1
|
Ho T, Santamaria‐Munoz D, Hamelynck H, La Torre A, Glaser T, Brown NL. Excluding the Genomic Location of Pax2 Regulatory Elements for the Developing Mouse Eye. Genesis 2025; 63:e70016. [PMID: 40300047 PMCID: PMC12040291 DOI: 10.1002/dvg.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025]
Abstract
The Pax2 transcription factor is activated uniformly in the optic vesicle/cup, but becomes progressively restricted to the forming optic disc and stalk. In the eye, it is not known how Pax2 expression is regulated and progressively restricted, in part because no Pax2 regulatory elements have been identified for this organ. Multiple Pax2-Cre mouse transgenic lines have been produced, but essentially none of these Cre recombinase drivers are active in the visual system. Only Tg(BAC-Pax2-cre)Akg mice have been reported to express Cre in a subset of postnatal retinal astrocytes. We confirm this observation and demonstrate ectopic expression in branchial arches, extraocular muscles, and a subset of GABAergic amacrine cells. Our findings suggest that major eye enhancer(s) for mouse Pax2 reside outside the > 180 kb genomic segment delimited by Pax2 BAC transgenes.
Collapse
Affiliation(s)
- Tzu‐Hua Ho
- Department of Cell Biology and Human AnatomyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Hollin Hamelynck
- Department of Cell Biology and Human AnatomyUniversity of CaliforniaDavisCaliforniaUSA
| | - Anna La Torre
- Department of Cell Biology and Human AnatomyUniversity of CaliforniaDavisCaliforniaUSA
| | - Tom Glaser
- Department of Cell Biology and Human AnatomyUniversity of CaliforniaDavisCaliforniaUSA
| | - Nadean L. Brown
- Department of Cell Biology and Human AnatomyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
2
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
3
|
Kozmik Z, Kozmikova I. Ancestral role of Pax6 in chordate brain regionalization. Front Cell Dev Biol 2024; 12:1431337. [PMID: 39119036 PMCID: PMC11306081 DOI: 10.3389/fcell.2024.1431337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The Pax6 gene is essential for eye and brain development across various animal species. Here, we investigate the function of Pax6 in the development of the anterior central nervous system (CNS) of the invertebrate chordate amphioxus using CRISPR/Cas9-induced genome editing. Specifically, we examined Pax6 mutants featuring a 6 bp deletion encompassing two invariant amino acids in the conserved paired domain, hypothesized to impair Pax6 DNA-binding capacity and gene regulatory functions. Although this mutation did not result in gross morphological changes in amphioxus larvae, it demonstrated a reduced ability to activate Pax6-responsive reporter gene, suggesting a hypomorphic effect. Expression analysis in mutant larvae revealed changes in gene expression within the anterior CNS, supporting the conserved role of Pax6 gene in brain regionalization across chordates. Additionally, our findings lend support to the hypothesis of a zona limitans intrathalamica (ZLI)-like region in amphioxus, suggesting evolutionary continuity in brain patterning mechanisms. ZLI region, found in both hemichordates and vertebrates, functions as a key signaling center and serves as a restrictive boundary between major thalamic regions.
Collapse
Affiliation(s)
| | - Iryna Kozmikova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Friedrich M. Coming into clear sight at last: Ancestral and derived events during chelicerate visual system development. Bioessays 2022; 44:e2200163. [DOI: 10.1002/bies.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences Wayne State University Detroit Michigan USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
5
|
Janeschik M, Schacht MI, Platten F, Turetzek N. It takes Two: Discovery of Spider Pax2 Duplicates Indicates Prominent Role in Chelicerate Central Nervous System, Eye, as Well as External Sense Organ Precursor Formation and Diversification After Neo- and Subfunctionalization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.810077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Paired box genes are conserved across animals and encode transcription factors playing key roles in development, especially neurogenesis. Pax6 is a chief example for functional conservation required for eye development in most bilaterian lineages except chelicerates. Pax6 is ancestrally linked and was shown to have interchangeable functions with Pax2. Drosophila melanogaster Pax2 plays an important role in the development of sensory hairs across the whole body. In addition, it is required for the differentiation of compound eyes, making it a prime candidate to study the genetic basis of arthropod sense organ development and diversification, as well as the role of Pax genes in eye development. Interestingly, in previous studies identification of chelicerate Pax2 was either neglected or failed. Here we report the expression of two Pax2 orthologs in the common house spider Parasteatoda tepidariorum, a model organism for chelicerate development. The two Pax2 orthologs most likely arose as a consequence of a whole genome duplication in the last common ancestor of spiders and scorpions. Pax2.1 is expressed in the peripheral nervous system, including developing lateral eyes and external sensilla, as well as the ventral neuroectoderm of P. tepidariorum embryos. This not only hints at a conserved dual role of Pax2/5/8 orthologs in arthropod sense organ development but suggests that in chelicerates, Pax2 could have acquired the role usually played by Pax6. For the other paralog, Pt-Pax2.2, expression was detected in the brain, but not in the lateral eyes and the expression pattern associated with sensory hairs differs in timing, pattern, and strength. To achieve a broader phylogenetic sampling, we also studied the expression of both Pax2 genes in the haplogyne cellar spider Pholcus phalangioides. We found that the expression difference between paralogs is even more extreme in this species, since Pp-Pax2.2 shows an interesting expression pattern in the ventral neuroectoderm while the expression in the prosomal appendages is strictly mesodermal. This expression divergence indicates both sub- and neofunctionalization after Pax2 duplication in spiders and thus presents an opportunity to study the evolution of functional divergence after gene duplication and its impact on sense organ diversification.
Collapse
|
6
|
Regulation of Eye Determination and Regionalization in the Spider Parasteatoda tepidariorum. Cells 2022; 11:cells11040631. [PMID: 35203282 PMCID: PMC8870698 DOI: 10.3390/cells11040631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Animal visual systems are enormously diverse, but their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Spiders are particular masters of visual system innovation, and offer an excellent opportunity to study the evolution of animal eyes. Several RDGs have been identified in spider eye primordia, but their interactions and regulation remain unclear. From our knowledge of RDG network regulation in Drosophila melanogaster, we hypothesize that orthologs of Pax6, eyegone, Wnt genes, hh, dpp, and atonal could play important roles in controlling eye development in spiders. We analyzed the expression of these genes in developing embryos of the spider Parasteatodatepidariorum, both independently and in relation to the eye primordia, marked using probes for the RDG sine oculis. Our results support conserved roles for Wnt genes in restricting the size and position of the eye field, as well as for atonal initiating photoreceptor differentiation. However, we found no strong evidence for an upstream role of Pax6 in eye development, despite its label as a master regulator of animal eye development; nor do eyg, hh or dpp compensate for the absence of Pax6. Conversely, our results indicate that hh may work with Wnt signaling to restrict eye growth, a role similar to that of Sonichedgehog (Shh) in vertebrates.
