. The SPI-1 and SPI-2 genes encoding type III secretion systems were highly conserved in all isolates except one. In addition, the virulence plasmid genes were present in all isolates except two. We showed the presence of two fimbrial operons sef and ste previously considered to be specific for typhoidal Salmonella. Our collection of S. Enteritidis reveal a diversity among prophage profiles. SNPs analysis showed that missense mutations identified in fimbriae and in SPI-1 and SPI-2 genes were mostly detected in lineage B. In conclusion, WGS is a powerful application to study functional genomic determinants of S. Enteritidis such as antimicrobial resistance genes, virulence markers and prophage sequences. Further studies are needed to predict the impact of the missenses SNPs that can affect the protein functions associated with pathogenicity.
Collapse
|
12
|
Wang Y, Hou M, Kan Z, Zhang G, Li Y, Zhou L, Wang C. Identification of Novel Type Three Secretion System (T3SS) Inhibitors by Computational Methods and Anti- Salmonella Evaluations. Front Pharmacol 2021; 12:764191. [PMID: 34867388 PMCID: PMC8635108 DOI: 10.3389/fphar.2021.764191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Three type III secretion system (T3SS) inhibitors (compounds 5, 19, and 32) were identified by virtual screening and biological evaluation. These three compounds were evaluated against a panel of Salmonella species strains including S. enteritidis, S. typhi, S. typhimurium, S. paratyphi, and S. abortus equi, and their minimum inhibitory concentrations ranged from 1 to 53 μg/ml. Especially, these compounds showed comparable activity as the of the positive control gatifloxacin towards S. abortus equi. The present results suggest that these new T3SS inhibitors could be used as a potential lead molecule for drug development of anti-Salmonella.
Collapse
Affiliation(s)
- Yonghui Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Meihui Hou
- Burns and Plastic Surgery Department, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Zhaodong Kan
- Laizhou City Laiyu Chemical Co., Ltd., Laizhou, China
| | | | - Yunxia Li
- Laizhou City Laiyu Chemical Co., Ltd., Laizhou, China
| | - Lei Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
13
|
Lee JH, Kim TY, Malik SK, Jeon JH, Kim YB, Lee SH. Urgent Action on Tackling Antibiotic Resistance. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1902-1903. [PMID: 34722387 PMCID: PMC8542810 DOI: 10.18502/ijph.v50i9.7064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/27/2019] [Indexed: 11/25/2022]
Abstract
The article's abstract is not available.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 17058, Republic of Korea
| | - Tae Yeong Kim
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 17058, Republic of Korea
| | - Sumera Kausar Malik
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 17058, Republic of Korea
| | - Young Bae Kim
- Biotechnology Program, North Shore Community College, 1 Ferncroft Road, Danvers, MA 01923, USA
| | - Sang Hee Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 17058, Republic of Korea
| |
Collapse
|
14
|
Dong X, Chao Y, Zhou Y, Zhou R, Zhang W, Fischetti VA, Wang X, Feng Y, Li J. The global emergence of a novel Streptococcus suis clade associated with human infections. EMBO Mol Med 2021; 13:e13810. [PMID: 34137500 PMCID: PMC8261479 DOI: 10.15252/emmm.202013810] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis, a ubiquitous bacterial colonizer in pigs, has recently extended host range to humans, leading to a global surge of deadly human infections and three large outbreaks since 1998. To better understand the mechanisms for the emergence of cross-species transmission and virulence in human, we have sequenced 366 S. suis human and pig isolates from 2005 to 2016 and performed a large-scale phylogenomic analysis on 1,634 isolates from 14 countries over 36 years. We show the formation of a novel human-associated clade (HAC) diversified from swine S. suis isolates. Phylogeographic analysis identified Europe as the origin of HAC, coinciding with the exportation of European swine breeds between 1960s and 1970s. HAC is composed of three sub-lineages and contains several healthy-pig isolates that display high virulence in experimental infections, suggesting healthy-pig carriers as a potential source for human infection. New HAC-specific genes are identified as promising markers for pathogen detection and surveillance. Our discovery of a human-associated S. suis clade provides insights into the evolution of this emerging human pathogen and extend our understanding of S. suis epidemics worldwide.
