1
|
Sadraei A, Naghib SM, Rabiee N. 4D printing biological stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 1. Expert Opin Drug Deliv 2025; 22:471-490. [PMID: 39939161 DOI: 10.1080/17425247.2025.2466772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The advent of 3D printing has revolutionized biomedical engineering, yet limitations in creating dynamic human tissues remain. The emergence of 4D printing, which introduces time as a fourth dimension, offers new possibilities by enabling the production of adaptable, stimuli-responsive structures. A thorough literature search was performed across various databases, including Google Scholar, PubMed, Scopus, and Web of Science, to identify pertinent studies published up to 2025. The search parameters were confined to articles published in English that concentrated on peer-reviewed clinical studies. AREAS COVERED This review explores the transition from 3D to 4D printing and focuses on stimuli-responsive materials, particularly hydrogels, which react to environmental changes. The literature search examined recent studies on the interaction of these materials with biological stimuli, emphasizing their application in tissue engineering and drug delivery applications. EXPERT OPINION 4D printing, combined with smart materials, holds immense promise for advancing biomedical treatments, including customized therapies and regenerative medicine. However, technological challenges must be addressed to realize its full potential.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2025; 55:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
3
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Kumar A, Rani M, Giovannuzzi S, Raghav N, Supuran CT, Sharma PK. Novel thiazolotriazole and triazolothiadiazine scaffolds as selective tumor associated carbonic anhydrase inhibitors endowed with cathepsin B inhibition. Arch Pharm (Weinheim) 2024; 357:e2400366. [PMID: 38991221 DOI: 10.1002/ardp.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The present research focused on the tail-approach synthesis of novel extended thiazolotriazoles (8a-8j) and triazolothiadiazines (11a-11j) including aminotriazole intermediate 10. After successful synthesis, all the compounds were evaluated for their inhibition potential against cytosolic isoforms of human carbonic anhydrase (hCA I, II), tumor-linked transmembrane isoforms (hCA IX, XII), and cathepsin B. As per the inhibition data, the newly synthesized compounds showed poor inhibition against hCA I. Many of the compounds showed effective inhibition toward hCA IX and/or XII in low nanomolar concentration. Despite the strong to moderate inhibition of hCA II by these compounds, more than half of them demonstrated better inhibition against hCA IX and/or XII, comparatively. Further, insights of CA inhibition data of these extended analogs and their comparison with earlier reported thiazolotriazole and triazolothiadiazine derivatives might help in the rational design of novel potent and selective hCA IX and XII inhibitors. The novel compounds were also found to possess anti-cathepsin B potential at a low concentration of 10-7 M. Broadly, compounds of series 11a-11j presented more effective inhibition against cathepsin B than their counterparts in series 8a-8j. Moreover, these in vitro results with respect to cathepsin B inhibition were also supported by the in silico insights obtained via molecular modeling studies.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Manishita Rani
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
5
|
Kumar A, Arya P, Sharma V, Giovannuzzi S, Raghav N, Supuran CT, Sharma PK. Potent inhibitors of tumor associated carbonic anhydrases endowed with cathepsin B inhibition. Arch Pharm (Weinheim) 2023; 356:e2300349. [PMID: 37704930 DOI: 10.1002/ardp.202300349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
Twenty-one novel extended analogs of acetazolamide were synthesized and screened in vitro for their inhibition efficacy against human carbonic anhydrase (hCA) isoforms I, II, IX, XII, and cathepsin B. The majority of the compounds were found to be effective inhibitors of tumor-associated hCA IX and XII, and poor inhibitors of cytosolic hCA I. Despite the strong to moderate inhibition potential possessed by these compounds toward another cytosolic isoform hCA II, some of them demonstrated better potency against hCA IX and/or XII isoforms as compared to hCA II. Four compounds (11f, 11g, 12c, and 12g) effectively inhibited hCA IX and/or XII isoforms with considerable selectivity over the off-targets hCA I and II. Interestingly, five compounds, including 11f, 11g, 12c, 12d, and 12g, inhibited hCA IX even better than the clinically used acetazolamide. Some of the novel synthesized compounds exhibited higher anti-cathepsin B potential than acetazolamide, with % inhibition of around 50%, at a concentration of 10-7 M. Further, two compounds (12g and 12c) that showed effective and selective inhibition activity profiles against hCA IX and XII were additionally found to be effective inhibitors of cathepsin B.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
6
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
7
|
Mitrović A, Završnik J, Mikhaylov G, Knez D, Pečar Fonović U, Matjan Štefin P, Butinar M, Gobec S, Turk B, Kos J. Evaluation of novel cathepsin-X inhibitors in vitro and in vivo and their ability to improve cathepsin-B-directed antitumor therapy. Cell Mol Life Sci 2022; 79:34. [PMID: 34989869 PMCID: PMC8738504 DOI: 10.1007/s00018-021-04117-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022]
Abstract
New therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity and protein levels. Furthermore, the simultaneous inhibition of both cathepsins B and X with potent, selective, reversible inhibitors exerted a synergistic effect in impairing processes of tumor progression in in vitro cell-based assays of tumor cell migration and spheroid growth. Taken together, our data demonstrate that Z9 impairs tumor progression both in vitro and in vivo and can be used in combination with other peptidase inhibitors as an innovative approach to overcome resistance to antipeptidase therapy.
Collapse
Affiliation(s)
- Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana,, Slovenia.
| | - Janja Završnik
- Department of Biochemistry and Molecular Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Petra Matjan Štefin
- Department of Biochemistry and Molecular Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Miha Butinar
- Department of Biochemistry and Molecular Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular Biology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana,, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Moraes JDN, Francisco AF, Dill LM, Diniz RS, Oliveira CSD, Silva TMRD, Caldeira CADS, Corrêa EDA, Coutinho-Neto A, Zanchi FB, Fontes MRDM, Soares AM, Calderon LDA. New multienzymatic complex formed between human cathepsin D and snake venom phospholipase A2. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20220002. [DOI: 10.1590/1678-9199-jvatitd-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Aleff Ferreira Francisco
- São Paulo State University (UNESP), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil; Smart Active Ingredients Lab (SAIL), Brazil
| | | | - Rafaela Souza Diniz
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; Federal University of Rondônia (UNIR), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil
| | | | | | | | | | | | - Fernando Berton Zanchi
- Federal University of Rondônia (UNIR), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | | | - Andreimar Martins Soares
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil; São Lucas University Center (UniSL), Brazil
| | - Leonardo de Azevedo Calderon
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; Federal University of Rondônia (UNIR), Brazil; Smart Active Ingredients Lab (SAIL), Brazil; Aparicio Carvalho University Center (FIMCA), Brazil
| |
Collapse
|
9
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
10
|
Yoo Y, Choi E, Kim Y, Cha Y, Um E, Kim Y, Kim Y, Lee YS. Therapeutic potential of targeting cathepsin S in pulmonary fibrosis. Biomed Pharmacother 2021; 145:112245. [PMID: 34772578 DOI: 10.1016/j.biopha.2021.112245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cathepsin S (CTSS), a lysosomal protease, belongs to a family of cysteine cathepsin proteases that promote degradation of damaged proteins in the endolysosomal pathway. Aberrant CTSS expression and regulation are associated with the pathogenesis of several diseases, including lung diseases. CTSS overexpression causes a variety of pathological processes, including pulmonary fibrosis, with increased CTSS secretion and accelerated extracellular matrix remodeling. Compared to many other cysteine cathepsin family members, CTSS has unique features that it presents limited tissue expression and retains its enzymatic activity at a neutral pH, suggesting its decisive involvement in disease microenvironments. In this review, we investigated the role of CTSS in lung disease, exploring recent studies that have indicated that CTSS mediates fibrosis in unique ways, along with its structure, substrates, and distinct regulation. We also outlined examples of CTSS inhibitors in clinical and preclinical development and proposed CTSS as a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- YoungJo Yoo
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Eun Choi
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yejin Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yunyoung Cha
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Eunhye Um
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Younghwa Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yunji Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea.
