1
|
Balaraman AK, Altamimi ASA, Babu MA, Goyal K, PadmaPriya G, Bansal P, Rajotiya S, Kumar MR, Rajput P, Imran M, Gupta G, Thangavelu L. The interplay of senescence and MMPs in myocardial infarction: implications for cardiac aging and therapeutics. Biogerontology 2025; 26:46. [PMID: 39832057 DOI: 10.1007/s10522-025-10190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Aging is associated with a marked increase in cardiovascular diseases, such as myocardial infarction (MI). Cellular senescence is also a crucial factor in the development of age-related MI. Matrix metalloproteinases (MMPs) interaction with cellular senescence is a critical determinant of MI development and outcomes, most notably in the aged heart. After experiencing a heart attack, senescent cells exhibit a Senescence-Associated Secretory Phenotype (SASP) and are involved in tissue regeneration and chronic inflammation. MMPs are necessary for extracellular matrix proteolysis and have a biphasic effect, promoting early heart healing and detrimental change if overexpressed shortly. This review analyses the complex connection between senescence and MMPs in MI and how it influences elderly cardiac performance. Critical findings suggest that increasing cellular senescence in aged hearts elevates MMP activity and aggravates extended ventricular remodeling and dysfunction. Additionally, we explore potential therapeutics that address MMPs and senescence to enhance old MI patient myocardial performance and regeneration.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Pranchal Rajput
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Pant A, Moar K, Maurya PK. Impact of estradiol in inducing endometrial cancer using RL95-2. Pathol Res Pract 2024; 263:155640. [PMID: 39383736 DOI: 10.1016/j.prp.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Endometrial cancer is the most common gynecological malignancy that originates from the inner lining of the uterus and predominantly affects postmenopausal women. Prolonged exposure to estrogen, family history of endometrial cancer, obesity, and hormonal imbalance are some of the risk factors associated with endometrial cancer. In our study, we investigated the effect of estradiol, a potent form of estrogen at various concentrations on endometrial cell line RL95-2. METHODS Endometrial cell RL95-2 were cultured in DMEM medium with optimal conditions required to maintain the cells. MTT assay and colony formation assay were further performed after treating the cells with different concentrations of estradiol (1, 10, and 100 nM) and TAM (100 nM). Moreover, the effect of genes regulated by estradiol was also examined using microarray and validated using real-time polymerase chain reaction (qRT-PCR). RESULTS Time-dependent MTT assay shows a significant change in the ability of the cells to survive relative to concentrations. Colony formation was found to be directly proportional to the concentration of the estradiol (p < 0.05). Among genes, MMP14 (p = 0.03), SPARCL1 (p = 0.005), and CLU (p = 0.06) showed a significant up-regulation in their expression after estradiol treatment while NRN1 (p < 0.001) showed significant downregulation in expression pattern compared to control. However, the TAM treatment was found to be significantly effective after 72 h (p < 0.001) compared to control and 100 nM E2 (p = 0.0206). CONCLUSION Our study suggests that estradiol significantly contributes to regulating the viability, colony formation, and expression of genes associated with endometrial cancer.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
3
|
Piťha J, Vaněčková I, Zicha J. Hypertension after the Menopause: What Can We Learn from Experimental Studies? Physiol Res 2023; 72:S91-S112. [PMID: 37565415 PMCID: PMC10660576 DOI: 10.33549/physiolres.935151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Hypertension is the most prevalent cardiovascular disease of the adult population and is closely associated with serious cardiovascular events. The burden of hypertension with respect to vascular and other organ damage is greater in women. These sex differences are not fully understood. The unique feature in women is their transition to menopause accompanied by profound hormonal changes that affect the vasculature that are also associated with changes of blood pressure. Results from studies of hormone replacement therapy and its effects on the cardiovascular system are controversial, and the timing of treatment after menopause seems to be important. Therefore, revealing potential sex- and sex hormone-dependent pathophysiological mechanisms of hypertension in experimental studies could provide valuable information for better treatment of hypertension and vascular impairment, especially in postmenopausal women. The experimental rat models subjected to ovariectomy mimicking menopause could be useful tools for studying the mechanisms of blood pressure regulation after menopause and during subsequent therapy.
