1
|
Xiong D, Xu Y, Wang H, Ye Y. Amino-truncated NOV expression and its correlation with clinicopathologic features, prognosis, metastasis, and chemoresistance in bladder cancer. Cancer Biol Ther 2024; 25:2386753. [PMID: 39097778 PMCID: PMC11299625 DOI: 10.1080/15384047.2024.2386753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024] Open
Abstract
Nephroblastoma, an overexpressed gene (NOV) protein, plays an important role in proliferation, differentiation, angiogenesis, adhesion, invasion and tumorigenesis, but the function of amino-truncated NOV is different. This study is to investigate the role of amino-truncated NOV in the progression of bladder cancer. Using immunohistochemistry and Western blot analysis, we detected the amino-truncated NOV in bladder cancer, and statistical analysis was performed to estimate the association between the expression of amino-truncated NOV and the patient's prognosis by SPSS 19.0. With transduction of amino-truncated NOV, we evaluated alteration for proliferation, migration, invasion and chemoresistance in bladder cancer cells, as well as some proteins related to Wnt/β-catenin pathway and epithelial-mesenchymal transition. The truncated variant of the NOV protein was located in a nucleus other than the cytoplasm and highly expressed in bladder cancer, which was also linked to higher pathological grade and positive lymph node metastasis as well as recurrence. The exact sequence of this truncated protein was confirmed, and it was a 26-kDa splicing. The truncated NOV protein found in bladder cancer was cut at the 187th amino acid of the full-length protein. It was also involved in bladder cancer progression and chemoresistance through a mechanism involving epithelial-mesenchymal transition (EMT) and the Wnt/β-catenin signaling pathway. Our findings provide experimental evidence that the nuclear NOV protein expression is a potential biomarker in the prognostic evaluation of bladder cancer and enhanced amino-truncated NOV expression is potentially important for bladder cancer cell invasion, metastasis and chemoresistance during progression.
Collapse
Affiliation(s)
- Dan Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yafei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Hongbo Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yunlin Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Matsushita Y, Sakamoto K, Tamamura Y, Shibata Y, Minamizato T, Kihara T, Ito M, Katsube KI, Hiraoka S, Koseki H, Harada K, Yamaguchi A. CCN3 protein participates in bone regeneration as an inhibitory factor. J Biol Chem 2013; 288:19973-85. [PMID: 23653360 DOI: 10.1074/jbc.m113.454652] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy.
Collapse
Affiliation(s)
- Yuki Matsushita
- Section of Oral Pathology, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Myers RB, Rwayitare K, Richey L, Lem J, Castellot JJ. CCN5 Expression in mammals. III. Early embryonic mouse development. J Cell Commun Signal 2012; 6:217-23. [PMID: 22926930 DOI: 10.1007/s12079-012-0176-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/24/2023] Open
Abstract
CCN proteins play crucial roles in development, angiogenesis, cell motility, matrix turnover, proliferation, and other fundamental cell processes. Early embryonic lethality in CCN5 knockout and over-expressing mice led us to characterize CCN5 distribution in early development. Previous papers in this series showed that CCN5 is expressed widely in mice from E9.5 to adult; however, its distribution before E9.5 has not been studied. To fill this gap in our knowledge of CCN5 expression in mammals, RT-PCR was performed on preimplantation murine embryos: 1 cell, 2 cell, 4 cell, early morula, late morula, and blastocyst. CCN5 mRNA was not detected in 1, 2, or 4 cell embryos. It was first detected at the early morula stage and persisted to the preimplantation blastocyst stage. Immunohistochemical staining showed widespread CCN5 expression in post-implantation blastocysts (E4.5), E5.5, E6.5, and E7.5 stage embryos. Consistent with our previous study on E9.5 embryos, this expression was not limited to a particular germ layer or cell type. The widespread distribution of CCN5 in early embryos suggests a crucial role in development.