Collapse
|
7
|
Charlton-Perkins MA, Friedrich M, Cook TA. Semper's cells in the insect compound eye: Insights into ocular form and function. Dev Biol 2021; 479:126-138. [PMID: 34343526 PMCID: PMC8410683 DOI: 10.1016/j.ydbio.2021.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.
Collapse
Affiliation(s)
- Mark A Charlton-Perkins
- Department of Paediatrics, Wellcome-MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA; Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Tiffany A Cook
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA; Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet 2021; 140:381-400. [PMID: 32728807 PMCID: PMC7939107 DOI: 10.1007/s00439-020-02212-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
9
|
Klann M, Seaver EC. Functional role of pax6 during eye and nervous system development in the annelid Capitella teleta. Dev Biol 2019; 456:86-103. [PMID: 31445008 DOI: 10.1016/j.ydbio.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
The transcription factor Pax6 is an important regulator of early animal development. Loss of function mutations of pax6 in a range of animals result in a reduction or complete loss of the eye, a reduction of a subset of neurons, and defects in axon growth. There are no studies focusing on the role of pax6 during development of any lophotrochozoan representative, however, expression of pax6 in the developing eye and nervous system in a number of species suggest that pax6 plays a highly conserved role in eye and nervous system formation. We investigated the functional role of pax6 during development of the marine annelid Capitella teleta. Expression of pax6 transcripts in C. teleta larvae is similar to patterns found in other animals, with distinct subdomains in the brain and ventral nerve cord as well as in the larval and juvenile eye. To perturb pax6 function, two different splice-blocking morpholinos and a translation-blocking morpholino were used. Larvae resulting from microinjections with either splice-blocking morpholino show a reduction of the pax6 transcript. Development of both the larval eyes and the central nervous system architecture are highly disrupted following microinjection of each of the three morpholinos. The less severe phenotype observed when only the homeodomain is disrupted suggests that presence of the paired domain is sufficient for partial function of the Pax6 protein. Preliminary downstream target analysis confirms disruption in expression of some components of the retinal gene regulatory network, as well as disruption of genes involved in nervous system development. Results from this study, taken together with studies from other species, reveal an evolutionarily conserved role for pax6 in eye and neural specification and development.
Collapse
Affiliation(s)
- Marleen Klann
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA.
| |
Collapse
|
10
|
BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates. Proc Natl Acad Sci U S A 2019; 116:12925-12932. [PMID: 31189599 DOI: 10.1073/pnas.1901919116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown. Here we explore these questions by investigating an indirect-developing enteropneust from the hemichordate phylum, which together with echinoderms form a sister group of the chordates. We found that in the hemichordate larva, BMP signaling is required for DV patterning and is sufficient to repress neurogenesis. We also found that transient overactivation of BMP signaling during gastrulation concomitantly blocked mouth formation and centralized the nervous system to the ventral ectoderm in both hemichordate and sea urchin larvae. Moreover, this mouthless, neurogenic ventral ectoderm displayed a medial-to-lateral organization similar to that of the chordate neural plate. Thus, indirect-developing deuterostomes use BMP signaling in DV and neural patterning, and an elevated BMP level during gastrulation drives pronounced morphological changes reminiscent of a DV inversion. These findings provide a mechanistic basis to support the hypothesis that an inverse chordate body plan emerged from an indirect-developing ancestor by tinkering with BMP signaling.
Collapse
|
11
|
Schlosser G. A Short History of Nearly Every Sense-The Evolutionary History of Vertebrate Sensory Cell Types. Integr Comp Biol 2019; 58:301-316. [PMID: 29741623 DOI: 10.1093/icb/icy024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evolving from filter feeding chordate ancestors, vertebrates adopted a more active life style. These ecological and behavioral changes went along with an elaboration of the vertebrate head including novel complex paired sense organs such as the eyes, inner ears, and olfactory epithelia. However, the photoreceptors, mechanoreceptors, and chemoreceptors used in these sense organs have a long evolutionary history and homologous cell types can be recognized in many other bilaterians or even cnidarians. After briefly introducing some of the major sensory cell types found in vertebrates, this review summarizes the phylogenetic distribution of sensory cell types in metazoans and presents a scenario for the evolutionary history of various sensory cell types involving several cell type diversification and fusion events. It is proposed that the evolution of novel cranial sense organs in vertebrates involved the redeployment of evolutionarily ancient sensory cell types for building larger and more complex sense organs.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Biomedical Sciences Building, Newcastle Road, Galway H91 TK33, Ireland
| |
Collapse
|
12
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
13
|
Cvekl A, Zhao Y, McGreal R, Xie Q, Gu X, Zheng D. Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biol Evol 2018; 9:2075-2092. [PMID: 28903537 PMCID: PMC5737492 DOI: 10.1093/gbe/evx153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/19/2022] Open
Abstract
The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: α- and β/γ-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that αB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the αA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding β/γ-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (Ω-crystallin/Aldh1a9) and both vertebrate lenses (η-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Rebecca McGreal
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Xun Gu
- Program in Bioinformatics and Computational Biology, Department of Genetics, Development, and Cell Biology, Iowa State University
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
14
|
Abstract
Paired box protein 6 (PAX6) is a master regulator of the eye development. Over the last past two decades, our understanding of eye development, especially the molecular function of PAX6, has focused on transcriptional control of the Pax6 expression. However, other regulatory mechanisms for gene expression, including alternative splicing (AS), have been understudied in the eye development. Recent findings suggest that two PAX6 isoforms generated by AS of Pax6 pre-mRNA may play previously underappreciated role(s) during eye development, especially, the corneal development.
Collapse
Affiliation(s)
- Jung Woo Park
- Faculty of Health Sciences, University of Macau , Macau, China
| | - Juan Yang
- Faculty of Health Sciences, University of Macau , Macau, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau , Macau, China
| |
Collapse
|
15
|
Schwab IR. The evolution of eyes: major steps. The Keeler lecture 2017: centenary of Keeler Ltd. Eye (Lond) 2018; 32:302-313. [PMID: 29052606 PMCID: PMC5811732 DOI: 10.1038/eye.2017.226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Ocular evolution is an immense topic, and I do not expect to cover all the details of this process in this manuscript. I will present some concepts about some of the major steps in the evolutionary process to stimulate your thinking about this interesting and complex topic. In the prebiotic soup, vision was not inevitable. Eyes were not preordained. Nor were their shapes, sizes, or current physiology. Sight is an evolutionary gift but it was not ineluctable. The existence of eyes is so basic to our profession that we often do not consider how and why vision appeared or evolved on earth at all. Although vision is a principal sensory modality for at least three major phyla and is present in three or four more phyla, there are other sensory mechanisms that could have been and were occasionally selected instead. Some animals rely on other sensory mechanisms such as audition, echolocation, or olfaction that are much more effective in their particular niche than would be vision. We may not believe those sensory mechanisms to be as robust as vision, but the creatures using those skills would argue otherwise. Why does vision exist at all? And why is it so dominant at least in the number of species that rely upon it for their principal sensory mechanism? How did vision begin? What were the important steps in the evolution of eyes? How did eyes differentiate along their various paths, and why?