| |
Collapse
|
11
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
12
|
Basu S, Cheriyamundath S, Gavert N, Brabletz T, Haase G, Ben-Ze'ev A. Increased expression of cathepsin D is required for L1-mediated colon cancer progression. Oncotarget 2019; 10:5217-5228. [PMID: 31497251 PMCID: PMC6718269 DOI: 10.18632/oncotarget.27155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 01/24/2023] Open
Abstract
Hyperactivation of Wnt/β-catenin target genes is considered a key step in human colorectal cancer (CRC) development. We previously identified the immunoglobulin-like cell adhesion receptor L1 as a target gene of β-catenin/TCF transactivation that is localized at the invasive edge of CRC tissue. Using gene arrays, we discovered a number of downstream target genes and signaling pathways conferred by L1 overexpression during colon cancer progression. Here, we have used a proteomic approach to identify proteins in the secretome of L1-overexpressing CRC cells and studied the role of the increase in the aspartate protease cathepsin D (CTSD) in L1-mediated colon cancer development. We found that in addition to the increase in CTSD in the secretome, the RNA and protein levels of CTSD were also induced by L1 in CRC cells. CTSD overexpression resulted in elevated proliferation under stress and increased motility, tumorigenesis and liver metastasis, although to a lesser extent than after L1-transfection. The suppression of endogenous CTSD in L1-expressing cells blocked the increase in the proliferative, motile, tumorigenic and metastatic ability of CRC cells. Enhancing Wnt/β-catenin signaling by the inhibition of GSK3β resulted in increased endogenous CTSD levels, suggesting the involvement of the Wnt/β-catenin pathway in CTSD expression. In human CRC tissue, CTSD was detected in epithelial cells and in the stromal compartment at the more invasive areas of the tumor, but not in the normal mucosa, indicating that CTSD plays an essential role in CRC progression.
Collapse
Affiliation(s)
- Sayon Basu
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sanith Cheriyamundath
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Gal Haase
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Caicedo PA, Serrato IM, Sim S, Dimopoulos G, Coatsworth H, Lowenberger C, Ocampo CB. Immune response-related genes associated to blocking midgut dengue virus infection in Aedes aegypti strains that differ in susceptibility. INSECT SCIENCE 2019; 26:635-648. [PMID: 29389079 DOI: 10.1111/1744-7917.12573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Aedes (Stegomyia) aegypti, the principal global vector of dengue viruses, has differences in its susceptibility to dengue virus infection. We compared the global expression of genes in the midguts of Colombian Ae. aegypti dengue-susceptible (Cali-S) and dengue-refractory (Cali-MIB) field derived strains after ingesting either a sugarmeal, a bloodmeal, or a bloodmeal containing dengue virus serotype 2 (DENV-2). Microarray-based transcriptome analysis among treatments indicated a total of 4725 transcripts with differential expression between the two strains. Eleven genes were selected from different functional groups based on their significant up or down expression levels as well as reports in the literature suggesting they are associated with dengue virus elimination. We measured mRNA abundance of these 11 genes at 0, 8, 24, and 36 h postinfection using quantitative real time PCR (qPCR) to confirm the microarray results and assess any temporal patterns. Four genes were selected (Gram-negative binding protein-GNBP [AAEL009176], Niemann Pick Type-C2-NPC2 [AAEL015136], Keratinocyte lectin [AAEL009842], and Cathepsin-b [AAEL007585]) for knockdown experiments using RNA interference (RNAi) methodology to determine the phenotype (DENV-2 susceptible or refractory). Silencing GNBP, Cathepsin-b and Keratinocyte lectin reduced the percentage of mosquitoes with disseminated virus in the Cali-S strain to 8%, 20%, and 12% respectively compared with 96% in the controls. Silencing of NPC2 increased the percentage of mosquitos with disseminated virus infections in Cali-MIB to 66% compared with 35% in the controls. This study provides insight into genes that may contribute to the Cali-S susceptible and Cali-MIB refractory phenotypes in Ae. aegypti.
Collapse
Affiliation(s)
- Paola A Caicedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Idalba Mildred Serrato
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Shuzhen Sim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Heather Coatsworth
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Clara B Ocampo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| |
Collapse
|
14
|
Paschoalin T, Martens AA, Omori ÁT, Pereira FV, Juliano L, Travassos LR, Machado-Santelli GM, Cunha RLOR. Antitumor effect of chiral organotelluranes elicited in a murine melanoma model. Bioorg Med Chem 2019; 27:2537-2545. [PMID: 30962115 DOI: 10.1016/j.bmc.2019.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Protease roles in cancer progression have been demonstrated and their inhibitors display antitumor effects. Cathepsins are lysosomal cysteine proteases that have increased expression in tumor cells, and tellurium compounds were described as potent cysteine protease inhibitors and also assayed in several animal models. In this work, the two enantiomeric forms of 1-[Butyl(dichloro)-λ4-tellanyl]-2-[1S-methoxyethyl]benzene (organotelluranes RF-13R and RF-13S) were evaluated as inhibitors of cathepsins B and L, showing significant enantiodiscrimination. We observed their cytotoxic effects on a murine melanoma model, effectively inhibiting tumor progression in vivo. The enantiomers were able to inhibit melanoma cell viability, migration and invasion in vitro. Besides, RF-13S and RF-13R were able to inhibit endothelial cell angiogenesis using a tube formation assay in vitro, in a stereodependent manner. These organotelluranes affected cell morphology, showing disassembling of the actin cytoskeleton. These results suggest organotelluranes as potential antitumor agents, acting directly on tumor cell proliferation, migration and invasion, and on endothelial cells, disrupting angiogenesis, showing low toxicity and high efficiency. Taken together our results suggest that this class of compounds should be further studied to reveal their potential as antitumoral agents.