Collapse
Affiliation(s)
- Ronald B Myers
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
4
|
Laurent M, Maryvonne L, Le Dréau G, Gwenvaël LD, Guillonneau X, Xavier G, Lelièvre E, Cécile LE, Slembrouck A, Amélie S, Goureau O, Olivier G, Martinerie C, Cécile M, Marx M, Maria M. Temporal and spatial expression of CCN3 during retina development. Dev Neurobiol 2012; 72:1363-75. [PMID: 22038708 DOI: 10.1002/dneu.20994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/20/2011] [Indexed: 12/21/2022]
Abstract
NOV/CCN3 is one of the founding members of the CCN (Cyr61 CTGF NOV) family. In the avian retina, CCN3 expression is mostly located within the central region of the inner nuclear layer. As retinal development progresses and this retinal layer differentiates and matures, CCN3 expression forms a dorsal-ventral and a central-peripheral gradient. CCN3 is produced by two glial cell types, peripapillary cells and Müller cells, as well as by horizontal, amacrine, and bipolar interneurons. In retinal neurons and Müller cell cultures, CCN3 expression is induced by activated BMP signaling, whereas Notch signaling decreases CCN3 mRNA and protein levels in Müller cells and has no effect in retinal neurons. In Müller cells, the CCN3 expression detected may thus result from a balance between the Notch and BMP signaling pathways.
Collapse
Affiliation(s)
- Maryvonne Laurent
- INSERM UMR S938 Centre de Recherche de Saint-Antoine, Hôpital Saint Antoine Paris F 75012, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fernando CA, Conrad PA, Bartels CF, Marques T, To M, Balow SA, Nakamura Y, Warman ML. Temporal and spatial expression of CCN genes in zebrafish. Dev Dyn 2010; 239:1755-67. [PMID: 20503371 PMCID: PMC3133677 DOI: 10.1002/dvdy.22279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The six mammalian CCN genes (Cyr61, CTGF, Nov, WISP1, WISP2, WISP3) encode a family of secreted, cysteine-rich, multimodular proteins having roles in cell proliferation, adhesion, migration, and differentiation during embryogenesis, wound healing, and angiogenesis. We used bioinformatics to identify 9 CCN genes in zebrafish (zCCNs), 6 of which have not been previously described. When compared with mammalian CCN family members, 3 were paralogs of Cyr61, 2 of CTGF, 2 of WISP1, 1 of WISP2, and 1 of WISP3. No paralog of Nov was found. In situ hybridization was performed to characterize the sites of expression of the zCCNs during early zebrafish development. zCCNs demonstrated both unique and overlapping patterns of expression, suggesting potential division of labor between orthologous genes and providing an alternate approach to gene function studies that will complement studies in mammalian models. Developmental Dynamics 239:1755–1767, 2010. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Carol A Fernando
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
CCN3 expression was observed in a broad variety of tissues from the early stage of development. However, a kind of loss of function in mice (CCN3 del VWC domain -/-) demonstrated mild abnormality, which indicates that CCN3 may not be critical for the normal embryogenesis as a single gene. The importance of CCN3 in bone marrow environment becomes to be recognized by the studies of hematopoietic stem cells and Chronic Myeloid Leukemia cells. CCN3 expression in bone marrow has been denied by several investigations, but we found CCN3 positive stromal and hematopoietic cells at bone extremities with a new antibody although they are a very few populations. We investigated the expression pattern of CCN3 in the cultured bone marrow derived mesenchymal stem cells and found its preference for osteogenic differentiation. From the analyses of in vitro experiment using an osteogenic mesenchymal stem cell line, Kusa-A1, we found that CCN3 downregulates osteogenesis by two different pathways; suppression of BMP and stimulation of Notch. Secreted CCN3 from Kusa cells inhibited the differentiation of osteoblasts in separate culture, which indicates the paracrine manner of CCN3 activity. CCN3 may also affect the extracellular environment of the niche for hematopoietic stem cells.
Collapse
|
7
|
Katsube KI, Sakamoto K, Tamamura Y, Yamaguchi A. Role of CCN, a vertebrate specific gene family, in development. Dev Growth Differ 2009; 51:55-67. [PMID: 19128405 DOI: 10.1111/j.1440-169x.2009.01077.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CCN family of genes constitutes six members of small secreted cysteine rich proteins, which exists only in vertebrates. The major members of CCN are CCN1 (Cyr61), CCN2 (CTGF), and CCN3 (Nov). CCN4, CCN5, and CCN6 were formerly reported to be in the Wisp family, but they are now integrated into CCN due to the resemblance of their four principal modules: insulin like growth factor binding protein, von Willebrand factor type C, thrombospondin type 1, and carboxy-terminal domain. CCNs show a wide and highly variable expression pattern in adult and in embryonic tissues, but most studies have focused on their principal role in osteo/chondrogenesis and vasculo/angiogenesis from the aspect of migration, growth, and differentiation of mesenchymal cells. CCN proteins simultaneously integrate and modulate the signals of integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch by direct binding. However, the priority in the use of the signals is different depending on the cell status. Even the equivalent counterparts show a difference in signal usage among species. It may be that the evolution of the CCN family continues to keep pace with vertebrate evolution itself.