Collapse
Affiliation(s)
- J Piťha
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
4
|
Maluleke TT, Millen AME, Michel FS. The effects of estrogen deficiency and aging on myocardial deformation and motion in normotensive female rats. Menopause 2021; 29:89-95. [PMID: 34905750 DOI: 10.1097/gme.0000000000001884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Estrogen deficiency is associated with left ventricular (LV) dysfunction in postmenopausal women and ovariectomized rats. Whether the relationship between estrogen deficiency and LV dysfunction is independent of cardiovascular disease (CVD) risk factors remains uncertain. This study assessed the effects of short-term and long-term estrogen deficiency on cardiac structure and function using conventional and speckle tracking echocardiography, independent of traditional CVD risk factors. METHODS Female Sprague-Dawley rats were divided into short-term (6 wks) ovariectomized (n = 9), short-term sham-operated (n = 10), long-term (6 mo) ovariectomized (n = 8), and long-term sham-operated (n = 9) groups. Cardiac geometry, systolic and diastolic function, and myocardial deformation and motion were measured using echocardiography. RESULTS Ovariectomy had no effect on conventional echocardiography measures of cardiac structure or function. Compared with short-term, long-term groups had reduced LV internal diameter (false discovery rate [FDR] adjusted P = 0.05) and impaired relaxation (e'; FDR adjusted P = 0.0005) independent of body mass and blood pressure (BP). Global longitudinal strain was impaired in ovariectomized compared with sham-operated rats (FDR adjusted P = 0.05), but not after adjusting for body mass and BP (FDR adjusted P = 0.16). Global longitudinal strain (FDR adjusted P = 0.05), strain rate (FDR adjusted P = 0.002), and velocity (FDR adjusted P = 0.04) were impaired in long-term compared with short-term groups. Global longitudinal strain rate remained impaired after adjustments for body mass and BP (FDR adjusted P = 0.02). CONCLUSIONS Estrogen deficiency does not independently cause cardiac remodeling, LV dysfunction, or impaired myocardial deformation. Traditional CVD risk factors accompanying estrogen deficiency may account for cardiac remodeling and dysfunction observed in postmenopausal women.
Collapse
Affiliation(s)
- Tshiamo T Maluleke
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
5
|
El Hajj MC, Ninh VK, El Hajj EC, Bradley JM, Gardner JD. Estrogen receptor antagonism exacerbates cardiac structural and functional remodeling in female rats. Am J Physiol Heart Circ Physiol 2016; 312:H98-H105. [PMID: 27769996 DOI: 10.1152/ajpheart.00348.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
We have previously demonstrated the cardioprotective effects of ovarian hormones against adverse ventricular remodeling imposed by chronic volume overload. Here, we assess the estrogen receptor dependence of this cardioprotection. Four groups of female rats were studied: sham-operated (Sham), volume overloaded [aortocaval fistula (ACF)], Sham treated with estrogen receptor antagonist ICI 182,780 (Sham + ICI), and ACF treated with ICI. Cardiac function was assessed temporally using echocardiogram, and tissue samples were collected at 5 days and 6 wk postsurgery. All rats with volume overload had significantly increased cardiac output (96 ± 32 ml/min for ACF and 108 ± 11 ml/min for ACF + ICI vs. 31 ± 2 for Sham, P < 0.05). At 6 wk, volume overload induced significant left ventricular (LV) hypertrophy in both untreated and treated ACF groups. Both ACF groups developed significantly increased LV end-diastolic diameter (LVEDD), indicating LV dilatation, with the ACF + ICI group having the greatest increase (340%, relative to Sham). Ejection fraction was significantly reduced in the ACF + ICI group (23% reduction) at 6 wk postsurgery compared with untreated ACF (P < 0.05). Interstitial collagen staining was significantly reduced by volume overload, with estrogen receptor antagonism causing greater collagen loss at both 5 days and 6 wk postsurgery. Furthermore, volume overload induced a significant increase in LV wall stress only in rats treated with estrogen antagonist. These data indicate that estrogen receptor signaling is essential for sex hormone-dependent cardioprotection against adverse remodeling. The maintenance of myocardial extracellular matrix collagen appears to play a key role in this cardioprotection. NEW & NOTEWORTHY We assessed the estrogen receptor (ER) dependence of female-specific cardioprotection using a rat model of chronic volume-overload stress. ER antagonism worsened ventricular wall stress, ventricular dilation, and cardiac dysfunction induced by volume overload. Further, blocking ERs resulted in cardiac remodeling and functional changes similar to that previously found in ovariectomized rats.