Collapse
Affiliation(s)
- Thaysa Paschoalin
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Adam A Martens
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Álvaro T Omori
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Felipe V Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Glaucia M Machado-Santelli
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
15
|
Liang W, Wang F, Chen Q, Dai J, Escara-Wilke J, Keller ET, Zimmermann J, Hong N, Lu Y, Zhang J. Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone. J Cancer Res Clin Oncol 2019; 145:1999-2012. [PMID: 31172267 PMCID: PMC6658578 DOI: 10.1007/s00432-019-02950-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The processes of prostate cancer (PCa) invasion and metastasis are facilitated by proteolytic cascade involving multiple proteases, such as matrix metalloproteinases, serine proteases and cysteine proteases including cathepsin K (CatK). CatK is predominantly secreted by osteoclasts and specifically degrades collagen I leading to bone destruction. PCa and breast cancer preferentially metastasize to the bone. Importantly, CatK expression level is greater in PCa bone metastatic sites compared to primary tumor and normal prostate tissues. However, the underlying mechanism of CatK during PCa metastases into the bone remains to be elucidated. We investigated the functional role of CatK during the PCa establishment and growth process in the murine bone. METHODS CatK mRNA expression was validated by RT-PCR, protein expression by immunoblotting in PCa LNCaP, C4-2B, and PC3 cells as well as in PCa tissues. Its protein production was measured using ELISA assay. The effect of both knockdowns via siRNA and CatK inhibitor was compared in regard to PCa cell invasion. We further studied the dose-dependent CatK inhibitor effect on conditioned media-induced bone resorption. In setting up an animal model, C4-2B cells were injected into the tibiae of SCID mice. The animals treated with either vehicle or CatK inhibitor for 8 weeks at the time of tumor cell injection (tumor establishment model; protocol I) or 4 weeks after tumor cell injection (tumor progression model; protocol II) were applied to histological and histomorphometric analyses. RESULTS We confirmed CatK expression in PCa LNCaP, C4-2B, and PC3 cells as well as in PCa tissues. Furthermore, we observed the inhibitory effects of a selective CatK inhibitor on PCa cell invasion. The CatK inhibitor dose-dependently inhibited PCa-conditioned media-induced bone resorption. Upon injection of C4-2B cells into the tibiae of SCID mice, the selective CatK inhibitor significantly prevented the tumor establishment in protocol I, and reduced the tumor growth in bone in protocol II. It also decreased serum PSA levels in both animal models. The inhibitory effects of the CatK inhibitor were enhanced in combination with zoledronic acid (ZA). CONCLUSION The selective CatK inhibitor may prevent the establishment and progression of PCa in bone, thus making it a novel therapeutic approach for advanced PCa.
Collapse
Affiliation(s)
- Weiping Liang
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fuhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China
| | - Qiuyan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinlu Dai
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - June Escara-Wilke
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Evan T Keller
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Johann Zimmermann
- Novartis Pharma Ltd., Basel, Switzerland.,Polyphor Ltd, Hegenheimermattweg 125, 4123, Allschwil, Switzerland
| | - Ni Hong
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China. .,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China. .,Department of Urology, University of Pittsburgh, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
16
|
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19:74-97. [PMID: 30686257 DOI: 10.2174/1568026619666190125144621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Enzymatic dysregulation in tumor and intracellular microenvironments has made this property
a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug
release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have
achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular
microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the
peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various
drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally,
the future opportunities and challenges are discussed. In brief, this review can provide inspiration and
impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor
diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
Eiro N, Carrión JF, Cid S, Andicoechea A, García-Muñiz JL, González LO, Vizoso FJ. Toll-Like Receptor 4 and Matrix Metalloproteases 11 and 13 as Predictors of Tumor Recurrence and Survival in Stage II Colorectal Cancer. Pathol Oncol Res 2019; 25:1589-1597. [PMID: 30710321 DOI: 10.1007/s12253-019-00611-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Current clinical-pathologic stratification factors do not allow clear identification of high-risk stage II colorectal cancer (CRC) patients. Therefore, the identification of additional prognostic markers is desirable. Toll-like receptor (TLR)-4 is activated during tumorigenesis and matrix metalloproteases (MMPs) are involved in invasion and metastasis. We aimed to evaluate the expression and clinical relevance of TLR4, MMP11 and MMP13 for patients with stage II CRC. Immunohistochemistry was used to study the expression of TLR4, MMP11 and MMP13 in 96 patients with stage II CRC. We measured the global expression and the expression by different cell types (tumor cells, cancer-associated fibroblasts (CAFs) and mononuclear inflammatory cells (MICs)). The potential relationship between expressions of factors and different prognostic variables were evaluated. Our results show significant relationships between either TLR4 expression by tumor cells and MMP11 expression by CAFs and high risk of tumor recurrence. In addition, the concurrence of age ≥ 75 years and the non-expression of MMP11 by CAFs identify a subgroup of patients with a good prognosis. Our results show that TLR4 expression by tumor cells and MMP11 expression by CAFs may to improve the identification of patients with stage II CRC with a high-risk of relapse.
Collapse
Affiliation(s)
- Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Juan Francisco Carrión
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Sandra Cid
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Alejandro Andicoechea
- Servicio de Cirugía General, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain
| | - José Luis García-Muñiz
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Luis O González
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
- Servicio de Anatomía Patológica, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain.
- Servicio de Cirugía General, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain.
| |
Collapse
|
18
|
Priyanga S, Khamrang T, Velusamy M, Karthi S, Ashokkumar B, Mayilmurugan R. Coordination geometry-induced optical imaging of l-cysteine in cancer cells using imidazopyridine-based copper(ii) complexes. Dalton Trans 2019; 48:1489-1503. [PMID: 30632585 DOI: 10.1039/c8dt04634d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Overexpression of cysteine cathepsins proteases has been documented in a wide variety of cancers, and enhances the l-cysteine concentration in tumor cells. We report the synthesis and characterization of copper(ii) complexes [Cu(L1)2(H2O)](SO3CF3)2, 1, L1 = 3-phenyl-1-(pyridin-2-yl)imidazo[1,5-a]pyridine, [Cu(L2)2(SO3CF3)]SO3CF3, 2, L2 = 3-(4-methoxyphenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine, [Cu(L3)2(H2O)](SO3CF3)2, 3, L3 = 3-(3,4-dimethoxy-phenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine and [Cu(L4)2(H2O)](SO3CF3)2, 4, L4 = dimethyl-[4-(1-pyridin-2-yl-imidazo[1,5-a]pyridin-3-yl)phenyl]amine as 'turn-on' optical imaging probes for l-cysteine in cancer cells. The molecular structure of complexes adopted distorted trigonal pyramidal geometry (τ, 0.68-0.87). Cu-Npy bonds (1.964-1.989 Å) were shorter than Cu-Nimi bonds (2.024-2.074 Å) for all complexes. Geometrical distortion was strongly revealed in EPR spectra, showing g‖ (2.26-2.28) and A‖ values (139-163 × 10-4 cm-1) at 70 K. The d-d transitions appeared around 680-741 and 882-932 nm in HEPES, which supported the existence of five-coordinate geometry in solution. The Cu(ii)/Cu(i) redox potential of 1 (0.221 V vs. NHE) was almost identical to that of 2 and 3 but lower than that of 4 (0.525 V vs. NHE) in HEPES buffer. The complexes were almost non-emissive in nature, but became emissive by the interaction of l-cysteine in 100% HEPES at pH 7.34 via reduction of Cu(ii) to Cu(i). Among the probes, probe 2 showed selective and efficient turn-on fluorescence behavior towards l-cysteine over natural amino acids with a limit of detection of 9.9 × 10-8 M and binding constant of 2.3 × 105 M-1. The selectivity of 2 may have originated from a nearly perfect trigonal plane adopted around a copper(ii) center (∼120.70°), which required minimum structural change during the reduction of Cu(ii) to Cu(i) while imaging Cys. The other complexes, with their distorted trigonal planes, required more reorganizational energy, which resulted in poor selectivity. Probe 2 was employed for optical imaging of l-cysteine in HeLa cells and macrophages. It exhibited brighter fluorescent images by visualizing Cys at pH 7.34 and 37 °C. It showed relatively less toxicity for these cell lines as ascertained by the MTT assay.