Collapse
Affiliation(s)
- Ken-ichi Katsube
- Oral Pathology, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
8
|
Katsuki Y, Sakamoto K, Minamizato T, Makino H, Umezawa A, Ikeda MA, Perbal B, Amagasa T, Yamaguchi A, Katsube KI. Inhibitory effect of CT domain of CCN3/NOV on proliferation and differentiation of osteogenic mesenchymal stem cells, Kusa-A1. Biochem Biophys Res Commun 2008; 368:808-14. [PMID: 18275847 DOI: 10.1016/j.bbrc.2008.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
CCN3/NOV activates the Notch signal through the carboxyl terminal cysteine-rich (CT) domain. CCN3 transfection to Kusa-A1 inhibited osteogenic differentiation and cell proliferation, which is accompanied by upregulation of Hes/Hey, Notch downstream targets, and p21, a CDK inhibitor. Upregulation of Hes/Hey and p21 was abrogated by the deletion of CT domain. Anti-proliferative activity of CCN3 was also abrogated by CT domain deletion whereas anti-osteogenic activity was not completely abrogated. We found that CT domain-deleted CCN3 still possesses antagonistic effect on BMP-2. These results suggest that CCN3 employs Notch and BMP pathways in anti-osteogenic activity while it inhibits cell proliferation uniquely by Notch/p21 pathway.
Collapse
Affiliation(s)
- Yuko Katsuki
- Maxillofacial Surgery, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bleau AM, Planque N, Lazar N, Zambelli D, Ori A, Quan T, Fisher G, Scotlandi K, Perbal B. Antiproliferative activity of CCN3: Involvement of the C-terminal module and post-translational regulation. J Cell Biochem 2007; 101:1475-91. [PMID: 17340618 DOI: 10.1002/jcb.21262] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous work had suggested that recombinant CCN3 was partially inhibiting cell proliferation. Here we show that native CCN3 protein secreted into the conditioned medium of glioma transfected cells indeed induces a reduction in cell proliferation. Large amounts of CCN3 are shown to accumulate both cytoplasmically and extracellularly as cells reach high density, therefore highlighting new aspects on how cell growth may be regulated by CCN proteins. Evidence is presented establishing that the amount of CCN3 secreted into cell culture medium is regulated by post-translational proteolysis. As a consequence, the production of CCN3 varies throughout the cell cycle and CCN3 accumulates at the G2/M transition of the cycle. We also show that CCN3-induced inhibition of cell growth can be partially reversed by specific antibodies raised against a C-terminal peptide of CCN3. The use of several clones expressing various portions of CCN3 established that the CT module of CCN3 is sufficient to induce cell growth inhibition.
Collapse
Affiliation(s)
- A M Bleau
- Université Paris7-D. Diderot, UFR de Biochimie, Laboratoire d'Oncologie Virale et Moléculaire, 2 place Jussieu, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Our bones mostly develop through a process called endochondral ossification. This process is initiated in the cartilage prototype of each bone and continues through embryonic and postnatal development until the end of skeletal growth. Therefore, the central regulator of endochondral ossification is the director of body construction, which is, in other words, the determinant of skeletal size and shape. We suggest that CCN2/CTGF/Hcs24 (CCN2) is a molecule that conducts all of the procedures of endochondral ossification. CCN2, a member of the CCN family of novel modulator proteins, displays multiple functions by manipulating the local information network, using its conserved modules as an interface with a variety of other biomolecules. Under a precisely designed four-dimensional genetic program, CCN2 is produced from a limited population of chondrocytes and acts on all of the mesenchymal cells inside the bone callus to promote the integrated growth of the bone. Furthermore, the utility of CCN2 as regenerative therapeutics against connective tissue disorders, such as bone and cartilage defects and osteoarthritis, has been suggested. Over the years, the pathological action of CCN2 has been suggested. Nevertheless, it can also be regarded as another aspect of the physiological and regenerative function of CCN2, which is discussed as well.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | |
Collapse
|
11
|
Abstract
The principal aim of this historical review- the first in a new series- is to present the basic concepts that led to the discovery of NOV and to show how our ideas evolved regarding the role and functions of this new class of proteins. It should prove particularly useful to the new comers and to students who are engaged in this exciting field. It is also a good opportunity to acknowledge the input of those who participated in the development of this scientific endeavour.