Collapse
Affiliation(s)
- Xingxing Dong
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National R&D Center for Se‐rich Agricultural Products ProcessingHubei Engineering Research Center for Deep Processing of Green Se‐rich Agricultural ProductsSchool of Modern Industry for Selenium Science and EngineeringWuhan Polytechnic UniversityWuhanChina
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH)CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghaiChina
| | - Yang Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
| | - Rui Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Wei Zhang
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingChina
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and ImmunologyThe Rockefeller UniversityNew YorkNYUSA
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ye Feng
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jinquan Li
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Laboratory of Bacterial Pathogenesis and ImmunologyThe Rockefeller UniversityNew YorkNYUSA
| |
Collapse
|
15
|
Bonnin RA, Dortet L, Naas T. Acquired carbapenemase in Acinetobacter during the pre-antibiotic era. THE LANCET MICROBE 2021; 2:e137. [DOI: 10.1016/s2666-5247(21)00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/21/2022] Open
|
16
|
Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, Wenner N, Rodwell EV, Kumwenda B, Zhu X, Bennett RJ, Stenhouse GE, Malaka De Silva P, Webster HJ, Bengoechea JA, Dumigan A, Tran-Dien A, Prakash R, Banda HC, Alufandika L, Mautanga MP, Bowers-Barnard A, Beliavskaia AY, Predeus AV, Rowe WPM, Darby AC, Hall N, Weill FX, Gordon MA, Feasey NA, Baker KS, Hinton JCD. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 2021; 6:327-338. [PMID: 33349664 PMCID: PMC8018540 DOI: 10.1038/s41564-020-00836-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.
Collapse
Affiliation(s)
- Caisey V Pulford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Blanca M Perez-Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rocío Canals
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jessica A Bevington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bengtsson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ella V Rodwell
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Xiaojun Zhu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bennett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - George E Stenhouse
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - P Malaka De Silva
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hermione J Webster
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Alicia Tran-Dien
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, France
| | - Reenesh Prakash
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Happy C Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Lovemore Alufandika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mike P Mautanga
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Arthur Bowers-Barnard
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexandra Y Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexander V Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Will P M Rowe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Melita A Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Nicholas A Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kate S Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
17
|
Wilson CN, Pulford CV, Akoko J, Perez Sepulveda B, Predeus AV, Bevington J, Duncan P, Hall N, Wigley P, Feasey N, Pinchbeck G, Hinton JCD, Gordon MA, Fèvre EM. Salmonella identified in pigs in Kenya and Malawi reveals the potential for zoonotic transmission in emerging pork markets. PLoS Negl Trop Dis 2020; 14:e0008796. [PMID: 33232324 PMCID: PMC7748489 DOI: 10.1371/journal.pntd.0008796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/18/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Salmonella is a major cause of foodborne disease globally. Pigs can carry and shed non-typhoidal Salmonella (NTS) asymptomatically, representing a significant reservoir for these pathogens. To investigate Salmonella carriage by African domestic pigs, faecal and mesenteric lymph node samples were taken at slaughter in Nairobi, Busia (Kenya) and Chikwawa (Malawi) between October 2016 and May 2017. Selective culture, antisera testing and whole genome sequencing were performed on samples from 647 pigs; the prevalence of NTS carriage was 12.7% in Busia, 9.1% in Nairobi and 24.6% in Chikwawa. Two isolates of S. Typhimurium ST313 were isolated, but were more closely related to ST313 isolates associated with gastroenteritis in the UK than bloodstream infection in Africa. The discovery of porcine NTS carriage in Kenya and Malawi reveals potential for zoonotic transmission of diarrhoeal strains to humans in these countries, but not for transmission of clades specifically associated with invasive NTS disease in Africa.
