1
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
2
|
Abstract
The three species Neisseria meningitidis, Neisseria gonorrheae, and Neisseria lactamica are often regarded as highly recombining bacteria. N. meningitidis has been considered a paradigmatic case of the "semiclonal model" or of "epidemic clonality," demonstrating occasional bouts of clonal propagation in an otherwise recombining species. In this model, occasional clonality generates linkage disequilibrium in the short term. In the long run, however, the effects of clonality are countered by recombination. We show that many data are at odds with this proposal and that N. meningitidis fits the criteria that we have proposed for predominant clonal evolution (PCE). We point out that (i) the proposed way to distinguish epidemic clonality from PCE may be faulty and (ii) the evidence of deep phylogenies by microarrays and whole-genome sequencing is at odds with the predictions of the semiclonal model. Last, we revisit the species status of N. meningitidis, N. gonorrheae, and N. lactamica in the light of the PCE model.
Collapse
|
3
|
Collard JM, Issaka B, Zaneidou M, Hugonnet S, Nicolas P, Taha MK, Greenwood B, Jusot JF. Epidemiological changes in meningococcal meningitis in Niger from 2008 to 2011 and the impact of vaccination. BMC Infect Dis 2013; 13:576. [PMID: 24313998 PMCID: PMC4029580 DOI: 10.1186/1471-2334-13-576] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 12/04/2013] [Indexed: 01/11/2023] Open
Abstract
Background The epidemiology of bacterial meningitis in the African ‘meningitis belt’ changes periodically. In order to design an effective vaccination strategy, we have examined the epidemiological and microbiological patterns of bacterial meningitis, and especially that of meningococcal meningitis, in Niger during the period 2008–2011. During this period a mass vaccination campaign with the newly developed meningococcal A conjugate vaccine (MenAfriVac®) was undertaken. Method Cerebrospinal fluid samples were collected from health facilities throughout Niger and analysed by culture, seroagglutination and/or speciation polymerase chain reaction, followed by genogrouping PCR for Neisseria meningitidis infections. A sample of strains were analysed by multi-locus sequence typing. Results N. meningitidis serogroup A cases were prevalent in 2008 and 2009 [98.6% and 97.5% of all N. meningitidis cases respectively]. The prevalence of serogroup A declined in 2010 [26.4%], with the emergence of serogroup W Sequence Type (ST) 11 [72.2% of cases], and the serogroup A meningococcus finally disappeared in 2011. The geographical distribution of cases N. meningitidis serogroups A and W within Niger is described. Conclusion The substantial decline of serogroup A cases that has been observed from 2010 onwards in Niger seems to be due to several factors including a major polysaccharide A/C vaccination campaign in 2009, the introduction of MenAfriVac® in 10 districts at risk in December 2010, the natural dynamics of meningococcal infection and the persistence of serogroup A sequence-type 7 for about 10 years. The emergence of serogroup W strains suggests that there may be a need for serogroup W containing vaccines in Niger in the coming years.
Collapse
|
4
|
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 2013; 50:488-503. [PMID: 23706818 DOI: 10.1016/j.molcel.2013.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/26/2022]
Abstract
CRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studies of crRNA biogenesis and CRISPR interference in naturally competent Neisseria spp. reveal a unique crRNA maturation pathway in which crRNAs are transcribed from promoters that are embedded within each repeat, yielding crRNA 5' ends formed by transcription and not by processing. Although crRNA 3' end formation involves RNase III and trans-encoded tracrRNA, as in other type II CRISPR systems, this processing is dispensable for interference. The meningococcal pathway is the most streamlined CRISPR/Cas system characterized to date. Endogenous CRISPR spacers limit natural transformation, which is the primary source of genetic variation that contributes to immune evasion, antibiotic resistance, and virulence in the human pathogen N. meningitidis.
Collapse
|
5
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
6
|
Connor TR, Corander J, Hanage WP. Population subdivision and the detection of recombination in non-typable Haemophilus influenzae. MICROBIOLOGY-SGM 2012; 158:2958-2964. [PMID: 23038806 DOI: 10.1099/mic.0.063073-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The disparity in diversity between unencapsulated (non-typable; NT) and encapsulated, serotypable Haemophilus influenzae (Hi) has been recognized for some time. It has previously been suggested that the wider diversity evidenced within NTHi compared with typable lineages may be due to different rates of recombination within the encapsulated and NT populations. To examine whether there is evidence for different levels of recombination within typable and NT lineages of Hi, we performed a statistical genetic analysis of 819 distinct genotypes of Hi to explore the congruence of serotype with population genetic clustering, and to identify patterns of recombination within the Hi population. We find that a significantly larger proportion of NT isolates show evidence of recombination, compared with typable isolates, and also that when admixture is present, the total amount of recombination per strain is greater within NT isolates, compared with the typable population. Furthermore, we demonstrate significant heterogeneity in the number of admixed individuals between NT lineages themselves, while such variation was not observed in typable lineages. This variability suggests that factors other than the presence of capsule are important determinants of recombination rate in the Hi population.