Collapse
Affiliation(s)
- M C El Hajj
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - V K Ninh
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - E C El Hajj
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - J M Bradley
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - J D Gardner
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
6
|
Wang H, Zhao Z, Lin M, Groban L. Activation of GPR30 inhibits cardiac fibroblast proliferation. Mol Cell Biochem 2015; 405:135-48. [PMID: 25893735 DOI: 10.1007/s11010-015-2405-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022]
Abstract
The incidence of left ventricular diastolic dysfunction significantly increases in postmenopausal women suggesting the association between estrogen loss and diastolic dysfunction. The in vivo activation of G protein-coupled estrogen receptor (GPR30) attenuates the adverse effects of estrogen loss on cardiac fibrosis and diastolic dysfunction in mRen2.Lewis rats. This study was designed to address the effects of GPR30 on cardiac fibroblast proliferation in rats. The expression of GPR30 in cardiac fibroblasts isolated from adult Sprague-Dawley rats was confirmed by RT-PCR, Western blot analysis, and immunofluorescence staining. Results from BrdU incorporation assays, cell counting, carboxyfluorescein diacetate succinimidyl ester labeling in conjunction with flow cytometry, and Ki-67 staining showed that treatment with G1, a specific agonist of GPR30, inhibited cardiac fibroblast proliferation in a dose-dependent manner, which was associated with decreases in CDK1 and cyclin B1 protein expressions. In the GPR30-KO cells, BrdU incorporation, and CDK1 and cyclin B1 expressions significantly increased when compared to GPR30-intact cells. G1 had no effect on BrdU incorporation, CDK1 and cyclin B1 mRNA levels in GPR30-KO cells. In vivo studies showed increases in CDK1 and cyclin B1 mRNA levels, Ki-67-positive cells, and the immunohistochemistry staining of vimentin, a fibroblast marker, in the left ventricles from ovariectomized mRen2.Lewis rats versus hearts from ovary-intact littermates; 2 weeks of G1 treatment attenuated these adverse effects of estrogen loss. This study demonstrates that GPR30 is expressed in rat cardiac fibroblasts, and activation of GPR30 limits proliferation of these cells likely via suppression of the cell cycle proteins, cyclin B1, and CDK1.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1009, USA
| | | | | | | |
Collapse
|
7
|
Abstract
The extracellular matrix (ECM) is a complex entity containing a large portfolio of structural proteins, signaling molecules, and proteases. Changes in the overall integrity and activational state of these ECM constituents can contribute to tissue structure and function, which is certainly true of the myocardium. Changes in the expression patterns and activational states of a family of ECM proteolytic enzymes, the matrix metalloproteinases (MMPs), have been identified in all forms of left ventricle remodeling and can be a contributory factor in the progression to heart failure. However, new clinical and basic research has identified some surprising and unpredicted changes in MMP profiles in left ventricle remodeling processes, such as with pressure or volume overload, as well as with myocardial infarction. From these studies, it has become recognized that proteolytic processing of signaling molecules by certain MMP types, particularly the transmembrane MMPs, actually may facilitate ECM accumulation and modulate fibroblast transdifferentiation; both are critical events in adverse left ventricle remodeling. Based on the ever-increasing substrates and diversity of biological actions of MMPs, it is likely that continued research about the relationship of left ventricle remodeling in this family of proteases will yield new insights into the ECM remodeling process and new therapeutic targets.