Collapse
Affiliation(s)
- Bernard Perbal
- Laboratoire d'Oncologie Virale et Moléculaire, Case 7048, UFR de Biochimie, Université Paris 7 - D, Diderot, 2 place Jussieu, 75005 Paris-France.
| |
Collapse
|
12
|
Li CL, Coullin P, Bernheim A, Joliot V, Auffray C, Zoroob R, Perbal B. Integration of Myeloblastosis Associated Virus proviral sequences occurs in the vicinity of genes encoding signaling proteins and regulators of cell proliferation. Cell Commun Signal 2006; 4:1. [PMID: 16403231 PMCID: PMC1368981 DOI: 10.1186/1478-811x-4-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 01/10/2006] [Indexed: 12/12/2022] Open
Abstract
Aims Myeloblastosis Associated Virus type 1 (N) [MAV 1(N)] induces specifically nephroblastomas in 8–10 weeks when injected to newborn chicken. The MAV-induced nephroblastomas constitute a unique animal model of the pediatric Wilms' tumor. We have made use of three independent nephroblastomas that represent increasing tumor grades, to identify the host DNA regions in which MAV proviral sequences were integrated. METHODS Cellular sequences localized next to MAV-integration sites in the tumor DNAs were used to screen a Bacterial Artificial Chromosomes (BACs) library and isolate BACs containing about 150 kilobases of normal DNA corresponding to MAV integration regions (MIRs). These BACs were mapped on the chicken chromosomes by Fluorescent In Situ Hybridization (FISH) and used for molecular studies. Results The different MAV integration sites that were conserved after tumor cell selection identify genes involved in the control of cell signaling and proliferation. Syntenic fragments in human DNA contain genes whose products have been involved in normal and pathological kidney development, and several oncogenes responsible for tumorigenesis in human. Conclusion The identification of putative target genes for MAV provides important clues for the understanding of the MAV pathogenic potential. These studies identified ADAMTS1 as a gene upregulated in MAV-induced nephroblastoma and established that ccn3/nov is not a preferential site of integration for MAV as previously thought. The present results support our hypothesis that the highly efficient and specific MAV-induced tumorigenesis results from the alteration of multiple target genes in differentiating blastemal cells, some of which are required for the progression to highly aggressive stages. This study reinforces our previous conclusions that the MAV-induced nephroblastoma constitutes an excellent model in which to characterize new potential oncogenes and tumor suppressors involved in the establishment and maintenance of tumors.
Collapse
Affiliation(s)
- Chang Long Li
- Laboratoire d'Oncologie Virale et Moléculaire, Case 7048, UFR de Biochimie, 2 place Jussieu, Université Paris 7 D. Diderot, 75005 Paris, France
| | - Philippe Coullin
- Laboratoire de Cytogénétique and CNRS UMR 8125, Institut Gustave Roussy, 94805 Villejuif, France
- Endocrinologie et génétique du développement et de la reproduction INSERM U 782 92140 Clamart (France)
| | - Alain Bernheim
- Laboratoire de Cytogénétique and CNRS UMR 8125, Institut Gustave Roussy, 94805 Villejuif, France
| | - Véronique Joliot
- Laboratoire d'Oncologie Virale et Moléculaire, Case 7048, UFR de Biochimie, 2 place Jussieu, Université Paris 7 D. Diderot, 75005 Paris, France
- Cellular regulations and oncogenesis-UMR 146 CNRS/Institut Curie
| | - Charles Auffray
- Unite de Génétique Moléculaire et de Biologie du Développement (CNRS UPR 420), 94801 Villejuif, France
- Genexpress, Functional Genomics and Systems Biology for Health, CNRS UMR 7091-7, 94801 Villejuif Cedex, France
| | - Rima Zoroob
- Endocrinologie et génétique du développement et de la reproduction INSERM U 782 92140 Clamart (France)
- UPR 1983, CNRS, 7 rue Guy Moquet, 94801, Villejuif Cedex, France
| | - Bernard Perbal
- Laboratoire d'Oncologie Virale et Moléculaire, Case 7048, UFR de Biochimie, 2 place Jussieu, Université Paris 7 D. Diderot, 75005 Paris, France
| |
Collapse
|
13
|
Abstract
One of the key organizers in the CNS is the floor plate - a group of cells that is responsible for instructing neural cells to acquire distinctive fates, and that has an important role in establishing the elaborate neuronal networks that underlie the function of the brain and spinal cord. In recent years, considerable controversy has arisen over the mechanism by which floor plate cells form. Here, we describe recent evidence that indicates that discrete populations of floor plate cells, with characteristic molecular properties, form in different regions of the neuraxis, and we discuss data that imply that the mode of floor plate induction varies along the anteroposterior axis.