Collapse
Affiliation(s)
- I R Schwab
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
16
|
Abstract
Medusae (aka jellyfish) have multiphasic life cycles and a propensity to adapt to, and proliferate in, a plethora of aquatic habitats, connecting them to a number of ecological and societal issues. Now, in the midst of the genomics era, affordable next-generation sequencing (NGS) platforms coupled with publically available bioinformatics tools present the much-anticipated opportunity to explore medusa taxa as potential model systems. Genome-wide studies of medusae would provide a remarkable opportunity to address long-standing questions related to the biology, physiology, and nervous system of some of the earliest pelagic animals. Furthermore, medusae have become key targets in the exploration of marine natural products, in the development of marine biomarkers, and for their application to the biomedical and robotics fields. Presented here is a synopsis of the current state of medusa research, highlighting insights provided by multi-omics studies, as well as existing knowledge gaps, calling upon the scientific community to adopt a number of medusa taxa as model systems in forthcoming research endeavors.
Collapse
Affiliation(s)
- Cheryl Lewis Ames
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, NW, Washington, DC, USA.
| |
Collapse
|
17
|
Sato S, Furuta Y, Kawakami K. Regulation of continuous but complex expression pattern of Six1 during early sensory development. Dev Dyn 2017; 247:250-261. [PMID: 29106072 DOI: 10.1002/dvdy.24603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In vertebrates, cranial sensory placodes give rise to neurosensory and endocrine structures, such as the olfactory epithelium, inner ear, and anterior pituitary. We report here the establishment of a transgenic mouse line that expresses Cre recombinase under the control of Six1-21, a major placodal enhancer of the homeobox gene Six1. RESULTS In the new Cre-expressing line, mSix1-21-NLSCre, the earliest Cre-mediated recombination was induced at embryonic day 8.5 in the region overlapping with the otic-epibranchial progenitor domain (OEPD), a transient, common precursor domain for the otic and epibranchial placodes. Recombination was later observed in the OEPD-derived structures (the entire inner ear and the VIIth-Xth cranial sensory ganglia), olfactory epithelium, anterior pituitary, pharyngeal ectoderm and pouches. Other Six1-positive structures, such as salivary/lacrimal glands and limb buds, were also positive for recombination. Moreover, comparison with another mouse line expressing Cre under the control of the sensory neuron enhancer, Six1-8, indicated that the continuous and complex expression pattern of Six1 during sensory organ formation is pieced together by separate enhancers. CONCLUSIONS mSix1-21-NLSCre has several unique characteristics to make it suitable for analysis of cell lineage and gene function in sensory placodes as well as nonplacodal Six1-positive structures. Developmental Dynamics 247:250-261, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
18
|
Babonis LS, Martindale MQ. PaxA, but not PaxC, is required for cnidocyte development in the sea anemone Nematostella vectensis. EvoDevo 2017; 8:14. [PMID: 28878874 PMCID: PMC5584322 DOI: 10.1186/s13227-017-0077-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Background Pax genes are a family of conserved transcription factors that regulate many aspects of developmental morphogenesis, notably the development of ectodermal sensory structures including eyes. Nematostella vectensis, the starlet sea anemone, has numerous Pax orthologs, many of which are expressed early during embryogenesis. The function of Pax genes in this eyeless cnidarian is unknown. Results Here, we show that PaxA, but not PaxC, plays a critical role in the development of cnidocytes in N. vectensis. Knockdown of PaxA results in a loss of developing cnidocytes and downregulation of numerous cnidocyte-specific genes, including a variant of the transcription factor Mef2. We also demonstrate that the co-expression of Mef2 in a subset of the PaxA-expressing cells is associated with the development with a second lineage of cnidocytes and show that knockdown of the neural progenitor gene SoxB2 results in downregulation of expression of PaxA, Mef2, and several cnidocyte-specific genes. Because PaxA is not co-expressed with SoxB2 at any time during cnidocyte development, we propose a simple model for cnidogenesis whereby a SoxB2-expressing progenitor cell population undergoes division to give rise to PaxA-expressing cnidocytes, some of which also express Mef2. Discussion The role of PaxA in cnidocyte development among hydrozoans has not been studied, but the conserved role of SoxB2 in regulating the fate of a progenitor cell that gives rise to neurons and cnidocytes in Nematostella and Hydractinia echinata suggests that this SoxB2/PaxA pathway may well be conserved across cnidarians.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080 USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080 USA.,Department of Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
19
|
Morehouse NI, Buschbeck EK, Zurek DB, Steck M, Porter ML. Molecular Evolution of Spider Vision: New Opportunities, Familiar Players. THE BIOLOGICAL BULLETIN 2017; 233:21-38. [PMID: 29182503 DOI: 10.1086/693977] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spiders are among the world's most species-rich animal lineages, and their visual systems are likewise highly diverse. These modular visual systems, composed of four pairs of image-forming "camera" eyes, have taken on a huge variety of forms, exhibiting variation in eye size, eye placement, image resolution, and field of view, as well as sensitivity to color, polarization, light levels, and motion cues. However, despite this conspicuous diversity, our understanding of the genetic underpinnings of these visual systems remains shallow. Here, we review the current literature, analyze publicly available transcriptomic data, and discuss hypotheses about the origins and development of spider eyes. Our efforts highlight that there are many new things to discover from spider eyes, and yet these opportunities are set against a backdrop of deep homology with other arthropod lineages. For example, many (but not all) of the genes that appear important for early eye development in spiders are familiar players known from the developmental networks of other model systems (e.g., Drosophila). Similarly, our analyses of opsins and related phototransduction genes suggest that spider photoreceptors employ many of the same genes and molecular mechanisms known from other arthropods, with a hypothesized ancestral spider set of four visual and four nonvisual opsins. This deep homology provides a number of useful footholds into new work on spider vision and the molecular basis of its extant variety. We therefore discuss what some of these first steps might be in the hopes of convincing others to join us in studying the vision of these fascinating creatures.