Collapse
Affiliation(s)
- Catherine N. Wilson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- International Livestock Research Institute, Nairobi, Kenya
| | - Caisey V. Pulford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Blanca Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jessica Bevington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Duncan
- Ministry of Agriculture, Food Security, Irrigation and Water Development, Malawi Government
| | - Neil Hall
- Earlham Institute, Norwich, United Kingdom
| | - Paul Wigley
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Feasey
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gina Pinchbeck
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Melita A. Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
18
|
Abbas AM, Fisal SR, Orabi AS. Novel β-lactam antibiotic derivative and its complexes: DFT, frontier energy levels, DNA interaction, docking, physicochemical and antimicrobial properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Maldonado-Carmona N, Ouk TS, Calvete MJF, Pereira MM, Villandier N, Leroy-Lhez S. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 2020; 19:445-461. [PMID: 32104827 DOI: 10.1039/c9pp00398c] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Previously eradicated infectious diseases are now resurgent as multi-drug resistant strains, leading to expensive, toxic and, in some cases, ineffective antimicrobial treatments. Given this outlook, researchers are willing to investigate novel antimicrobial treatments that may be able to deal with antimicrobial resistance, namely photodynamic therapy (PDT). PDT relies on the generation of toxic reactive oxygen species (ROS) in the presence of light and a photosensitizer (PS) molecule. PDT has been known for almost a century, but most of its applications have been directed towards the treatment of cancer and topical diseases. Unlike classical antimicrobial chemotherapy treatments, photodynamic antimicrobial chemotherapy (PACT) has a non-target specific mechanism of action, based on the generation of ROS, working against cellular membranes, walls, proteins, lipids and nucleic acids. This non-specific mechanism diminishes the chances of bacteria developing resistance. However, PSs usually are large molecules, prone to aggregation, diminishing their efficiency. This review will report the development of materials obtained from natural sources, as delivery systems for photosensitizing molecules against microorganisms. The present work emphasizes on the biological results rather than on the synthesis routes to prepare the conjugates. Also, it discusses the current state of the art, providing our perspective on the field.
Collapse
|
20
|
Looking Backward To Move Forward: the Utility of Sequencing Historical Bacterial Genomes. J Clin Microbiol 2019; 57:JCM.00100-19. [PMID: 31092597 DOI: 10.1128/jcm.00100-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many pathogens that caused devastating disease throughout human history, such as Yersinia pestis, Mycobacterium tuberculosis, and Mycobacterium leprae, remain problematic today. Historical bacterial genomes represent a unique source of genetic information and advancements in sequencing technologies have allowed unprecedented insights from this previously understudied resource. This minireview brings together example studies which have utilized ancient DNA, individual historical isolates (both extant and dead) and collections of historical isolates. The studies span human history and highlight the contribution that sequencing and analysis of historical bacterial genomes have made to a wide variety of fields. From providing retrospective diagnosis, to uncovering epidemiological pathways and characterizing genetic diversity, there is clear evidence for the utility of historical isolate studies in understanding disease today. Studies utilizing historical isolate collections, such as those from the National Collection of Type Cultures, the American Type Culture Collection, and the Institut Pasteur, offer enhanced insight since they typically span a wide time period encompassing important historical events and are useful for the investigating the phylodynamics of pathogens. Furthermore, historical sequencing studies are particularly useful for looking into the evolution of antimicrobial resistance, a major public health concern. In summary, although there are limitations to working with historical bacterial isolates, especially when utilizing ancient DNA, continued improvement in molecular and sequencing technologies and the resourcefulness of investigators mean this area of study will continue to expand and contribute to the understanding of pathogens.