Collapse
Affiliation(s)
- Marysia Placzek
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.
| | | |
Collapse
|
14
|
Sakamoto K, Yamaguchi S, Ando R, Miyawaki A, Kabasawa Y, Takagi M, Li CL, Perbal B, Katsube KI. The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. J Biol Chem 2002; 277:29399-405. [PMID: 12050162 DOI: 10.1074/jbc.m203727200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We demonstrate a novel interaction of the nephroblastoma overexpressed gene (NOV), a member of the CCN gene family, with the Notch signaling pathway. NOV associates with the epidermal growth factor-like repeats of Notch1 by the CT (C-terminal cysteine knot) domain. The promoters of HES1 and HES5, which are the downstream transducers of Notch signaling, were activated by NOV. Expressions of NOV and Notch1 were concomitant in the presomitic mesoderm and later in the myocytes and chondrocytes, suggesting their synergistic effects in mesenchymal cell differentiation. In C2/4 myogenic cells, elevated expression of NOV led to down-regulation of MyoD and myogenin, resulting in inhibition of myotube formation. These results indicate that NOV-Notch1 association exerts a positive effect on Notch signaling and consequently suppresses myogenesis.
Collapse
Affiliation(s)
- Kei Sakamoto
- Department of Molecular Pathology, Graduate School of Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
AIMS In animals and humans increased expression of CCN3 (NOV) is detected in tissues where calcium is a key regulator, such as the adrenal gland, central nervous system, bone and cartilage, heart muscle, and kidney. Because the multimodular structure of the CCN proteins strongly suggests that these cell growth regulators are metalloproteins, this study investigated the possible role of CCN3 in ion flux and transport during development, control of cell proliferation, differentiation, and pathobiology. METHODS The isolation of CCN3 partners was performed by means of the two hybrid system. Yeasts were cotransfected with an HL60 cDNA library fused to the transactivation domain of the GAL4 transcription factor, and with a plasmid expressing CCN3 fused to the DNA binding domain of GAL4. Screening of the recombinant clones selected on the basis of leucine, histidine, and tryptophan prototrophy was performed with a beta-galactosidase assay. After the interaction between CCN3 and its putative partners was checked with a GST (glutathione S-transferase) pull down assay, the positive clones were identified by cloning. To establish whether the CCN3 protein affected calcium ion flux, a dynamic imaging microscopy system was used, which allowed the fluorometric measurement of the intracellular calcium concentration. The proteins used in the assays were GST fused with either CCN3 or CCN2 (CTGF) and GST alone as a control. RESULTS The two hybrid system identified the S100A4 (mts1) calcium binding protein as a partner of CCN3 and the use of the GST fusion proteins showed that the addition of CCN3 and CCN2 to G59 glioblastoma and SK-N-SH neuroblastoma cells caused a pronounced but transient increase of intracellular calcium, originating from both the entry of extracellular calcium and the mobilisation of intracellular stores. CONCLUSIONS The interaction of CCN3 with S100A4 may account, in part, for the association of CCN3 with carcinogenesis and its pattern of expression in normal conditions. The increased intracellular calcium concentrations induced by CCN3 and CCN2 both involve different processes, among which voltage independent calcium channels might be of considerable importance in regulating the calcium flux associated with cell growth control, motility, and spreading. These observations assign for the first time a biological function to the CCN3 protein and point out a broader role for the CCN proteins in calcium ion signalling.
Collapse
Affiliation(s)
- C L Li
- Laboratoire d'Oncologie Virale et Moléculaire (LOVM), UFR de Biochimie, Université Paris 7-D. Diderot, 2 Place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
16
|
|