1
|
Zheng M, Li H, Sun L, Cui S, Zhang W, Gao Y, Gao R. Calcipotriol abrogates TGF-β1/pSmad3-mediated collagen 1 synthesis in pancreatic stellate cells by downregulating RUNX1. Toxicol Appl Pharmacol 2024; 491:117078. [PMID: 39214171 DOI: 10.1016/j.taap.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
RUNX1 with CBFβ functions as an activator or repressor of critical mediators regulating cellular function. The aims of this study were to clarify the role of RUNX1 on regulating TGF-β1-induced COL1 synthesis and the mechanism of calcipotriol (Cal) on antagonizing COL1 synthesis in PSCs. RT-qPCR and Western Blot for determining the mRNAs and proteins of RUNX1 and COL1A1/1A2 in rat PSC line (RP-2 cell). Luciferase activities driven by RUNX1 or COL1A1 or COL1A2 promoter, co-immunoprecipitation and immunoblotting for pSmad3/RUNX1 or CBFβ/RUNX1, and knockdown or upregulation of Smad3 and RUNX1 were used. RUNX1 production was regulated by TGF-β1/pSmad3 signaling pathway in RP-2 cells. RUNX1 formed a coactivator with CBFβ in TGF-β1-treated RP-2 cells to regulate the transcriptions of COL1A1/1A2 mRNAs under a fashion of pSmad3/RUNX1/CBFβ complex. However, Cal effectively abrogated the levels of COL1A1/1A2 transcripts in TGF-β1-treated RP-2 cells by downregulating RUNX1 production and hindering the formation of pSmad3/RUNX1/CBFβ complexes. This study suggests that RUNX1 may be a promising antifibrotic target for the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Meifang Zheng
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Shiyuan Cui
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Runping Gao
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Zheng M, Li H, Gao Y, Brigstock DR, Gao R. Vitamin D 3 analogue calcipotriol inhibits the profibrotic effects of transforming growth factor- β1 on pancreatic stellate cells. Eur J Pharmacol 2023; 957:176000. [PMID: 37604222 DOI: 10.1016/j.ejphar.2023.176000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE To evaluate the inhibitory effect of vitamin D3 analogue calcipotriol (Cal) on the fibrosis of pancreatic stellate cells (PSCs) induced by TGF-β1 and the rationality of Cal use in alcoholic chronic pancreatitis (ACP). MATERIAL AND METHODS Double-labeling immunofluorescence was used for the identification of VDR+PSCs in the pancreas of healthy controls (HC) and ACP patients. Van Gieson staining for examination of collagen fibers. RT-qPCR and Western Blot for determining the mRNAs and proteins of VDR, TGF-β1 and COL1A1 in the pancreas of ACP or in vitro PSCs. ELISA or LC-MS/MS for detection of serum TGF-β1 and COL1A1 or 25(OH)D3. The PSC line (RP-2 cell) was used for the determination of proteomic alterations in Cal plus TGF-β1 versus TGF-β1 and to examine the effect of VDR gene knockdown. RESULTS Enhanced expression of VDR was detected in RP-2 cells stimulated with alcohol (ALC) plus Cal versus Cal alone and in PSCs in the pancreas of ACP versus HC. The increased VDR+PSCs were positively correlated with the levels of COL1A1 mRNAs or areas of collagen deposition in the pancreas of ACP. TGF-β1 was overexpressed in the pancreas of ACP and ALC-treated RP-2 cells while 25(OH)D3 level in serum was significantly decreased in ACP versus HC. Through a VDR-dependent mechanism, Cal antagonized 16 profibrotic proteins in TGF-β1-induced RP-2 cells that included 7 extracellular matrix components, 2 cytoskeletal proteins, 2 fibrosis-associated factors (RUNX1 and TRAF2), TIMP-1, CCN1, integrin α11, an adhesion scaffold protein (TGFB1i1) and an enzyme mediating TGF-β1-induced fibrogenesis (ENPP1). CONCLUSION This study suggests that Cal administration may be a potential antifibrotic strategy via inhibiting TGF-β1-mediated PSC action during the development of ACP.