Collapse
|
21
|
McMillan EA, Gupta SK, Williams LE, Jové T, Hiott LM, Woodley TA, Barrett JB, Jackson CR, Wasilenko JL, Simmons M, Tillman GE, McClelland M, Frye JG. Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. Front Microbiol 2019; 10:832. [PMID: 31057528 PMCID: PMC6479191 DOI: 10.3389/fmicb.2019.00832] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
The ability of antimicrobial resistance (AR) to transfer, on mobile genetic elements (MGEs) between bacteria, can cause the rapid establishment of multidrug resistance (MDR) in bacteria from animals, thus creating a foodborne risk to human health. To investigate MDR and its association with plasmids in Salmonella enterica, whole genome sequence (WGS) analysis was performed on 193 S. enterica isolated from sources associated with United States food animals between 1998 and 2011; 119 were resistant to at least one antibiotic tested. Isolates represented 86 serotypes and variants, as well as diverse phenotypic resistance profiles. A total of 923 AR genes and 212 plasmids were identified among the 193 strains. Every isolate contained at least one AR gene. At least one plasmid was detected in 157 isolates. Genes were identified for resistance to aminoglycosides (n = 472), β-lactams (n = 84), tetracyclines (n = 171), sulfonamides (n = 91), phenicols (n = 42), trimethoprim (n = 8), macrolides (n = 5), fosfomycin (n = 48), and rifampicin (n = 2). Plasmid replicon types detected in the isolates were A/C (n = 32), ColE (n = 76), F (n = 43), HI1 (n = 4), HI2 (n = 20), I1 (n = 62), N (n = 4), Q (n = 7), and X (n = 35). Phenotypic resistance correlated with the AR genes identified in 95.4% of cases. Most AR genes were located on plasmids, with many plasmids harboring multiple AR genes. Six antibiotic resistance cassette structures (ARCs) and one pseudo-cassette were identified. ARCs contained between one and five resistance genes (ARC1: sul2, strAB, tetAR; ARC2: aac3-iid; ARC3: aph, sph; ARC4: cmy-2; ARC5: floR; ARC6: tetB; pseudo-ARC: aadA, aac3-VIa, sul1). These ARCs were present in multiple isolates and on plasmids of multiple replicon types. To determine the current distribution and frequency of these ARCs, the public NCBI database was analyzed, including WGS data on isolates collected by the USDA Food Safety and Inspection Service (FSIS) from 2014 to 2018. ARC1, ARC4, and ARC5 were significantly associated with cattle isolates, while ARC6 was significantly associated with chicken isolates. This study revealed that a diverse group of plasmids, carrying AR genes, are responsible for the phenotypic resistance seen in Salmonella isolated from United States food animals. It was also determined that many plasmids carry similar ARCs.
Collapse
Affiliation(s)
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Laura E Williams
- Department of Biology, Providence College, Providence, RI, United States
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, University of Limoges, Limoges, France
| | - Lari M Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Tiffanie A Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - John B Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Jamie L Wasilenko
- Eastern Lab, United States Department of Agriculture, Food Safety and Inspection Service, Athens, GA, United States
| | - Mustafa Simmons
- Eastern Lab, United States Department of Agriculture, Food Safety and Inspection Service, Athens, GA, United States
| | - Glenn E Tillman
- Eastern Lab, United States Department of Agriculture, Food Safety and Inspection Service, Athens, GA, United States
| | - Michael McClelland
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| |
Collapse
|
22
|
Baker S, Thomson N, Weill FX, Holt KE. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 2018; 360:733-738. [PMID: 29773743 PMCID: PMC6510332 DOI: 10.1126/science.aar3777] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whole-genome sequencing (WGS) has been vital for revealing the rapid temporal and spatial evolution of antimicrobial resistance (AMR) in bacterial pathogens. Some antimicrobialresistant pathogens have outpaced us, with untreatable infections appearing in hospitals and the community. However,WGS has additionally provided us with enough knowledge to initiate countermeasures. Although we cannot stop bacterial adaptation, the predictability of many evolutionary processes in AMR bacteria offers us an opportunity to channel them using new control strategies. Furthermore, by usingWGS for coordinating surveillance and to create a more fundamental understanding of the outcome of antimicrobial treatment and AMR mechanisms, we can use current and future antimicrobials more effectively and aim to extend their longevity.