Collapse
Key Words
- AL, anterior lateral
- AM, anterior median
- BLAST, Basic Local Alignment Search Tool
- CNS, central nervous system
- KAAS, KEGG Automatic Annotation Server
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LWS, long wavelength sensitive
- MAFFT, Multiple Alignment using Fast Fourier Transform
- MWS, middle wavelength sensitive
- PL, posterior lateral
- PM, posterior median
- RAxML, Randomized Axelerated Maximum Likelihood
- UVS, ultraviolet sensitive
Collapse
|
20
|
Navet S, Buresi A, Baratte S, Andouche A, Bonnaud-Ponticelli L, Bassaglia Y. The Pax gene family: Highlights from cephalopods. PLoS One 2017; 12:e0172719. [PMID: 28253300 PMCID: PMC5333810 DOI: 10.1371/journal.pone.0172719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/08/2017] [Indexed: 01/15/2023] Open
Abstract
Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases. The existence of six Pax families (Pax1/9, Pax2/5/8, Pax3/7, Pax4/6, Paxβ, PoxNeuro) was confirmed and the lophotrochozoan Paxβ subfamily was further characterized. Contrary to the pattern reported in chordates, the Pax2/5/8 family is devoid of homeodomain in Lophotrochozoa. Expression patterns of the three main pax classes (pax2/5/8, pax3/7, pax4/6) during Sepia officinalis development showed that Pax roles taken as ancestral and common in metazoans are modified in S. officinalis, most likely due to either the morphological specificities of cephalopods or to their direct development. Some expected expression patterns were missing (e.g. pax6 in the developing retina), and some expressions in unexpected tissues have been found (e.g. pax2/5/8 in dermal tissue and in gills). This study underlines the diversity and functional plasticity of Pax genes and illustrates the difficulty of using probable gene homology as strict indicator of homology between biological structures.
Collapse
Affiliation(s)
- Sandra Navet
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Auxane Buresi
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Sébastien Baratte
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
- Univ. Paris Sorbonne-ESPE, Sorbonne Universités, Paris, France
| | - Aude Andouche
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Laure Bonnaud-Ponticelli
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Yann Bassaglia
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
- Univ. Paris Est Créteil-Val de Marne, Créteil, France
- * E-mail:
| |
Collapse
|
21
|
Kelava I, Rentzsch F, Technau U. Evolution of eumetazoan nervous systems: insights from cnidarians. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0065. [PMID: 26554048 PMCID: PMC4650132 DOI: 10.1098/rstb.2015.0065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system—in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution.
Collapse
Affiliation(s)
- Iva Kelava
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fabian Rentzsch
- Sars Centre, Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
22
|
Cvekl A, Callaerts P. PAX6: 25th anniversary and more to learn. Exp Eye Res 2016; 156:10-21. [PMID: 27126352 DOI: 10.1016/j.exer.2016.04.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA-binding transcription factor PAX6 was cloned 25 years ago by multiple teams pursuing identification of human and mouse eye disease causing genes, cloning vertebrate homologues of pattern-forming regulatory genes identified in Drosophila, or abundant eye-specific transcripts. Since its discovery in 1991, genetic, cellular, molecular and evolutionary studies on Pax6 mushroomed in the mid 1990s leading to the transformative thinking regarding the genetic program orchestrating both early and late stages of eye morphogenesis as well as the origin and evolution of diverse visual systems. Since Pax6 is also expressed outside of the eye, namely in the central nervous system and pancreas, a number of important insights into the development and function of these organs have been amassed. In most recent years, genome-wide technologies utilizing massively parallel DNA sequencing have begun to provide unbiased insights into the regulatory hierarchies of specification, determination and differentiation of ocular cells and neurogenesis in general. This review is focused on major advancements in studies on mammalian eye development driven by studies of Pax6 genes in model organisms and future challenges to harness the technology-driven opportunities to reconstruct, step-by-step, the transition from naïve ectoderm, neuroepithelium and periocular mesenchyme/neural crest cells into the three-dimensional architecture of the eye.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
23
|
Yang Y, Cvekl A. Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. ACTA ACUST UNITED AC 2016; 23:2-11. [PMID: 18159220 DOI: 10.23861/ejbm20072347] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A large number of mammalian transcription factors possess the evolutionary conserved basic and leucine zipper domain (bZIP). The basic domain interacts with DNA while the leucine zipper facilitates homo- and hetero-dimerization. These factors can be grouped into at least seven families: AP-1, ATF/CREB, CNC, C/EBP, Maf, PAR, and virus-encoded bZIPs. Here, we focus on a group of four large Maf proteins: MafA, MafB, c-Maf, and NRL. They act as key regulators of terminal differentiation in many tissues such as bone, brain, kidney, lens, pancreas, and retina, as well as in blood. The DNA-binding mechanism of large Mafs involves cooperation between the basic domain and an adjacent ancillary DNA-binding domain. Many genes regulated by Mafs during cellular differentiation use functional interactions between the Pax/Maf, Sox/Maf, and Ets/Maf promoter and enhancer modules. The prime examples are crystallin genes in lens and glucagon and insulin in pancreas. Novel roles for large Mafs emerged from studying generations of MafA and MafB knockouts and analysis of combined phenotypes in double or triple null mice. In addition, studies of this group of factors in invertebrates revealed the evolutionarily conserved function of these genes in the development of multicellular organisms.
Collapse
Affiliation(s)
- Ying Yang
- Departments of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
24
|
PAX6 Expression and Retinal Cell Death in a Transgenic Mouse Model for Acute Angle-Closure Glaucoma. J Glaucoma 2015; 24:426-32. [PMID: 25827297 DOI: 10.1097/ijg.0b013e318207069b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE PAX6 is a highly conserved protein essential for the control of eye development both in invertebrates and vertebrates. PAX6 expression persists in the adult inner retina, but little is known about its functions after completion of retinal differentiation. Therefore, we investigated PAX6 expression in wild-type and calcitonin receptor-like receptor transgenic (CLR(SMαA)) mice with angle-closure glaucoma. METHODS Intraocular pressure was measured by indentation tonometry in anesthetized mice. Eyes of mice of both genotypes were enucleated at various ages and retinas were processed for morphological analysis and PAX6 immunostaining. The content of PAX6 in retinal extracts was estimated by Western blot analysis. Retinal expression of glaucoma-related genes was analyzed by reverse transcription-polymerase chain reaction. RESULTS Control mice showed normal retinal morphology between p22 and p428 with steady PAX6 expression in the ganglion cell layer (GCL) and the inner nuclear layer (INL). CLR(SMαA) mice examined between p22 and p82 exhibited increased intraocular pressure and a progressive decrease in cell number including PAX6-expressing cells in the GCL. The INL was not affected up to postnatal day 42. Later, a significant increase in PAX6-expressing cells concomitant with an overall loss of cells was observed in the INL of CLR(SMαA) as compared with control mice. Retinal up-regulation of glaucoma-related genes was furthermore observed. CONCLUSIONS Distinctive changes of PAX6 expression in the inner retina of CLR(SMαA) mice suggest a role in regulatory mechanisms involved in glaucoma-related retinal cell death. The selective increase of PAX6 expression in the degenerating INL of CLR(SMαA) mice may represent an attempt to preserve retinal cytoarchitecture.