Collapse
Affiliation(s)
- Francis G Spinale
- Cardiovascular Translational Research Center, CBA, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, USA.
| | | | | |
Collapse
|
8
|
Jessup JA, Lindsey SH, Wang H, Chappell MC, Groban L. Attenuation of salt-induced cardiac remodeling and diastolic dysfunction by the GPER agonist G-1 in female mRen2.Lewis rats. PLoS One 2010; 5:e15433. [PMID: 21082029 PMCID: PMC2972725 DOI: 10.1371/journal.pone.0015433] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/21/2010] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The G protein-coupled estrogen receptor (GPER) is expressed in various tissues including the heart. Since the mRen2.Lewis strain exhibits salt-dependent hypertension and early diastolic dysfunction, we assessed the effects of the GPER agonist (G-1, 40 nmol/kg/hr for 14 days) or vehicle (VEH, DMSO/EtOH) on cardiac function and structure. METHODS Intact female mRen2.Lewis rats were fed a normal salt (0.5% sodium; NS) diet or a high salt (4% sodium; HS) diet for 10 weeks beginning at 5 weeks of age. RESULTS Prolonged intake of HS in mRen2.Lewis females resulted in significantly increased blood pressure, mildly reduced systolic function, and left ventricular (LV) diastolic compliance (as signified by a reduced E deceleration time and E deceleration slope), increased relative wall thickness, myocyte size, and mid-myocardial interstitial and perivascular fibrosis. G-1 administration attenuated wall thickness and myocyte hypertrophy, with nominal effects on blood pressure, LV systolic function, LV compliance and cardiac fibrosis in the HS group. G-1 treatment significantly increased LV lusitropy [early mitral annular descent (e')] independent of prevailing salt, and improved the e'/a' ratio in HS versus NS rats (P<0.05) as determined by tissue Doppler. CONCLUSION Activation of GPER improved myocardial relaxation in the hypertensive female mRen2.Lewis rat and reduced cardiac myocyte hypertrophy and wall thickness in those rats fed a high salt diet. Moreover, these advantageous effects of the GPER agonist on ventricular lusitropy and remodeling do not appear to be associated with overt changes in blood pressure.
Collapse
Affiliation(s)
- Jewell A. Jessup
- The Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Sarah H. Lindsey
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Hao Wang
- The Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Mark C. Chappell
- The Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Leanne Groban
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
- The Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Voloshenyuk TG, Gardner JD. Estrogen improves TIMP-MMP balance and collagen distribution in volume-overloaded hearts of ovariectomized females. Am J Physiol Regul Integr Comp Physiol 2010; 299:R683-93. [PMID: 20504902 DOI: 10.1152/ajpregu.00162.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies demonstrate that 17beta-estradiol limits chronic volume overload-induced hypertrophy and improves heart function in ovariectomized rats. One possible cardioprotective mechanism involves the interaction between estrogen, estrogen receptors, and proteins of the extracellular matrix (ECM). The impact of estrogen deficiency and replacement on left ventricular (LV) hypertrophy and ECM protein expression was studied using five female rat groups: intact sham-operated, ovariectomized sham-operated, intact with volume overload, ovariectomized with volume overload, and ovariectomized with volume overload treated with estrogen. After 8 wk, LV protein extracts were evaluated by Western blot analysis for matrix metalloproteinase-2 (MMP-2) and MMP-9, MT1-MMP, tissue inhibitors of MMPs (TIMP)-1, TIMP-2, TIMP-3 and TIMP-4, collagens type I and III, and estrogen receptor alpha and beta expression. MMP proteolytic activity was assessed by zymography. All volume-overloaded groups exhibited LV hypertrophy, which was associated with a loss of interstitial collagen and perivascular fibrosis. After 8 wk of volume overload, 70% of ovariectomized rats developed heart failure, in contrast to only one intact rat. A downregulation of MMP-2, estrogen receptor-alpha (ERalpha), and ERbeta, and upregulation of MMP-9 and MT1-MMP were found in the volume-overloaded hearts of ovariectomized rats. Estrogen treatment improved TIMP-2/MMP-2 and TIMP-1/MMP-9 protein balance, restored ERalpha expression, and prevented MMP-9 activation, perivascular collagen accumulation and development of heart failure. However, estrogen did not fully restore ERbeta expression and did not prevent the increase of MMP-9 expression or loss of interstitial collagen. These results support that estrogen limits undesirable ECM remodeling and LV dilation, in part, through modulation of ECM protein expression in volume-overloaded hearts of ovariectomized rats.
Collapse
Affiliation(s)
- Tetyana G Voloshenyuk
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|