Collapse
Affiliation(s)
- Thomas Richard Connor
- Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK.,Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB22 5EZ, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, PO Box 68, University of Helsinki, 00014, Finland
| | - William Paul Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.,Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
7
|
Watkins ER, Maiden MCJ. Persistence of hyperinvasive meningococcal strain types during global spread as recorded in the PubMLST database. PLoS One 2012; 7:e45349. [PMID: 23028953 PMCID: PMC3460945 DOI: 10.1371/journal.pone.0045349] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/15/2012] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis is a major cause of septicaemia and meningitis worldwide. Most disease in Europe, the Americas and Australasia is caused by meningococci expressing serogroup B capsules, but no vaccine against this polysaccharide exists. Potential candidates for 'serogroup B substitute' vaccines are outer membrane protein antigens including the typing antigens PorA and FetA. The web-accessible PubMLST database (www.pubmlst.org) was used to investigate the temporal and geographical patterns of associations among PorA and FetA protein variants and lineages defined by combinations of housekeeping genes, known as clonal complexes. The sample contained 3460 isolates with genotypic information from 57 countries over a 74 year period. Although shifting associations among antigen variants and clonal complexes were evident, a subset of strain types associated with several serogroups persisted for decades and proliferated globally. Genetic stability among outer membrane proteins of serogroup A meningococci has been described previously, but here long-lived genetic associations were also observed among meningococci belonging to serogroups B and C. The patterns of variation were consistent with behaviour predicted by models that invoke inter-strain competition mediated by immune selection. There was also substantial geographic and temporal heterogeneity in antigenic repertoires, providing both opportunities and challenges for the design of broad coverage protein-based meningococcal vaccines.
Collapse
|
8
|
Corander J, Connor TR, O'Dwyer CA, Kroll JS, Hanage WP. Population structure in the Neisseria, and the biological significance of fuzzy species. J R Soc Interface 2011; 9:1208-15. [PMID: 22072450 DOI: 10.1098/rsif.2011.0601] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenotypic and genetic variation in bacteria can take bewilderingly complex forms even within a single genus. One of the most intriguing examples of this is the genus Neisseria, which comprises both pathogens and commensals colonizing a variety of body sites and host species, and causing a range of disease. Complex relatedness among both named species and previously identified lineages of Neisseria makes it challenging to study their evolution. Using the largest publicly available collection of bacterial sequence data in combination with a population genetic analysis and experiment, we probe the contribution of inter-species recombination to neisserial population structure, and specifically whether it is more common in some strains than others. We identify hybrid groups of strains containing sequences typical of more than one species. These groups of strains, typical of a fuzzy species, appear to have experienced elevated rates of inter-species recombination estimated by population genetic analysis and further supported by transformation experiments. In particular, strains of the pathogen Neisseria meningitidis in the fuzzy species boundary appear to follow a different lifestyle, which may have considerable biological implications concerning distribution of novel resistance elements and meningococcal vaccine development. Despite the strong evidence for negligible geographical barriers to gene flow within the population, exchange of genetic material still shows directionality among named species in a non-uniform manner.
Collapse
Affiliation(s)
- Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, PO Box 68, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
9
|
Whole-genome sequence of the transformable Neisseria meningitidis serogroup A strain WUE2594. J Bacteriol 2011; 193:2064-5. [PMID: 21296965 DOI: 10.1128/jb.00084-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Serogroup A meningococci are a leading cause of bacterial meningitis in children and young adults worldwide. However, the genetic basis of serogroup A strains' virulence and their epidemiological properties remain poorly understood. Therefore, we sequenced the complete genome of the transformable Neisseria meningitidis serogroup A strain WUE2594.
Collapse
|
10
|
Nightingale KK, Windham K, Wiedmann M. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol 2005; 187:5537-51. [PMID: 16077098 PMCID: PMC1196091 DOI: 10.1128/jb.187.16.5537-5551.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To probe the evolution and phylogeny of Listeria monocytogenes from defined host species and environments, L. monocytogenes isolates from human (n = 60) and animal (n = 30) listeriosis cases and food samples (n = 30) were randomly selected from a larger collection of isolates (n = 354) obtained in New York State between 1999 and 2001. Partial sequencing of four housekeeping genes (gap, prs, purM, and ribC), one stress response gene (sigB), and two virulence genes (actA and inlA) revealed between 11 (gap) and 33 (inlA) allelic types as well as 52 sequence types (unique combination of allelic types). actA, ribC, and purM demonstrated the highest levels of nucleotide diversity (pi > 0.05). actA and inlA as well as prs and the hypervariable housekeeping genes ribC and purM showed evidence of horizontal gene transfer and recombination. actA and inlA also showed evidence of positive selection at specific amino acid sites. Maximum likelihood phylogenies for all seven genes confirmed that L. monocytogenes contains two deeply separated evolutionary lineages. Lineage I was found to be highly clonal, while lineage II showed greater diversity and evidence of horizontal gene transfer. Allelic types were exclusive to lineages, except for a single gap allele, and nucleotide distance within lineages was much lower than that between lineages, suggesting that genetic exchange between lineages is rare. Our data show that (i) L. monocytogenes is a highly diverse species with at least two distinct phylogenetic lineages differing in their evolutionary history and population structure and (ii) horizontal gene transfer as well as positive selection contributed to the evolution of L. monocytogenes.