Collapse
Affiliation(s)
- Selvarasu Priyanga
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| | - Themmila Khamrang
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Marappan Velusamy
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Sellamuthu Karthi
- School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
19
|
van Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular Repolarisation of Tumour-Associated Macrophages. Molecules 2018; 24:molecules24010009. [PMID: 30577495 PMCID: PMC6337345 DOI: 10.3390/molecules24010009] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment (TME) is composed of extracellular matrix and non-mutated cells supporting tumour growth and development. Tumour-associated macrophages (TAMs) are among the most abundant immune cells in the TME and are responsible for the onset of a smouldering inflammation. TAMs play a pivotal role in oncogenic processes as tumour proliferation, angiogenesis and metastasis, and they provide a barrier against the cytotoxic effector function of T lymphocytes and natural killer (NK) cells. However, TAMs are highly plastic cells that can adopt either pro- or anti-inflammatory roles in response to environmental cues. Consequently, TAMs represent an attractive target to recalibrate immune responses in the TME. Initial TAM-targeted strategies, such as macrophage depletion or disruption of TAM recruitment, have shown beneficial effects in preclinical models and clinical trials. Alternatively, reprogramming TAMs towards a proinflammatory and tumouricidal phenotype has become an attractive strategy in immunotherapy. This work summarises the molecular wheelwork of macrophage biology and presents an overview of molecular strategies to repolarise TAMs in immunotherapy.
Collapse
Affiliation(s)
- Floris J van Dalen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Marleen H M E van Stevendaal
- Department of Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Felix L Fennemann
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Olga Ilina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Tripathi PP, Arami H, Banga I, Gupta J, Gandhi S. Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget 2018; 9:37252-37267. [PMID: 30647857 PMCID: PMC6324683 DOI: 10.18632/oncotarget.26442] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
Abstract
Delivery of imaging reagents and drugs to tumors is essential for cancer diagnosis and therapy. In addition to therapeutic and diagnostic functionalities, peptides have potential benefits such as biocompatibility, ease to synthesize, smaller size, by-passing off-target side effects, and achieving the beneficial effects with lower-administered dosages. A particular type of peptide known as cell penetrating peptides (CPP) have been predominantly studied during last twenty years as they are not only capable to translocate themselves across membranes but also allow carrier drugs to translocate across plasma membrane, by different mechanisms depending on the CPP. This is of great potential importance in drug delivery systems, as the ability to pass across membranes is crucial to many drug delivery systems. In spite of significant progress in design and application of CPP, more investigations are required to further improve their delivery to tumors, with reduced side-effect and enhanced therapeutic efficacy. In this review, we emphasis on current advancements in preclinical and clinical trials based on using CPP for more efficient delivery of anti-cancer drugs and imaging reagents to cancer tissues and individual cells associated with them. We discuss the evolution of the CPPs-based strategies for targeted delivery, their current status and strengths, along with summarizing the role of CPPs in targeted drug delivery. We also discuss some recently reported diagnostic applications of engineered protease-responsive substrates and activable imaging complexes. We highlight the recent clinical trial data by providing a road map for better design of the CPPs for future preclinical and clinical applications.
Collapse
Affiliation(s)
- Prem Prakash Tripathi
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India.,IICB-Translational Research Unit of Excellence, Kolkata, India
| | - Hamed Arami
- Molecular Imaging Program at Stanford (MIPS), The James H. Clark Center, Stanford University, Stanford, CA, USA.,Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Ivneet Banga
- Department of Bioengineering, University of Texas, Arlington, TX, USA
| | - Jalaj Gupta
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, India
| |
Collapse
|
21
|
Xiaofei C, Yanqing L, Dongkai Z, Dong C, Feng Z, Weilin W. Identification of cathepsin B as a novel target of hypoxia-inducible factor-1-alpha in HepG2 cells. Biochem Biophys Res Commun 2018; 503:1057-1062. [DOI: 10.1016/j.bbrc.2018.06.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
|
22
|
Al-Awadhi FH, Law BK, Paul VJ, Luesch H. Grassystatins D-F, Potent Aspartic Protease Inhibitors from Marine Cyanobacteria as Potential Antimetastatic Agents Targeting Invasive Breast Cancer. JOURNAL OF NATURAL PRODUCTS 2017; 80:2969-2986. [PMID: 29087712 PMCID: PMC5764543 DOI: 10.1021/acs.jnatprod.7b00551] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three new modified peptides named grassystatins D-F (1-3) were discovered from a marine cyanobacterium from Guam. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The hallmark structural feature in the peptides is a statine unit, which contributes to their aspartic protease inhibitory activity preferentially targeting cathepsins D and E. Grassystatin F (3) was the most potent analogue, with IC50 values of 50 and 0.5 nM against cathepsins D and E, respectively. The acidic tumor microenvironment is known to increase the activation of some of the lysosomal proteases associated with tumor metastasis such as cathepsins. Because cathepsin D is a biomarker in aggressive forms of breast cancer and linked to poor prognosis, the effects of cathepsin D inhibition by 1 and 3 on the downstream cellular substrates cystatin C and PAI-1 were investigated. Furthermore, the functional relevance of targeting cathepsin D substrates was evaluated by examining the effect of 1 and 3 on the migration of MDA-MD-231 cells. Grassystatin F (3) inhibited the cleavage of cystatin C and PAI-1, the activities of their downstream targets cysteine cathepsins and tPA, and the migration of the highly aggressive triple negative breast cancer cells, phenocopying the effect of siRNA-mediated knockdown of cathepsin D.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Brian K. Law
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmacology and Therapeutics, University of Florida, 1600 Archer Road, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
23
|
Eiró N, González LO, Cid S, Andicoechea A, Vizoso FJ. Matrix metalloproteases expression in different histological types of colorectal polyps. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2017; 109:414-420. [PMID: 28376625 DOI: 10.17235/reed.2017.4551/2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Colorectal carcinoma (CC) may begin as benign polyps, which may be classified in different histological types with a different risk to develop cancer. Matrix metalloproteases (MMPs) are able to degrade all components in the extracellular matrix and are important tissue-remodeling enzymes and key elements in tumor invasion and metastasis. The aim of this study was to investigate the expression and clinical relevance of MMPs in different histological types of colorectal polyps. METHODS The expression levels of MMP-1, 2, 7, 9, 11, 13 and 14 were analyzed by real-time PCR, Western-blot and immunohistochemistry in 50 patients with different histological types of colorectal polyps, 28 of which developed CC. RESULTS The results indicate that hyperplastic polyps had the lowest levels of MMP-1 and MMP-7, tubular polyps showed higher levels of both MMP-7 and MMP-14, and tubulovillous adenoma showed higher levels of MMP-1, MMP-7 and MMP-14. CONCLUSION MMP expression was decreased in hyperplastic, tubular and tubulovillous adenoma polyps from patients who developed CC. Our findings suggest that MMP expression may be a pathological marker of colorectal polyps and for cancer susceptibility, which may improve strategies for CC prevention based on screening colonoscopy.