Collapse
Affiliation(s)
- Meifang Zheng
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Zheng M, Li H, Sun L, Brigstock DR, Gao R. Interleukin-6 participates in human pancreatic stellate cell activation and collagen I production via TGF-β1/Smad pathway. Cytokine 2021; 143:155536. [PMID: 33893003 DOI: 10.1016/j.cyto.2021.155536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic stellate cells (PSCs) play a key role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor-β1 (TGF-β1) is a major regulator of PSC activation and extracellular matrix production. Interleukin-6 (IL-6) has shown to participate in TGF-β1 production and rat PSC activation. This study aimed to investigate whether IL-6 promotes human PSC activation and collagen 1(Col1) production through the TGF-β1/Smad pathway. Our results showed that the expression of IL-6 and IL-6R in activated PSCs and macrophages (Mφs) were enhanced in the pancreas of ACP compared to healthy controls and that the mRNA expression of IL-6, IL-6R, TGF-β1, α-SMA or Col1a1 were significantly increased in the pancreas of ACP, showing positive correlations between elevated IL-6 levels and either TGF-β1 or α-SMA or Col1a1 levels and between elevated TGF-β1 levels and α-SMA or Col1a1 levels. In in vitro studies, we identified that IL-6R expression or IL-6 and TGF-β1 secretions were significantly increased in, respectively, Mφs and PSCs by ethanol (EtOH) or lipopolysaccharide (LPS) stimulation while EtOH- or LPS-induced α-SMA or Col1a1 mRNA and protein production in PSCs were partially blocked by IL-6 antibody. IL-6-induced TGF-β1 production in PSCs was antagonized by si-IL-6R RNA or by an inhibitor of STAT3. Additionally, IL-6-promoted α-SMA or Col1a1 protein production was blocked by TGF-β1 antibody and IL-6-induced phosphorylation of Smad2/3 and transcription of α-SMA and Col1a1 mRNA were antagonized by si-TGF-β1 RNA. Our findings indicate that IL-6 contributes to PSC activation and Col1 production through up-regulation of TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Meifang Zheng
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Columbus, OH United States
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Sun L, Qu L, Brigstock DR, Li H, Li Y, Gao R. Biological and Proteomic Characteristics of an Immortalized Human Pancreatic Stellate Cell Line. Int J Med Sci 2020; 17:137-144. [PMID: 31929747 PMCID: PMC6945563 DOI: 10.7150/ijms.36337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Human pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during chronic pancreatitis (CP). However, primary PSCs have a short lifespan in vitro, which seriously affects their use in various applications. We have established a stable immortalized human PSC line (HP-1) by RSV promoter/enhancer-driven SV40 T antigen expression in primary activated human PSCs. HP-1 cells express cytoskeleton proteins including glial fibrillary acidic protein (GFAP), α-smooth muscle actin (α-SMA), vimentin and desmin, and are typical of PSCs, which are high transfeciability and viable in 0.5% serum. The cells express receptors such as TGFβR2, PDGFR, TGF-β pseudoreceptor Bambi and PPRPγ that are commonly found in PSCs. HP-1 cells are similar to activated human PSCs in that they have enhanced expression of α-SMA, CTGF, Col1 and TIMP-2 mRNAs or proteins, as well as decreased expression of MMP-1/2 mRNAs or proteins in response to TGF-β1 stimulation. Comparative proteomics revealed 4,537 shared proteins between HP-1 cells and PSCs and no single protein in HP-1 cells versus PSCs. Statistical analysis reveals no significantly difference between HP-1 cells and PSCs in their expression of proteins associated with matrix and matrix remodeling. The similarity between HP-1 cell and PSC is further shown by the finding that only 9 proteins are differentially up-regulated > ± 2-fold in HP-1 cells and 13 proteins are up-regulated > ± 2-fold in PSCs and none of these proteins include ECM proteins, cytokines, growth factors or matrix remodeling regulatory proteins. Therefore, HP-1 cells can be used as an effective tool for the study of PSC-mediated pancreatic fibrosis.
Collapse
Affiliation(s)
- Li Sun
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Limei Qu
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - David R Brigstock
- Research Institute at Nationwide Children's Hospital, Columbus, 43205, United States
| | - Hongyan Li
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Yanyan Li
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
6
|
Li CX, Cui LH, Zhuo YZ, Hu JG, Cui NQ, Zhang SK. Inhibiting autophagy promotes collagen degradation by regulating matrix metalloproteinases in pancreatic stellate cells. Life Sci 2018; 208:276-283. [DOI: 10.1016/j.lfs.2018.07.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
|
7
|
Ma X, Jin Y, Guan H. Evaluation of Susceptibility and Innate Immune Response to Candida albicans in Mice with Sub-health. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.689.697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Sun L, Xiu M, Wang S, Brigstock DR, Li H, Qu L, Gao R. Lipopolysaccharide enhances TGF-β1 signalling pathway and rat pancreatic fibrosis. J Cell Mol Med 2018; 22:2346-2356. [PMID: 29424488 PMCID: PMC5867168 DOI: 10.1111/jcmm.13526] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor-beta1 (TGF-β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF-β1 signalling and pancreatic fibrosis. Sprague-Dawley rats fed with a Lieber-DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP-2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF-β1 which was paralleled by an increased number of TLR4-positive or TGF-β1-positive Mφs or PSCs in ALC-fed rats. In vitro, TLR4 or TGF-β1 production in Mφs or RP-2 cells was up-regulated by LPS. LPS alone or in combination with TGF-β1 significantly increased type I collagen and α-SMA production and Smad2 and 3 phosphorylation in serum-starved RP-2 cells. TGF-β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si-TLR4 RNA or by inhibitors of MyD88/NF-kB. Additionally, knockdown of Bambi with Si-Bambi RNA significantly increased TGF-β1 signalling in RP-2 cells. These findings indicate that LPS increases TGF-β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF-β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF-kB activation.