Collapse
|
25
|
Ypsilanti AR, Rubenstein JLR. Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 2015; 524:609-29. [PMID: 26304102 DOI: 10.1002/cne.23866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The development of the cortex is an elaborate process that integrates a plethora of finely tuned molecular processes ranging from carefully regulated gradients of transcription factors, dynamic changes in the chromatin landscape, or formation of protein complexes to elicit and regulate transcription. Combined with cellular processes such as cell type specification, proliferation, differentiation, and migration, all of these developmental processes result in the establishment of an adult mammalian cortex with its typical lamination and regional patterning. By examining in-depth the role of one transcription factor, Pax6, on the regulation of cortical development, its integration in the regulation of chromatin state, and its regulation by cis-regulatory elements, we aim to demonstrate the importance of integrating each level of regulation in our understanding of cortical development.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
26
|
Nakanishi N, Camara AC, Yuan DC, Gold DA, Jacobs DK. Gene Expression Data from the Moon Jelly, Aurelia, Provide Insights into the Evolution of the Combinatorial Code Controlling Animal Sense Organ Development. PLoS One 2015; 10:e0132544. [PMID: 26225420 PMCID: PMC4520661 DOI: 10.1371/journal.pone.0132544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023] Open
Abstract
In Bilateria, Pax6, Six, Eya and Dach families of transcription factors underlie the development and evolution of morphologically and phyletically distinct eyes, including the compound eyes in Drosophila and the camera-type eyes in vertebrates, indicating that bilaterian eyes evolved under the strong influence of ancestral developmental gene regulation. However the conservation in eye developmental genetics deeper in the Eumetazoa, and the origin of the conserved gene regulatory apparatus controlling eye development remain unclear due to limited comparative developmental data from Cnidaria. Here we show in the eye-bearing scyphozoan cnidarian Aurelia that the ectodermal photosensory domain of the developing medusa sensory structure known as the rhopalium expresses sine oculis (so)/six1/2 and eyes absent/eya, but not optix/six3/6 or pax (A&B). In addition, the so and eya co-expression domain encompasses the region of active cell proliferation, neurogenesis, and mechanoreceptor development in rhopalia. Consistent with the role of so and eya in rhopalial development, developmental transcriptome data across Aurelia life cycle stages show upregulation of so and eya, but not optix or pax (A&B), during medusa formation. Moreover, pax6 and dach are absent in the Aurelia genome, and thus are not required for eye development in Aurelia. Our data are consistent with so and eya, but not optix, pax or dach, having conserved functions in sensory structure specification across Eumetazoa. The lability of developmental components including Pax genes relative to so-eya is consistent with a model of sense organ development and evolution that involved the lineage specific modification of a combinatorial code that specifies animal sense organs.
Collapse
Affiliation(s)
- Nagayasu Nakanishi
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - Anthony C. Camara
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - David C. Yuan
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - David A. Gold
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - David K. Jacobs
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| |
Collapse
|
27
|
Liegertová M, Pergner J, Kozmiková I, Fabian P, Pombinho AR, Strnad H, Pačes J, Vlček Č, Bartůněk P, Kozmik Z. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Sci Rep 2015; 5:11885. [PMID: 26154478 PMCID: PMC5155618 DOI: 10.1038/srep11885] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022] Open
Abstract
Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.
Collapse
Affiliation(s)
- Michaela Liegertová
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Jiří Pergner
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Iryna Kozmiková
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Peter Fabian
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Antonio R Pombinho
- Department of Cell Differentiation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Jan Pačes
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Čestmír Vlček
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Petr Bartůněk
- Department of Cell Differentiation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Zbyněk Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| |
Collapse
|
28
|
Fabian P, Kozmikova I, Kozmik Z, Pantzartzi CN. Pax2/5/8 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain. Front Genet 2015; 6:228. [PMID: 26191073 PMCID: PMC4488758 DOI: 10.3389/fgene.2015.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022] Open
Abstract
Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordates and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a) mRNA isoform. As shown in our analysis, this splicing event is characteristic of Gnathostomata and is absent in the other chordate subphyla. Moreover, expression pattern of alternative spliced variants was compared between cephalochordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.
Collapse
Affiliation(s)
- Peter Fabian
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Chrysoula N Pantzartzi
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| |
Collapse
|
29
|
Molecular characterization and embryonic origin of the eyes in the common house spider Parasteatoda tepidariorum. EvoDevo 2015; 6:15. [PMID: 26034574 PMCID: PMC4450840 DOI: 10.1186/s13227-015-0011-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/10/2015] [Indexed: 01/30/2023] Open
Abstract
Background Two visual systems are present in most arthropod groups: median and lateral eyes. Most of our current knowledge about the developmental and molecular mechanisms involved in eye formation in arthropods comes from research in the model system Drosophila melanogaster. Here, a core set of retinal determination genes, namely, sine-oculis (so), eyes absent (eya), dachshund (dac), and the two pax6 orthologues eyeless (ey) and twin of eyeless (toy) govern early retinal development. By contrast, not much is known about the development of the up-to-eight eyes present in spiders. Therefore, we analyzed the embryonic expression of core retinal determination genes in the common house spider Parasteatoda tepidariorum. Results We show that the anlagen of the median and lateral eyes in P. tepidariorum originate from different regions of the non-neurogenic ectoderm in the embryonic head. The median eyes are specified as two individual anlagen in an anterior median position in the developing head and subsequently move to their final position following extensive morphogenetic movements of the non-neurogenic ectoderm. The lateral eyes develop from a more lateral position. Intriguingly, they are specified as a unique field of cells that splits into the three individual lateral eyes during late embryonic development. Using gene expression analyses, we identified a unique combination of determination gene expression in the anlagen of the lateral and median eyes, respectively. Conclusions This study of retinal determination genes in the common house spider P. tepidariorum represents the first comprehensive analysis of the well-known retinal determination genes in arthropods outside insects. The development of the individual lateral eyes via the subdivision of one single eye primordium might be the vestige of a larger composite eye anlage, and thus supports the notion that the composite eye is the plesiomorphic state of the lateral eyes in arthropods. The molecular distinction of the two visual systems is similar to the one described for compound eyes and ocelli in Drosophila, suggesting that a unique core determination network for median and lateral eyes, respectively, might have been in place already in the last common ancestor of spiders and insects. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0011-9) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
31
|
Abstract
Host and pathogen engage in a constant evolutionary struggle known as a "Red Queen Paradigm". In this struggle, natural selection favours the pathogen which evolves effective virulence mechanisms and the host which is able to field adequate resistance strategies. A number of factors limit what each side can do. These include the fact that the elaboration of virulence or resistance mechanisms results in costs in genetic fitness and requires the use of ever more of the limited number of genes available in the genome. In addition, since the pathogen usually has a very much shorter generation time than the host, it can fix new virulence mutations much more quickly than the host can evolve matching resistance mechanisms. Finally, the host must ensure that its defence system does not result in unacceptable levels of collateral damage to its own tissues. This chapter briefly outlines how these considerations shape host-pathogen interactions.