Collapse
Affiliation(s)
- Noemi Eiró
- Unidad de Investigación, Fundación Hospital de Jove
| | - Luis O González
- Unidad de Investigación y Servicio de Anatomía Pat, Fundación Hospital de Jove
| | - Sandra Cid
- Unidad de Investigación, Fundación Hospital de Jove
| | | | - Francisco J Vizoso
- Unidad de Investigación y Servicio de Cirugía Gene, Fundación Hospital de Jove, España
| |
Collapse
|
24
|
Maheshwaran D, Nagendraraj T, Manimaran P, Ashokkumar B, Kumar M, Mayilmurugan R. A Highly Selective and Efficient Copper(II) - “Turn-On” Fluorescence Imaging Probe forl-Cysteine. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601229] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Paramasivam Manimaran
- School of Biotechnology; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | | | - Mukesh Kumar
- Solid State Physics Division; Physics Group; Bhabha Atomic Research Center; Mumbai Maharashtra India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| |
Collapse
|
25
|
Maheshwaran D, Priyanga S, Mayilmurugan R. Copper(ii)-benzimidazole complexes as efficient fluorescent probes forl-cysteine in water. Dalton Trans 2017; 46:11408-11417. [DOI: 10.1039/c7dt01895a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper(ii)-benzimidazole complexes could detectl-cysteine over other natural amino acids at pH 7.34 by a ‘turn-on’ fluorescence mechanismviathe reduction of Cu(ii) to Cu(i) followed by displacement with excellent selectivity.
Collapse
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Selvarasu Priyanga
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
26
|
Pulz LH, Strefezzi RF. Proteases as prognostic markers in human and canine cancers. Vet Comp Oncol 2016; 15:669-683. [PMID: 27136601 DOI: 10.1111/vco.12223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/07/2016] [Indexed: 02/05/2023]
Abstract
The extracellular matrix (ECM) is composed of several types of proteins, which interact and form dynamic networks. These components can modulate cell behaviour and actively influence the growth and differentiation of tissues. ECM is also important in several pathological processes, such as cancer invasion and metastasis, by creating favourable microenvironments. Proteolysis in neoplastic tissues is mediated by proteinases, whose regulation involves complex interactions between neoplastic cells and non-neoplastic stromal cells. In this review, we discuss aspects of proteinase expression and tumor behaviour in humans and dogs. Different classes of proteases are summarized, with special emphasis being placed on molecules that have been shown to correlate with prognosis, reinforcing the need for a better understanding of the regulation of this microenvironment and its influences in tumor progression and metastasis, which should significantly aid the development of improved prognosis and treatment.
Collapse
Affiliation(s)
- L H Pulz
- Laboratório de Oncologia Comparada e Translacional (LOCT), Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - R F Strefezzi
- Laboratório de Oncologia Comparada e Translacional (LOCT), Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| |
Collapse
|
27
|
Wilkinson RDA, Williams R, Scott CJ, Burden RE. Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biol Chem 2016; 396:867-82. [PMID: 25872877 DOI: 10.1515/hsz-2015-0114] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/09/2015] [Indexed: 01/10/2023]
Abstract
Cathepsin S is a member of the cysteine cathepsin protease family. It is a lysosomal protease which can promote degradation of damaged or unwanted proteins in the endo-lysosomal pathway. Additionally, it has more specific roles such as MHC class II antigen presentation, where it is important in the degradation of the invariant chain. Unsurprisingly, mis-regulation has implicated cathepsin S in a variety of pathological processes including arthritis, cancer, and cardiovascular disease, where it becomes secreted and can act on extracellular substrates. In comparison to many other cysteine cathepsin family members, cathepsin S has uniquely restricted tissue expression and is more stable at a neutral pH, which supports its involvement and importance in localised disease microenvironments. In this review, we examine the known involvement of cathepsin S in disease, particularly with respect to recent work indicating its role in mediating pain, diabetes, and cystic fibrosis. We provide an overview of current literature with regards cathepsin S as a therapeutic target, as well as its role and potential as a predictive diagnostic and/or prognostic marker in these diseases.
Collapse
|
28
|
Abstract
Enzymes play a central role in a spectrum of fundamental physiological processes and their altered expression level has been associated with many diseases and pathological disorders. Enzymes therefore can be exploited as a pristine biological trigger to tune material responses and to achieve controlled release of biomolecules at desired sites. This mini-review highlights enzyme-responsive polymer hydrogels for therapeutic delivery applications developed within the last five years, focusing on protease- and glycosidase-based catalyzed reactions. Strategies employed to produce responsive materials are described. Successful applications for controlled drug delivery are highlighted, and finally, future opportunities and challenges are presented.