Collapse
Affiliation(s)
- Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK.,The Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicholas Thomson
- The Wellcome Trust Sanger Institute, Cambridge, UK.,The London School of Hygiene and Tropical Medicine, London, UK
| | | | - Kathryn E Holt
- The London School of Hygiene and Tropical Medicine, London, UK.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S, Van Puyvelde S. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microb Genom 2018; 4. [PMID: 29975627 PMCID: PMC6113872 DOI: 10.1099/mgen.0.000195] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fluoroquinolone (FQ)-resistant Salmonella spp. were listed by the WHO in 2017 as priority pathogens for which new antibiotics were urgently needed. The overall global burden of Salmonella infections is high, but differs per region. Whereas typhoid fever is most prevalent in South and South-East Asia, non-typhoidal salmonellosis is prevalent across the globe and associated with a mild gastroenteritis. By contrast, invasive non-typhoidal Salmonella cause bloodstream infections associated with high mortality, particularly in sub-Saharan Africa. Most Salmonella strains from clinical sources are resistant to first-line antibiotics, with FQs now being the antibiotic of choice for treatment of invasive Salmonella infections. However, FQ resistance is increasingly being reported in Salmonella, and multiple molecular mechanisms are already described. Whole-genome sequencing (WGS) is becoming more frequently used to analyse bacterial genomes for antibiotic-resistance markers, and to understand the phylogeny of bacteria in relation to their antibiotic-resistance profiles. This mini-review provides an overview of FQ resistance in Salmonella, guided by WGS studies that demonstrate that WGS is a valuable tool for global surveillance.
Collapse
Affiliation(s)
- Wim L Cuypers
- 1Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium.,2Department of Mathematics and Computer Science, University of Antwerp, Antwerpen, Belgium
| | - Jan Jacobs
- 3Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium.,4Department of Microbiology and Immunology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Vanessa Wong
- 5Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,6Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Stijn Deborggraeve
- 1Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Sandra Van Puyvelde
- 6Wellcome Trust Sanger Institute, Hinxton, UK.,1Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| |
Collapse
|
24
|
Oniciuc EA, Likotrafiti E, Alvarez-Molina A, Prieto M, Santos JA, Alvarez-Ordóñez A. The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes (Basel) 2018; 9:E268. [PMID: 29789467 PMCID: PMC5977208 DOI: 10.3390/genes9050268] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance (AMR) surveillance is a critical step within risk assessment schemes, as it is the basis for informing global strategies, monitoring the effectiveness of public health interventions, and detecting new trends and emerging threats linked to food. Surveillance of AMR is currently based on the isolation of indicator microorganisms and the phenotypic characterization of clinical, environmental and food strains isolated. However, this approach provides very limited information on the mechanisms driving AMR or on the presence or spread of AMR genes throughout the food chain. Whole-genome sequencing (WGS) of bacterial pathogens has shown potential for epidemiological surveillance, outbreak detection, and infection control. In addition, whole metagenome sequencing (WMS) allows for the culture-independent analysis of complex microbial communities, providing useful information on AMR genes occurrence. Both technologies can assist the tracking of AMR genes and mobile genetic elements, providing the necessary information for the implementation of quantitative risk assessments and allowing for the identification of hotspots and routes of transmission of AMR across the food chain. This review article summarizes the information currently available on the use of WGS and WMS for surveillance of AMR in foodborne pathogenic bacteria and food-related samples and discusses future needs that will have to be considered for the routine implementation of these next-generation sequencing methodologies with this aim. In particular, methodological constraints that impede the use at a global scale of these high-throughput sequencing (HTS) technologies are identified, and the standardization of methods and protocols is suggested as a measure to upgrade HTS-based AMR surveillance schemes.
Collapse
Affiliation(s)
- Elena A Oniciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati 800008, Romania.
| | - Eleni Likotrafiti
- Laboratory of Food Microbiology, Department of Food Technology, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki T.K. 57400, Greece.
| | - Adrián Alvarez-Molina
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Miguel Prieto
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| |
Collapse
|