Collapse
Affiliation(s)
- Robert S Jack
- Department of Immunology, University of Greifswald, Sauerbruchstrasse DZ 7, Greifswald, D-17487, Germany.
| |
Collapse
|
32
|
Effects of light and covering behavior on PAX6 expression in the sea urchin Strongylocentrotus intermedius. PLoS One 2014; 9:e110895. [PMID: 25333874 PMCID: PMC4204992 DOI: 10.1371/journal.pone.0110895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/23/2014] [Indexed: 01/05/2023] Open
Abstract
We studied the diel expression pattern of PAX6 (a structural gene that is commonly involved in the eye development and photoreception of eye forming animals) and the effects of light and covering behavior on PAX6 expression in the sea urchin Strongylocentrotus intermedius. We confirmed that aphotic condition significantly reduced covering behavior in S. intermedius. The diel expression pattern of PAX6 was significantly different in S. intermedius under photic and aphotic conditions. The gene expression of PAX6 significantly deceased in covered S. intermedius both under natural light and in darkness. The present finding provides valuable insight into the probable link between covering and PAX6 expression of sea urchins. Further studies are required to investigate the detailed expression network of light detection involved genes in order to fully reveal the molecular mechanism of the light-induced covering behavior of sea urchins.
Collapse
|
33
|
Fortunato SA, Leininger S, Adamska M. Evolution of the Pax-Six-Eya-Dach network: the calcisponge case study. EvoDevo 2014; 5:23. [PMID: 25002963 PMCID: PMC4083861 DOI: 10.1186/2041-9139-5-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022] Open
Abstract
Background The Pax-Six-Eya-Dach network (PSEDN) is involved in a variety of developmental processes, including well documented roles in determination of sensory organs and morphogenesis in bilaterian animals. Expression of PSEDN components in cnidarians is consistent with function in sensory organ development. Recent work in demosponges demonstrated the presence of single homologs of Pax and Six genes, and their possible involvement in morphogenesis, but the absence of the remaining network components. Calcisponges are evolutionarily distant from demosponges, and the developmental toolkits of these two lineages differ significantly. We used an emerging model system, Sycon ciliatum, to identify components of the PSEDN and study their expression during embryonic and postembryonic development. Results We identified two Pax, three Six and one Eya genes in calcisponges, a situation strikingly different than in the previously studied demosponges. One of the calcisponge Pax genes can be identified as PaxB, while the second Pax gene has no clear affiliation. The three calcisponge Six genes could not be confidently classified within any known family of Six genes. Expression analysis in adult S. ciliatum demonstrated that representatives of Pax, Six and Eya are expressed in patterns consistent with roles in morphogenesis of the choanocyte chambers. Distinct paralogues of Pax and Six genes were expressed early in the development of the putative larval sensory cells, the cruciform cells. While lack of known photo pigments in calcisponge genomes precludes formal assignment of function to the cruciform cells, we also show that they express additional eumetazoan genes involved in specification of sensory and neuronal cells: Elav and Msi. Conclusions Our results indicate that the role of a Pax-Six-Eya network in morphogenesis likely predates the animal divergence. In addition, Pax and Six, as well as Elav and Msi are expressed during differentiation of cruciform cells, which are good candidates for being sensory cells of the calcaronean sponge larvae.
Collapse
Affiliation(s)
- Sofia Av Fortunato
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway ; Department of Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway
| | - Sven Leininger
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway ; Current address: Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway
| |
Collapse
|
34
|
Wenger Y, Galliot B. Punctuated emergences of genetic and phenotypic innovations in eumetazoan, bilaterian, euteleostome, and hominidae ancestors. Genome Biol Evol 2014; 5:1949-68. [PMID: 24065732 PMCID: PMC3814200 DOI: 10.1093/gbe/evt142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eukaryotes, we find that 33% human proteins have an ortholog in nonmetazoan species. This premetazoan proteome associates with 43% of all annotated human biological processes. Subsequently, four major waves of innovations can be inferred in the last common ancestors of eumetazoans, bilaterians, euteleostomi (bony vertebrates), and hominidae, largely specific to each epoch, whereas early branching deuterostome and chordate phyla show very few innovations. Interestingly, groups of proteins that act together in their modern human functions often originated concomitantly, although the corresponding human phenotypes frequently emerged later. For example, the three cnidarians Acropora, Nematostella, and Hydra express a highly similar protein inventory, and their protein innovations can be affiliated either to traits shared by all eumetazoans (gut differentiation, neurogenesis); or to bilaterian traits present in only some cnidarians (eyes, striated muscle); or to traits not identified yet in this phylum (mesodermal layer, endocrine glands). The variable correspondence between phenotypes predicted from protein enrichments and observed phenotypes suggests that a parallel mechanism repeatedly produce similar phenotypes, thanks to novel regulatory events that independently tie preexisting conserved genetic modules.
Collapse
Affiliation(s)
- Yvan Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
35
|
Straka H, Fritzsch B, Glover JC. Connecting ears to eye muscles: evolution of a 'simple' reflex arc. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:162-75. [PMID: 24776996 DOI: 10.1159/000357833] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022]
Abstract
Developmental and evolutionary data from vertebrates are beginning to elucidate the origin of the sensorimotor pathway that links gravity and motion detection to image-stabilizing eye movements--the vestibulo-ocular reflex (VOR). Conserved transcription factors coordinate the development of the vertebrate ear into three functional sensory compartments (graviception/translational linear acceleration, angular acceleration and sound perception). These sensory components connect to specific populations of vestibular and auditory projection neurons in the dorsal hindbrain through undetermined molecular mechanisms. In contrast, a molecular basis for the patterning of the vestibular projection neurons is beginning to emerge. These are organized through the actions of rostrocaudally and dorsoventrally restricted transcription factors into a 'hodological mosaic' within which coherent and largely segregated subgroups are specified to project to different targets in the spinal cord and brain stem. A specific set of these regionally diverse vestibular projection neurons functions as the central element that transforms vestibular sensory signals generated by active and passive head and body movements into motor output through the extraocular muscles. The large dynamic range of motion-related sensory signals requires an organization of VOR pathways as parallel, frequency-tuned, hierarchical connections from the sensory periphery to the motor output. We suggest that eyes, ears and functional connections subserving the VOR are vertebrate novelties that evolved into a functionally coherent motor control system in an almost stereotypic organization across vertebrate taxa.