Collapse
Affiliation(s)
- Rona Chandrawati
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Garg S, Raghav N. N-formylpyrazolines and N-benzoylpyrazolines as potential inhibitors cathepsin L. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Lysosomal cysteine peptidases – Molecules signaling tumor cell death and survival. Semin Cancer Biol 2015; 35:168-79. [DOI: 10.1016/j.semcancer.2015.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
|
31
|
González L, Eiro N, Fernandez-Garcia B, González LO, Dominguez F, Vizoso FJ. Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Mol Carcinog 2015; 55:1489-1502. [PMID: 26349857 DOI: 10.1002/mc.22403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
The biological heterogeneity of breast cancer leads to the need for finding new approaches to understand the mechanisms implicated in breast cancer progression. The tumor stroma appears as a key in the progression of solid tumors towards a malignant phenotype. Cancer associated fibroblasts (CAFs) may orchestrate a functional "corrupted" stroma which in turn helps metastatic spread. In this study, we investigated by real-time PCR, the expression of 19 factors by normal breast-associated fibroblasts (NAFs) and CAFs, which were implicated in several actions promoting tumor growth, such as extracellular matrix remodeling, inflammation and invasion. Also, we explored the influence of inflammatory cells phenotypes (MMP11 status) and breast cancer cell lines (MCF-7 and MDA-MB-231) on the molecular profile of CAFs. If we consider that one of the major sources of CAFs are resident NAFs, the transition of NAFs into CAFs is associated with molecular changes involving the overexpression of some molecular factors of biological importance in tumor progression. In addition, the characterization of the tumor stroma regarding to the MMP11 status by MICs reflects a type of fibroblasts which contribute even more to tumor progression. Moreover, different patterns in the induction of the expression of factors by CAFs were observed, depending on the tumor cell line which they were co-cultured with. Furthermore, CAFs influence TGFβ expression in both cancer cell lines. Therefore, this study can help to a better characterization of tumor stroma in order to improve the prognostic evaluation, as well as to define the different populations of CAFs as potential therapeutic targets in breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucía González
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | | | - Luis O González
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain.,Servicio de Anatomía Patológica, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Francisco Dominguez
- Servicio de Anatomía Patológica, Hospital de Cabueñes, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain. .,Servicio de Cirugía General, Fundación Hospital de Jove, Gijón, Spain.
| |
Collapse
|
32
|
Intracellular signaling by cathepsin X: Molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol 2015; 31:76-83. [DOI: 10.1016/j.semcancer.2014.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 01/27/2023]
|
33
|
Singh M, Raghav N. 2,3-Dihydroquinazolin-4(1H)-one derivatives as potential non-peptidyl inhibitors of cathepsins B and H. Bioorg Chem 2015; 59:12-22. [PMID: 25665518 DOI: 10.1016/j.bioorg.2015.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/17/2022]
Abstract
A direct correlation between cathepsin expression-cancer progression and elevated levels of cathepsins due to an imbalance in cellular inhibitors-cathepsins ratio in inflammatory diseases necessitates the work on the identification of potential inhibitors to cathepsins. In the present work we report the synthesis of some 2,3-dihydroquinazolin-4(1H)-ones followed by their evaluation as cysteine protease inhibitors in general and cathepsin B and cathepsin H inhibitors in particular. 2,3-Dihydroquinazolin-4(1H)-ones, synthesized by the condensation of anthranilamide and carbonyl compound in presence of PPA-SiO2 catalyst, were characterized by spectral analysis. The designed compounds were screened as inhibitors to proteolysis on endogenous protein substrates. Further, a distinct differential pattern of inhibition was obtained for cathepsins B and H. The inhibition was more to cathepsin B with Ki values in nanomolar range. However, cathepsin H was inhibited at micromolar concentration. Maximum inhibition was shown by compounds, 1e and 1f for cathepsin B and compounds 1c and 1f for cathepsin H. The synthesized compounds were established as reversible inhibitors of cathepsins B and H. The results were also compared with the energy of interaction between enzyme active site and compounds using iGemdock software.
Collapse
Affiliation(s)
- Mamta Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India.
| |
Collapse
|
34
|
Abstract
Cathepsins, intracellular proteases, are known to be involved in a number of physiological processes such as degradation of extracellular proteins, prohormone processing, progressions of atherosclerosis etc.
Collapse
Affiliation(s)
- Shweta Garg
- Department of Chemistry
- Kurukshetra University
- Kurukshetra-136119
- India
| | - Neera Raghav
- Department of Chemistry
- Kurukshetra University
- Kurukshetra-136119
- India
| |
Collapse
|
35
|
Xu ZZ, Xiu P, Lv JW, Wang FH, Dong XF, Liu F, Li T, Li J. Integrin αvβ3 is required for cathepsin B-induced hepatocellular carcinoma progression. Mol Med Rep 2014; 11:3499-504. [PMID: 25572981 DOI: 10.3892/mmr.2014.3140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/14/2014] [Indexed: 11/05/2022] Open
Abstract
The cysteine protease cathepsin B (Cat B) is important in the progression of tumor cells, however, the function and molecular mechanisms of Cat B in hepatocellular carcinoma (HCC) remain to be elucidated. Our previous study demonstrated that integrin αvβ3 regulated the biological behavior of HCC. The present study demonstrated that Cat B was also important in cell proliferation and apoptosis in HCC. Notably, Cat B was observed to activate the phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway to promote HCC proliferation. Furthermore, inhibition of integrin αvβ3 significantly prevented Cat B‑induced activation of PI3K/Akt and the progression of HCC. Thus, the results of the present study suggested the presence of a Cat B/integrin αvβ3/PI3K/Akt axis in the regulation of the progression of HCC.
Collapse
Affiliation(s)
- Zong-Zhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ju-Wei Lv
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fu-Hai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiao-Feng Dong
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
36
|
Perišić Nanut M, Sabotič J, Jewett A, Kos J. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front Immunol 2014; 5:616. [PMID: 25520721 PMCID: PMC4251435 DOI: 10.3389/fimmu.2014.00616] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes.
Collapse
Affiliation(s)
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute , Ljubljana , Slovenia
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, University of California Los Angeles , Los Angeles, CA , USA
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute , Ljubljana , Slovenia ; Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
37
|
N-formylpyrazolines and N-benzoylpyrazolines as novel inhibitors of mammalian cathepsin B and cathepsin H. Bioorg Chem 2014; 57:43-50. [DOI: 10.1016/j.bioorg.2014.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022]
|
38
|
Impact of the Enhanced Permeability and Retention (EPR) Effect and Cathepsins Levels on the Activity of Polymer-Drug Conjugates. Polymers (Basel) 2014. [DOI: 10.3390/polym6082186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 2014; 6:1355-71. [DOI: 10.4155/fmc.14.73] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine peptidase, with an important role in the development and progression of cancer. It is involved in the degradation of extracellular matrix proteins, a process promoting invasion and metastasis of tumor cells and tumor angiogenesis. Cathepsin B is unique among cathepsins in possessing both carboxypeptidase and endopeptidase activities. While the former is associated with its physiological role, the latter is involved in pathological degradation of the extracellular matrix. Its activities are regulated by different means, the most important being its endogenous inhibitors, the cystatins. In cancer this peptidase/inhibitor balance is altered, leading to harmful cathepsin B activity. The latter can be prevented by exogenous inhibitors. They differ in modes of inhibition, size, structure, binding affinity, selectivity, toxicity and bioavailability. In this article, we review the properties and function of endogenous and exogenous cathepsin B inhibitors and indicate their application as possible anticancer agents.