Collapse
Affiliation(s)
- K K Nightingale
- Department of Food Science, Cornell University, 412B Stocking Hall, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
11
|
Rocha EPC, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 2005; 1:e15. [PMID: 16132081 PMCID: PMC1193525 DOI: 10.1371/journal.pgen.0010015] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/09/2005] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination is a housekeeping process involved in the maintenance of chromosome integrity and generation of genetic variability. Although detailed biochemical studies have described the mechanism of action of its components in model organisms, there is no recent extensive assessment of this knowledge, using comparative genomics and taking advantage of available experimental data on recombination. Using comparative genomics, we assessed the diversity of recombination processes among bacteria, and simulations suggest that we missed very few homologs. The work included the identification of orthologs and the analysis of their evolutionary history and genomic context. Some genes, for proteins such as RecA, the resolvases, and RecR, were found to be nearly ubiquitous, suggesting that the large majority of bacterial genomes are capable of homologous recombination. Yet many genomes show incomplete sets of presynaptic systems, with RecFOR being more frequent than RecBCD/AddAB. There is a significant pattern of co-occurrence between these systems and antirecombinant proteins such as the ones of mismatch repair and SbcB, but no significant association with nonhomologous end joining, which seems rare in bacteria. Surprisingly, a large number of genomes in which homologous recombination has been reported lack many of the enzymes involved in the presynaptic systems. The lack of obvious correlation between the presence of characterized presynaptic genes and experimental data on the frequency of recombination suggests the existence of still-unknown presynaptic mechanisms in bacteria. It also indicates that, at the moment, the assessment of the intrinsic stability or recombination isolation of bacteria in most cases cannot be inferred from the identification of known recombination proteins in the genomes. Genomes evolve mostly by modifications involving large pieces of genetic material (DNA). Exchanges of chromosome pieces between different organisms as well as intragenomic movements of DNA regions are the result of a process named homologous recombination. The central actor of this process, the RecA protein, is amazingly conserved from bacteria to human. In addition to its role in the generation of genetic variability, homologous recombination is also the guardian of genome integrity, as it acts to repair DNA damage. RecA-catalyzed DNA exchange (synapse) is facilitated by the action of presynaptic enzymes and completed by postsynaptic enzymes (resolvases). In addition, some enzymes counteract RecA. Here, the researchers assess the diversity of recombination proteins among 117 different bacterial species. They find that resolvases are nearly as ubiquitous and as well conserved at the sequence level as RecA. This suggests that the large majority of bacterial genomes are capable of homologous recombination. Presynaptic systems are less ubiquitous, and there is no obvious correlation between their presence and experimental data on the frequency of recombination. However, there is a significant pattern of co-occurrence between these systems and antirecombinant proteins.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
12
|
Abstract
This minireview summarizes the historical development of bacterial population genetic concepts since the early 1980s. Initially multilocus enzyme electrophoresis was used to determine population structures but this technique is poorly portable between laboratories and was replaced in 1998 by multilocus sequence typing. Diverse population structures exist in different bacterial species. Two distinctive structures are described in greater detail. "Young" organisms, such as Yersinia pestis, have evolved or undergone a severe bottleneck in recent millennia and have not yet accumulated much sequence diversity. "genoclouds" in subgroup III Neisseria meningitidis arise because of the accumulation of diversity due to herd immunity, which is then purified during subsequent epidemic spread.