Collapse
Affiliation(s)
- Hans Straka
- Department of Biology II, Ludwig Maximilians University Munich, Planegg, Germany
| | | | | |
Collapse
|
36
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
37
|
Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:5-18. [PMID: 24281353 DOI: 10.1007/s00359-013-0865-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development.
Collapse
|
38
|
Ono H, Kozmik Z, Yu JK, Wada H. A novel N-terminal motif is responsible for the evolution of neural crest-specific gene-regulatory activity in vertebrate FoxD3. Dev Biol 2013; 385:396-404. [PMID: 24252777 DOI: 10.1016/j.ydbio.2013.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 11/24/2022]
Abstract
The neural crest is unique to vertebrates and has allowed the evolution of their complicated craniofacial structures. During vertebrate evolution, the acquisition of the neural crest must have been accompanied by the emergence of a new gene regulatory network (GRN). Here, to investigate the role of protein evolution in the emergence of the neural crest GRN, we examined the neural crest cell (NCC) differentiation-inducing activity of chordate FoxD genes. Amphioxus and vertebrate (Xenopus) FoxD proteins both exhibited transcriptional repressor activity in Gal4 transactivation assays and bound to similar DNA sequences in vitro. However, whereas vertebrate FoxD3 genes induced the differentiation of ectopic NCCs when overexpressed in chick neural tube, neither amphioxus FoxD nor any other vertebrate FoxD paralogs exhibited this activity. Experiments using chimeric proteins showed that the N-terminal portion of the vertebrate FoxD3 protein is critical to its NCC differentiation-inducing activity. Furthermore, replacement of the N-terminus of amphioxus FoxD with a 39-amino-acid segment from zebrafish FoxD3 conferred neural crest-inducing activity on amphioxus FoxD or zebrafish FoxD1. Therefore, fixation of this N-terminal amino acid sequence may have been crucial in the evolutionary recruitment of FoxD3 to the vertebrate neural crest GRN.
Collapse
Affiliation(s)
- Hiroki Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
39
|
Rivera A, Winters I, Rued A, Ding S, Posfai D, Cieniewicz B, Cameron K, Gentile L, Hill A. The evolution and function of the Pax/Six regulatory network in sponges. Evol Dev 2013; 15:186-96. [PMID: 23607302 DOI: 10.1111/ede.12032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Examining the origins of highly conserved gene regulatory networks (GRNs) will inform our understanding of the evolution of animal body plans. Sponges are believed to be the most ancient extant metazoan lineage, and as such, hold clues about the evolution of genetic programs deployed in animal development. We used the emerging freshwater sponge model, Ephydatia muelleri, to study the evolutionary origins of the Pax/Six/Eya/Dac (PSED) GRN. Orthologs to Pax and Six family members are present in E. muelleri and are expressed in endothelial cells lining the canal system as well as cells in the choanoderm. Knockdown of EmPaxB and EmSix1/2 by RNAi resulted in defects to the canal systems. We further show that PaxB may be in a regulatory relationship with Six1/2 in E. muelleri, thus demonstrating that a component of the PSED network was present early in metazoan evolution.
Collapse
Affiliation(s)
- A Rivera
- University of Richmond, Richmond, VA 23173, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gehring WJ. The evolution of vision. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 3:1-40. [DOI: 10.1002/wdev.96] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Duncan JS, Fritzsch B. Evolution of Sound and Balance Perception: Innovations that Aggregate Single Hair Cells into the Ear and Transform a Gravistatic Sensor into the Organ of Corti. Anat Rec (Hoboken) 2012; 295:1760-74. [DOI: 10.1002/ar.22573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/20/2023]
|
42
|
Pan N, Kopecky B, Jahan I, Fritzsch B. Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 2012; 349:415-32. [PMID: 22688958 DOI: 10.1007/s00441-012-1454-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti.
Collapse
Affiliation(s)
- Ning Pan
- Department of Biology, University of Iowa, College of Liberal Arts and Sciences, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
43
|
Martín-Durán JM, Monjo F, Romero R. Morphological and molecular development of the eyes during embryogenesis of the freshwater planarian Schmidtea polychroa. Dev Genes Evol 2012; 222:45-54. [PMID: 22327190 DOI: 10.1007/s00427-012-0389-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022]
Abstract
Photoreception is one of the most primitive sensory functions in metazoans. Despite the diversity of forms and components of metazoan eyes, many studies have demonstrated the existence of a common cellular and molecular basis for their development. Genes like pax6, sine oculis, eyes absent, dachshund, otx, Rx and atonal are known to be associated with the specification and development of the eyes. In planarians, sine oculis, eyes absent and otxA play an essential role during the formation of the eye after decapitation, whereas pax6, considered by many authors as a master control gene for eye formation, does not seem to be involved in adult eye regeneration. Whether this is a peculiarity of adult planarians or, on the contrary, is also found in embryogenesis remains unknown. Herein, we characterize embryonic eye development in the planarian species Schmidtea polychroa using histological sections and molecular markers. Additionally, we analyse the expression pattern of the pax6-sine oculis-eyes absent-dachshund network, and the genes Rx, otxA, otxB and atonal. We demonstrate that eye formation in planarian embryos shows great similarities to adult eye regeneration, both at the cellular and molecular level. We thus conclude that planarian eyes exhibit divergent molecular patterning mechanisms compared to the prototypic ancestral metazoan eye.
Collapse
Affiliation(s)
- José María Martín-Durán
- Departament de Genètica, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| | | | | |
Collapse
|
44
|
Abstract
Charles Darwin has proposed the theory that evolution of live organisms is based on random variation and natural selection. Jacques Monod in his classic book Chance and Necessity, published 40 years ago, presented his thesis “that the biosphere does not contain a predictable class of objects or events, but constitutes a particular occurrence, compatible indeed with the first principles, but not deducible from those principals and therefore, essentially unpredictable.” Recent discoveries in eye evolution are in agreement with both of these theses. They confirm Darwin's assumption of a simple eye prototype and lend strong support for the notion of a monophyletic origin of the various eye types. Considering the complexity of the underlying gene regulatory networks the unpredictability is obvious. The evolution of the Hox gene cluster and the specification of the body plan starting from an evolutionary prototype segment is discussed. In the course of evolution, a series of similar prototypic segments gradually undergoes cephalization anteriorly and caudalization posteriorly through diversification of the Hox genes.