Collapse
Affiliation(s)
- Li Sun
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| | - Ming Xiu
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| | - Shuhua Wang
- Department of Surgical GastroenterologyFirst Hospital of Jilin UniversityChangchunChina
| | | | - Hongyan Li
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| | - Limei Qu
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
9
|
Experimental models of pancreatic cancer desmoplasia. J Transl Med 2018; 98:27-40. [PMID: 29155423 DOI: 10.1038/labinvest.2017.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023] Open
Abstract
Desmoplasia is a fibro-inflammatory process and a well-established feature of pancreatic cancer. A key contributor to pancreatic cancer desmoplasia is the pancreatic stellate cell. Various in vitro and in vivo methods have emerged for the isolation, characterization, and use of pancreatic stellate cells in models of cancer-associated fibrosis. In addition to cell culture models, genetically engineered animal models have been established that spontaneously develop pancreatic cancer with desmoplasia. These animal models are currently being used for the study of pancreatic cancer pathogenesis and for evaluating therapeutics against pancreatic cancer. Here, we review various in vitro and in vivo models that are being used or have the potential to be used to study desmoplasia in pancreatic cancer.
Collapse
|
10
|
Li H, Xiu M, Wang S, Brigstock DR, Sun L, Qu L, Gao R. Role of Gut-Derived Endotoxin on Type I Collagen Production in the Rat Pancreas After Chronic Alcohol Exposure. Alcohol Clin Exp Res 2017; 42:306-314. [PMID: 29121396 DOI: 10.1111/acer.13550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Hongyan Li
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Ming Xiu
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Shuhua Wang
- Department of Surgical Gastroenterolog; First Hospital of Jilin University; Changchun China
| | | | - Li Sun
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Limei Qu
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Runping Gao
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| |
Collapse
|
11
|
Xu M, Wang G, Zhou H, Cai J, Li P, Zhou M, Lu Y, Jiang X, Huang H, Zhang Y, Gong A. TGF-β1-miR-200a-PTEN induces epithelial-mesenchymal transition and fibrosis of pancreatic stellate cells. Mol Cell Biochem 2017; 431:161-168. [PMID: 28281184 DOI: 10.1007/s11010-017-2988-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
Although the function of miR-200a has been discussed in many cancers and fibrotic diseases, its role in pancreatic fibrosis is still poorly understood. In this study, we for the first time confirm that miR-200a attenuates TGF-β1-induced pancreatic stellate cells activation and extracellular matrix formation. First, we find that TGF-β1 induces activation and extracellular matrix (ECM) formation in PSCs, and the effects are blocked by the inhibitor of PI3K (LY294002). Furthermore, we identify that miR-200a is down-regulated in TGF-β1-activated PSCs, and up-regulation of miR-200a inhibits PSCs activation induced by TGF-β1. Meanwhile, TGF-β1 inhibits the expression of the epithelial marker E-cadherin, and increases the expression of mesenchymal markers vimentin, and the expression of ECM proteins a-SMA and collagen I, while miR-200a mimic reversed the above effects in PSCs, indicating that miR-200a inhibits TGF-β1-induced activation and epithelial-mesenchymal transition (EMT). In addition, overexpression of miR-200a promotes the expression of PTEN and decreases the expression of matrix proteins and attenuates phosphorylation of Akt and mTOR. Taken together, our study uncovers a novel mechanism that miR-200a attenuates TGF-β1-induced pancreatic stellate cells activation and ECM formation through inhibiting PTEN /Akt/mTOR pathway.
Collapse
Affiliation(s)
- Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Guoying Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Hailang Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Jing Cai
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Ping Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Meng Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Ying Lu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xiaomeng Jiang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Hongmei Huang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Youli Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China. .,Jiangsu University, xuefu 301, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|