Collapse
Affiliation(s)
- Mark Achtman
- Department of Molecular Biology, Max-Planck Institut für Infektionsbiologie, Schumannstrasse 21122, D-10117 Berlin, Germany.
| |
Collapse
|
13
|
de Filippis I, Salles CA, Zahner V, do Nascimento CRS, Momen H. Genetic diversity of Neisseria meningitidis strains isolated in Rio de Janeiro, Brazil, evaluated by multilocus enzyme electrophoresis. Lett Appl Microbiol 2004; 39:232-9. [PMID: 15287867 DOI: 10.1111/j.1472-765x.2004.01570.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To analyse Neisseria meningitidis isolates from meningococcal meningitis cases in Rio de Janeiro (Brazil) from 1990 to 1993 and 1999-2002, to determine the genetic and relatedness with hypervirulent and epidemic strains. METHODS AND RESULTS The isolates were analysed by multilocus enzyme electrophoresis (MEE) clustering into 83 electrophoretic types (ET). All isolates from 1999 to 2002, formed a cluster which included one strain of the ET-5 complex worldwide associated with epidemics. CONCLUSIONS The overall results suggested a panmictic structure probably because of recombination events. The observation of a separated cluster including isolates from 1999 to 2002 and an ET-5 complex strain, also suggested the introduction of strains genetically related with this hypervirulent complex in the State of Rio de Janeiro (Brazil) over the last 5 years. SIGNIFICANCE AND IMPACT OF THE STUDY The presence of strains related to the ET-5 complex in several states of Brazil was already described elsewhere, but this is the first time it was reported in the State of Rio de Janeiro. Our findings reinforce the necessity to genetically determine the clones which should be considered to produce a national vaccine against meningococcal meningitis.
Collapse
Affiliation(s)
- I de Filippis
- Depto. de Microbiologia, Instituto Nacional de Controle de Qualidade em Saúde, FIOCRUZ, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Lorenzon S, Arzul I, Peyraud A, Hendrikx P, Thiaucourt F. Molecular epidemiology of contagious bovine pleuropneumonia by multilocus sequence analysis of Mycoplasma mycoides subspecies mycoides biotype SC strains. Vet Microbiol 2003; 93:319-33. [PMID: 12713894 DOI: 10.1016/s0378-1135(03)00043-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Contagious bovine pleuropneumonia is a bacterial disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC), and included in list A of the Office International des Epizooties. It is one of the major constraints to cattle raising in sub-Saharan and south-western Africa and also a threat to all countries currently free of the disease. MmmSC strains were considered very homogeneous until 1995, when various techniques such as enzymatic restriction of whole DNA or Southern blotting showed that this was not the case. These techniques are unfortunately difficult to standardize and require the extraction of DNA from an MmmSC culture. We therefore decided to investigate the possibility of constructing a molecular epidemiology tool based on multilocus sequence analysis (MLSA) with PCR amplification of various loci followed by sequencing. Six loci were found suitable for this purpose and an additional PCR was designed to detect the presence of an 8.8kb deletion described by others in some strains. Fifteen different MLSA profiles were evidenced in our study. They allowed a clear distinction between European, south-western African and sub-Saharan strains. In addition, the results obtained on strain PO1967 confirmed its European origin, even though it does not exhibit the 8.8kb deletion. This new tool for contagious bovine pleuropneumonia may prove particularly useful for identifying MmmSC strains in countries at risk from contamination. It can also easily be refined by adding more strains or other loci of interest.
Collapse
Affiliation(s)
- S Lorenzon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Département d'élevage et de Médecine Vétérinaire des pays Tropicaux (CIRAD-EMVT), Santé Animale, FAO World Reference Laboratory for CBPP, Montpellier, France
| | | | | | | | | |
Collapse
|
15
|
Gagneux S, Wirth T, Hodgson A, Ehrhard I, Morelli G, Kriz P, Genton B, Smith T, Binka F, Pluschke G, Achtman M. Clonal groupings in serogroup X Neisseria meningitidis. Emerg Infect Dis 2002; 8:462-6. [PMID: 11996679 PMCID: PMC2732495 DOI: 10.3201/eid0805.010227] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genetic diversity of 134 serogroup X Neisseria meningitis isolates from Africa, Europe, and North America was analyzed by multilocus sequence typing and pulsed-field gel electrophoresis. Although most European and American isolates were highly diverse, one clonal grouping was identified in sporadic disease and carrier strains isolated over the last 2 decades in the United Kingdom, the Netherlands, Germany, and the United States. In contrast to the diversity in the European and American isolates, most carrier and disease isolates recovered during the last 30 years in countries in the African meningitis belt belonged to a second clonal grouping. During the last decade, these bacteria have caused meningitis outbreaks in Niger and Ghana. These results support the development of a comprehensive conjugate vaccine that would include serogroup X polysaccharide.
Collapse
Affiliation(s)
- Sébastien Gagneux
- Swiss Tropical Institute, Basel, Switzerland
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
| | - Thierry Wirth
- Max-Planck-Institut für Infektionsbiologie, Berlin, Germany
| | - Abraham Hodgson
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
| | | | | | - Paula Kriz
- National Institute of Public Health, Prague, Czech Republic
| | | | - Tom Smith
- Swiss Tropical Institute, Basel, Switzerland
| | - Fred Binka
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
| | | | - Mark Achtman
- Max-Planck-Institut für Infektionsbiologie, Berlin, Germany
| |
Collapse
|