Collapse
Affiliation(s)
- Walter J Gehring
- Department of Growth and Development, Biozentrum University of Basel, Switzerland.
| |
Collapse
|
45
|
Affiliation(s)
- Walter J. Gehring
- Biozentrum; University of Basel; Klingelbergstrasse 70, 4056 Basel Switzerland
| |
Collapse
|
46
|
Abstract
Cnidarians belong to the first phylum differentiating a nervous system, thus providing suitable model systems to trace the origins of neurogenesis. Indeed corals, sea anemones, jellyfish and hydra contract, swim and catch their food thanks to sophisticated nervous systems that share with bilaterians common neurophysiological mechanisms. However, cnidarian neuroanatomies are quite diverse, and reconstructing the urcnidarian nervous system is ambiguous. At least a series of characters recognized in all classes appear plesiomorphic: (1) the three cell types that build cnidarian nervous systems (sensory-motor cells, ganglionic neurons and mechanosensory cells called nematocytes or cnidocytes); (2) an organization of nerve nets and nerve rings [those working as annular central nervous system (CNS)]; (3) a neuronal conduction via neurotransmitters; (4) a larval anterior sensory organ required for metamorphosis; (5) a persisting neurogenesis in adulthood. By contrast, the origin of the larval and adult neural stem cells differs between hydrozoans and other cnidarians; the sensory organs (ocelli, lens-eyes, statocysts) are present in medusae but absent in anthozoans; the electrical neuroid conduction is restricted to hydrozoans. Evo-devo approaches might help reconstruct the neurogenic status of the last common cnidarian ancestor. In fact, recent genomic analyses show that if most components of the postsynaptic density predate metazoan origin, the bilaterian neurogenic gene families originated later, in basal metazoans or as eumetazoan novelties. Striking examples are the ParaHox Gsx, Pax, Six, COUP-TF and Twist-type regulators, which seemingly exert neurogenic functions in cnidarians, including eye differentiation, and support the view of a two-step process in the emergence of neurogenesis.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Sciences III, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
47
|
The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 2011; 286:189-213. [PMID: 21877135 DOI: 10.1007/s00438-011-0643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
Collapse
|
48
|
Roth J, Guhl B, Kloter U, Gehring WJ. The ommatidia of Arca noae: a three-tier structure with a central light-guiding element for the receptor cell. Histochem Cell Biol 2011; 136:11-23. [PMID: 21706292 DOI: 10.1007/s00418-011-0828-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2011] [Indexed: 11/30/2022]
Abstract
The compound eyes of ark clams appear to function as an optical system to trigger shell closure against predators. We have analyzed the structure of the ommatidia of Arca noae by thin section electron microscopy and serial sectioning, Concanavalin A-gold labeling and acid phosphatase cytochemistry. Our results demonstrate that the ommatidia are a three-tier structure composed of a central single receptor cell, surrounded and covered by proximal pigment cells followed by rows of distal pigment cells. The receptor cells of Arca noae have no lens and the disks of their receptive segment are derived from sensory cilia. The distal mitochondrial segment in the cytoplasm between the nucleus and the receptive segment is surrounded by a mass of Concanavalin A-reactive glycogen particles. Although both, proximal and distal pigment cells have numerous microvilli, only those of the proximal pigment cells form a well-aligned brush border. The microvilli of the latter are ≈9-11 μm long and have a diameter of ≈70-80 nm. Numerous microlamellar bodies cover them. The microlamellar bodies are stored in acid phosphatase-negative secretory granules of the pigment granule-free apical cytoplasm of proximal pigment cells before their secretion. Observation of living compound eyes indicated that the apex of proximal pigment cells transmitted significantly more light than the surrounding distal pigment cells. Hence, the regular geometry of the brush border seems to be a light-guiding structure for receptor cells similar to an optical fiber.
Collapse
Affiliation(s)
- Jürgen Roth
- Department of Integrated OMICs for Biomedical Science, WCU Program of Graduate School, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, South Korea.
| | | | | | | |
Collapse
|
49
|
Davis J, Piatigorsky J. Overexpression of Pax6 in mouse cornea directly alters corneal epithelial cells: changes in immune function, vascularization, and differentiation. Invest Ophthalmol Vis Sci 2011; 52:4158-68. [PMID: 21447684 DOI: 10.1167/iovs.10-6726] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess whether Pax6 functions directly in the cornea, a corneal-preferred promoter was used to overexpress Pax6 specifically in the cornea. METHODS Transgenic mice harboring a construct containing mouse Pax6 coding sequences fused downstream of the aldehyde dehydrogenase 3a1 (Aldh3a1) promoter were generated (Pax6 Tg). Pax6 expression was analyzed by Western blot and immunohistochemistry. Eye sections were stained with hematoxylin and eosin, Schiff reagent, and fluorescein, to assess morphologic changes, the presence of goblet cells, and barrier integrity, respectively. Gene expression changes in mildly affected Pax6 Tg corneas were compared to age-matched, wild-type (WT) corneas by microarray analysis and quantitative PCR. Promoter regulation of several differentially expressed genes was examined by monitoring luciferase activity of reporter constructs after cotransfection with Pax6 in COS7 cells. RESULTS Corneal overexpression of Pax6 produces an abnormal cornea with altered epithelial cell morphology, neovascularization, immune cell invasion, and a compromised barrier; the lens appeared normal. Major changes in expression of genes involved in immune function, vascularization, and epithelial differentiation occurred in corneas from Pax6 Tg versus WT mice. The keratin (K) profile was dramatically altered in the Pax6 Tg corneas, as were several components of the Wnt signaling pathway. In severely affected Pax6 Tg corneas, K12 was reduced, and Pax6 was redistributed into the cytoplasm. Promoters from the chitinase 3-like 3, Wnt inhibitory factor 1, and fms-related tyrosine kinase 1/soluble VEGF receptor genes were upregulated five-, seven-, and threefold, respectively, by Pax6 in transfected COS7 cells. CONCLUSIONS Pax6 functions directly to maintain normal, corneal epithelial cells.
Collapse
Affiliation(s)
- Janine Davis
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
50
|
Abstract
There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation.
Collapse
Affiliation(s)
- Ulrich Technau
- Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, Austria.
| | | |
Collapse
|