Collapse
|
40
|
Ramalho SD, Bernades A, Demetrius G, Noda-Perez C, Vieira PC, Dos Santos CY, da Silva JA, de Moraes MO, Mousinho KC. Synthetic chalcone derivatives as inhibitors of cathepsins K and B, and their cytotoxic evaluation. Chem Biodivers 2014; 10:1999-2006. [PMID: 24243608 DOI: 10.1002/cbdv.201200344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Indexed: 11/08/2022]
Abstract
A series of chalcone derivatives, 1-15, were prepared by Claisen-Schmidt condensation and evaluated for their cytotoxicities on tumor cell lines and also against proteolytic enzymes such as cathepsins B and K. Of the compounds synthesized, (E)-3-(3,4-dimethoxyphenyl)-1-phenylprop-2-en-1-one (12), (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (13), (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (14), and (E)-3-(4-nitrophenyl)-1-phenylprop-2-en-1-one (15) showed significant cytotoxicities. The most effective compound was 15, which showed high cytotoxic activity with an IC50 value lower than 1 μg/ml, and no selectivity on the tumor cells evaluated. Substituents at C(4) of ring B were found to be essential for cytotoxicity. In addition, it was also demonstrated that some of these chalcones are moderate inhibitors of cathepsin K and have no activity against cathepsin B.
Collapse
Affiliation(s)
- Suelem Demuner Ramalho
- Department of Chemistry, State University of Goiás, 495, Anápolis, GO, Brazil; Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Raghav N, Garg S. SAR studies of o-hydroxychalcones and their cyclized analogs and study them as novel inhibitors of cathepsin B and cathepsin H. Eur J Pharm Sci 2014; 60:55-63. [PMID: 24780403 DOI: 10.1016/j.ejps.2014.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/20/2014] [Accepted: 04/07/2014] [Indexed: 11/26/2022]
Abstract
Cathepsins have emerged as a potential target for anti-cancer drug development. In the present study, we have synthesized three structurally related series of flavanoids i.e., 2'-hydroxychalcones, flavanones and flavones and assayed in vitro to study their inhibitory potency against cathepsin B and H, promising drug candidate for cancer therapy. Enzyme kinetics studies were carried out in presence of these compounds after preliminary proteolytic studies on endogenous protein substrates. SAR studies suggested that open chain flavanoids were better inhibitors as compared to their cyclized analogs. The most potent inhibitors among the three series were nitro substituted compounds 1g, 2g and 3g with Ki values of ∼6.18×10(-8) M, 4.8×10(-7) M and 7.85×10(-7) M for cathepsin B and Ki values of ∼2.8×10(-7) M, 31.8×10(-6) M and 33.7×10(-6) M for cathepsin H, respectively. The relationship between chalcone, flavanones and flavone structures interpreted by docking studies on cathepsin B and H also provided useful insights.
Collapse
Affiliation(s)
- N Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India.
| | - S Garg
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| |
Collapse
|
42
|
Vižin T, Christensen IJ, Wilhelmsen M, Nielsen HJ, Kos J. Prognostic and predictive value of cathepsin X in serum from colorectal cancer patients. BMC Cancer 2014; 14:259. [PMID: 24725597 PMCID: PMC4021260 DOI: 10.1186/1471-2407-14-259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/31/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cathepsin X is a cysteine protease involved in mechanisms of malignant progression. It is secreted from tumour cells as a proenzyme and may serve to predict the disease status and risk of death for cancer patients. In a previous, pilot, study on 77 colorectal patients we demonstrated the correlation of higher serum levels with shorter overall survival. METHODS 264 patients with colorectal cancer were included in a prospectively accrued multi-centre observational cohort study with the aim of testing novel biomarkers. Blood samples were collected before preoperative large bowel endoscopy and total cathepsin X was measured in sera by ELISA. As a control group we selected at random 77 subjects who had no findings at endoscopy and reported no co-morbidity. RESULTS The mean level of cathepsin X in cancer patients did not differ from the control levels (23.4 ng/ml ± 6.4 SD vs. 18.8 ng/ml ± 11.4 SD, p > 0.05) and there was no association with age, gender, disease stage, tumour location or CEA. In univariate analysis no association between cathepsin X levels and overall survival was demonstrated for the entire set of patients, however, cathepsin X was associated with survival in a group of patients with local resectable disease (stages I-III) (HR = 1.69, 95% CI: 1.03-2.75, p = 0.03). For this group, multivariate Cox regression analysis showed an association (HR = 3.13, 95% CI: 1.37-7.18, p = 0.003) between high cathepsin X levels and shorter overall survival for patients who did not receive chemotherapy, whereas, for patients who received chemotherapy, there was no association between cathepsin X and survival (HR = 0.51, 95% CI: 0.20-1.33, p = 0.88). CONCLUSIONS Association of cathepsin X levels with overall survival was not confirmed for an entire set of 264 colorectal patients, but for patients in stages I-III with local resectable disease. The significant association of cathepsin X with survival in a group of patients who received no chemotherapy and the absence of this association in the group who received chemotherapy, suggest the possible predictive value for response to chemotherapy. The results have to be confirmed in a further prospective study.
Collapse
Affiliation(s)
| | | | | | | | - Janko Kos
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
43
|
Raghav N, Singh M. Design, synthesis and docking studies of bischalcones based quinazoline-2(1H)-ones and quinazoline-2(1H)-thiones derivatives as novel inhibitors of cathepsin B and cathepsin H. Eur J Pharm Sci 2014; 54:28-39. [DOI: 10.1016/j.ejps.2013.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/29/2013] [Indexed: 11/30/2022]
|
44
|
Ruffell B, Affara NI, Cottone L, Junankar S, Johansson M, DeNardo DG, Korets L, Reinheckel T, Sloane BF, Bogyo M, Coussens LM. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev 2013; 27:2086-98. [PMID: 24065739 PMCID: PMC3850093 DOI: 10.1101/gad.224899.113] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serine and cysteine cathepsin (Cts) proteases are involved in tumor progression. CtsB plays a significant role during mammary carcinogenesis. Ruffell et al. find that squamous carcinomas develop independently of CtsB. CtsC is not required during mammary carcinogenesis but is necessary for squamous carcinogenesis. Dermal/stromal fibroblasts and bone marrow-derived cells express elevated levels of enzymatically active CtsC that regulate the complexity of infiltrating immune cells in neoplastic skin, development of angiogenic vasculature, and squamous cell carcinoma growth. These findings indicate that tissue specificity can define functional significance. Serine and cysteine cathepsin (Cts) proteases are an important class of intracellular and pericellular enzymes mediating multiple aspects of tumor development. Emblematic of these is CtsB, reported to play functionally significant roles during pancreatic islet and mammary carcinogenesis. CtsC, on the other hand, while up-regulated during pancreatic islet carcinogenesis, lacks functional significance in mediating neoplastic progression in that organ. Given that protein expression and enzymatic activity of both CtsB and CtsC are increased in numerous tumors, we sought to understand how tissue specificity might factor into their functional significance. Thus, whereas others have reported that CtsB regulates metastasis of mammary carcinomas, we found that development of squamous carcinomas occurs independently of CtsB. In contrast to these findings, our studies found no significant role for CtsC during mammary carcinogenesis but revealed squamous carcinogenesis to be functionally dependent on CtsC. In this context, dermal/stromal fibroblasts and bone marrow-derived cells expressed increased levels of enzymatically active CtsC that regulated the complexity of infiltrating immune cells in neoplastic skin, development of angiogenic vasculature, and overt squamous cell carcinoma growth. These studies highlight the important contribution of tissue/microenvironment context to solid tumor development and indicate that tissue specificity defines functional significance for these two members of the cysteine protease family.
Collapse
Affiliation(s)
- Brian Ruffell
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene 2013; 33:3392-400. [DOI: 10.1038/onc.2013.314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/19/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
|
46
|
Ji T, Zhao Y, Ding Y, Nie G. Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3508-25. [PMID: 23703805 DOI: 10.1002/adma.201300299] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Indexed: 05/20/2023]
Abstract
Malignant tumors remain a major health burden throughout the world and effective therapeutic strategies are urgently needed. Cancer nanotechnology, as an integrated platform, has the potential to dramatically improve cancer diagnosis, imaging, and therapy, while reducing the toxicity associated with the current approaches. Tumor microenvironment is an ensemble performance of various stromal cells and extracellular matrix. The recent progress in understanding the critical roles and the underlying mechanisms of the tumor microenvironment on tumor progression has resulted in emerging diagnostic and therapeutic nanomaterials designed and engineered specifically targeting the microenvironment components. Meanwhile, the bio-physicochemical differences between tumor and normal tissues have recently been exploited to achieve specific tumor-targeting for cancer diagnosis and treatment. Here, the major players in the tumor microenvironment and their biochemical properties, which can be utilized for the design of multifunctional nanomaterials with the potential to target and regulate this niche, are summarized. The recent progress in engineering intelligent and versatile nanomaterials for targeting and regulating the tumor microenvironment is emphasized. Although further investigations are required to develop robust methods for more specific tumor-targeting and well-controlled nanomaterials, the applications of tumor microenvironment regulation-based nanotechnology for safer and more effective anticancer nanomedicines have been proven successful and will eventually revolutionize the current landscape of cancer therapy.
Collapse
Affiliation(s)
- Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | | | | | | |
Collapse
|
47
|
Toward very potent, non-covalent organophosphonate inhibitors of cathepsin C and related enzymes by 2-amino-1-hydroxy-alkanephosphonates dipeptides. Biochimie 2013; 95:1640-9. [PMID: 23712251 DOI: 10.1016/j.biochi.2013.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/14/2013] [Indexed: 11/22/2022]
Abstract
Cathepsins play an important role in several human disorders and therefore the design and synthesis of their inhibitors attracts considerable interest in current medicinal chemistry approaches. Due to the presence of a strong sulphydryl nucleophile in the active center of the cysteine type cathepsins, most strategies to date have yielded covalent inhibitors. Here we present a series of non-covalent β-amino-α-hydroxyalkanephosphonate dipeptidic inhibitors of cathepsin C, ranking amongst the best low-molecular weight inhibitors of this enzyme. Their binding modes determined by molecular modelling indicate that the hydroxymethyl fragment of the molecule, not the phosphonate moiety, acts as a transition state analogue of peptide bond hydrolysis. These dipeptide mimetics appear also to be potent inhibitors of other cysteine proteases such as papain, cathepsin B and cathepsin K, thus providing new leading structures for these medicinally important enzymes.
Collapse
|
48
|
Pečar Fonović U, Jevnikar Z, Rojnik M, Doljak B, Fonović M, Jamnik P, Kos J. Profilin 1 as a target for cathepsin X activity in tumor cells. PLoS One 2013; 8:e53918. [PMID: 23326535 PMCID: PMC3542269 DOI: 10.1371/journal.pone.0053918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022] Open
Abstract
Cathepsin X has been reported to be a tumor promotion factor in various types of cancer; however, the molecular mechanisms linking its activity with malignant processes are not understood. Here we present profilin 1, a known tumor suppressor, as a target for cathepsin X carboxypeptidase activity in prostate cancer PC-3 cells. Profilin 1 co-localizes strongly with cathepsin X intracellularly in the perinuclear area as well as at the plasma membrane. Selective cleavage of C-terminal amino acids was demonstrated on a synthetic octapeptide representing the profilin C-terminal region, and on recombinant profilin 1. Further, intact profilin 1 binds its poly-L-proline ligand clathrin significantly better than it does the truncated one, as shown using cathepsin X specific inhibitor AMS-36 and immunoprecipitation of the profilin 1/clathrin complex. Moreover, the polymerization of actin, which depends also on the binding of poly-L-proline ligands to profilin 1, was promoted by AMS-36 treatment of cells and by siRNA cathepsin X silencing. Our results demonstrate that increased adhesion, migration and invasiveness of tumor cells depend on the inactivation of the tumor suppressive function of profilin 1 by cathepsin X. The latter is thus designated as a target for development of new antitumor strategies.
Collapse
Affiliation(s)
| | - Zala Jevnikar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Rojnik
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Doljak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute and Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| | | | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
49
|
Kholodenko IV, Konieva AA, Kholodenko RV, Yarygin KN. Molecular mechanisms of migration and homing of intravenously transplanted mesenchymal stem cells. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-1218-2-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Yin M, Soikkeli J, Jahkola T, Virolainen S, Saksela O, Hölttä E. TGF-β signaling, activated stromal fibroblasts, and cysteine cathepsins B and L drive the invasive growth of human melanoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2202-16. [PMID: 23063511 DOI: 10.1016/j.ajpath.2012.08.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/15/2012] [Accepted: 08/23/2012] [Indexed: 11/29/2022]
Abstract
Accumulating evidence indicates that interactions between cancer cells and stromal cells are important for the development/progression of many cancers. Herein, we found that the invasive growth of melanoma cells in three-dimensional-Matrigel/collagen-I matrices is dramatically increased on their co-culture with embryonic or adult skin fibroblasts. Studies with fluorescent-labeled cells revealed that the melanoma cells first activate the fibroblasts, which then take the lead in invasion. To identify the physiologically relevant invasion-related proteases involved, we performed genome-wide microarray analyses of invasive human melanomas and benign nevi; we found up-regulation of cysteine cathepsins B and L, matrix metalloproteinase (MMP)-1 and -9, and urokinase- and tissue-type plasminogen activators. The mRNA levels of cathepsins B/L and plasminogen activators, but not MMPs, correlated with metastasis. The invasiveness/growth of the melanoma cells with fibroblasts was inhibited by cell membrane-permeable inhibitors of cathepsins B/L, but not by wide-spectrum inhibitors of MMPs. The IHC analysis of primary melanomas and benign nevi revealed cathepsin B to be predominantly expressed by melanoma cells and cathepsin L to be predominantly expressed by the tumor-associated fibroblasts surrounding the invading melanoma cells. Finally, cathepsin B regulated TGF-β production/signaling, which was required for the activation of fibroblasts and their promotion of the invasive growth of melanoma cells. These data provide a basis for testing inhibitors of TGF-β signaling and cathepsins B/L in the therapy of invasive/metastatic melanomas.
Collapse
Affiliation(s)
- Miao Yin
- Department of Pathology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 3, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|