1
|
Gómez-Gaviria M, Baruch-Martínez DA, Mora-Montes HM. Exploring the Biology, Virulence, and General Aspects of Candida dubliniensis. Infect Drug Resist 2024; 17:5755-5773. [PMID: 39722735 PMCID: PMC11669290 DOI: 10.2147/idr.s497862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Fungal infections have become a growing public health concern, aggravated by the emergence of new pathogenic species and increasing resistance to antifungal drugs. The most common candidiasis is caused by Candida albicans; however, Candida dubliniensis has become an emerging opportunistic pathogen, and although less prevalent, it can cause superficial and systemic infections, especially in immunocompromised individuals. This yeast can colonize the oral cavity, skin, and other tissues, and has been associated with oral infections in patients with human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS), making it difficult to treat. The special interest in the study of this species lies in its ability to evade commonly used antifungal drugs, such as fluconazole, under different concentrations. In addition, it is difficult to identify because it can be confused with the species C. albicans, which could interfere with adequate treatment. Although the study of virulence factors in C. dubliniensis is limited, proteomic comparisons with C. albicans indicate that these virulence factors could be similar between the two species. However, differences could exist considering the evolutionary processes and lifestyle of each species. In this study, a detailed review of the current literature on C. dubliniensis was conducted, considering aspects such as biology, possible virulence factors, immune response, pathogen-host interaction, diagnosis, and treatment.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Dario A Baruch-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| |
Collapse
|
2
|
Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis. EUKARYOTIC CELL 2015; 14:1186-202. [PMID: 26432632 DOI: 10.1128/ec.00146-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 11/20/2022]
Abstract
Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved.
Collapse
|
3
|
Molecular epidemiology, phylogeny and evolution of Candida albicans. INFECTION GENETICS AND EVOLUTION 2013; 21:166-78. [PMID: 24269341 DOI: 10.1016/j.meegid.2013.11.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 11/21/2022]
Abstract
A small number of Candida species form part of the normal microbial flora of mucosal surfaces in humans and may give rise to opportunistic infections when host defences are impaired. Candida albicans is by far the most prevalent commensal and pathogenic Candida species. Several different molecular typing approaches including multilocus sequence typing, multilocus microsatellite typing and DNA fingerprinting using C. albicans-specific repetitive sequence-containing DNA probes have yielded a wealth of information regarding the epidemiology and population structure of this species. Such studies revealed that the C. albicans population structure consists of multiple major and minor clades, some of which exhibit geographical or phenotypic enrichment and that C. albicans reproduction is predominantly clonal. Despite this, losses of heterozygosity by recombination, the existence of a parasexual cycle, toleration of a wide range of aneuploidies and the recent description of viable haploid strains have all demonstrated the extensive plasticity of the C. albicans genome. Recombination and gross chromosomal rearrangements are more common under stressful environmental conditions, and have played a significant role in the evolution of this opportunistic pathogen. Surprisingly, Candida dubliniensis, the closest relative of C. albicans exhibits more karyotype variability than C. albicans, but is significantly less adaptable to unfavourable environments. This disparity most likely reflects the evolutionary processes that occurred during or soon after the divergence of both species from their common ancestor. Whilst C. dubliniensis underwent significant gene loss and pseudogenisation, C. albicans expanded gene families considered to be important in virulence. It is likely that technological developments in whole genome sequencing and data analysis in coming years will facilitate its routine use for population structure, epidemiological investigations, and phylogenetic analyses of Candida species. These are likely to reveal more minor C. albicans clades and to enhance our understanding of the population biology of this versatile organism.
Collapse
|
4
|
Coleman DC, Moran GP, McManus BA, Sullivan DJ. Mechanisms of antifungal drug resistance in Candida dubliniensis. Future Microbiol 2010; 5:935-49. [PMID: 20521937 DOI: 10.2217/fmb.10.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.
Collapse
Affiliation(s)
- David C Coleman
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School & Hospital, University of Dublin, Trinity College Dublin, Dublin 2, Republic of Ireland.
| | | | | | | |
Collapse
|
5
|
Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2010; 9:991-1008. [PMID: 20495058 PMCID: PMC2901674 DOI: 10.1128/ec.00060-10] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
6
|
Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, Aslett M, Barrell JF, Butler G, Citiulo F, Coleman DC, de Groot PWJ, Goodwin TJ, Quail MA, McQuillan J, Munro CA, Pain A, Poulter RT, Rajandream MA, Renauld H, Spiering MJ, Tivey A, Gow NAR, Barrell B, Sullivan DJ, Berriman M. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res 2009; 19:2231-44. [PMID: 19745113 DOI: 10.1101/gr.097501.109] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Candida dubliniensis is the closest known relative of Candida albicans, the most pathogenic yeast species in humans. However, despite both species sharing many phenotypic characteristics, including the ability to form true hyphae, C. dubliniensis is a significantly less virulent and less versatile pathogen. Therefore, to identify C. albicans-specific genes that may be responsible for an increased capacity to cause disease, we have sequenced the C. dubliniensis genome and compared it with the known C. albicans genome sequence. Although the two genome sequences are highly similar and synteny is conserved throughout, 168 species-specific genes are identified, including some encoding known hyphal-specific virulence factors, such as the aspartyl proteinases Sap4 and Sap5 and the proposed invasin Als3. Among the 115 pseudogenes confirmed in C. dubliniensis are orthologs of several filamentous growth regulator (FGR) genes that also have suspected roles in pathogenesis. However, the principal differences in genomic repertoire concern expansion of the TLO gene family of putative transcription factors and the IFA family of putative transmembrane proteins in C. albicans, which represent novel candidate virulence-associated factors. The results suggest that the recent evolutionary histories of C. albicans and C. dubliniensis are quite different. While gene families instrumental in pathogenesis have been elaborated in C. albicans, C. dubliniensis has lost genomic capacity and key pathogenic functions. This could explain why C. albicans is a more potent pathogen in humans than C. dubliniensis.
Collapse
Affiliation(s)
- Andrew P Jackson
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The mechanisms and rates by which genotypic and phenotypic variation is generated in opportunistic, eukaryotic pathogens during growth in hosts are not well understood. We evaluated genomewide genetic and phenotypic evolution in Candida albicans, an opportunistic fungal pathogen of humans, during passage through a mouse host (in vivo) and during propagation in liquid culture (in vitro). We found slower population growth and higher rates of chromosome-level genetic variation in populations passaged in vivo relative to those grown in vitro. Interestingly, the distribution of long-range loss of heterozygosity (LOH) and chromosome rearrangement events across the genome differed for the two growth environments, while rates of short-range LOH were comparable for in vivo and in vitro populations. Further, for the in vivo populations, there was a positive correlation of cells demonstrating genetic alterations and variation in colony growth and morphology. For in vitro populations, no variation in growth phenotypes was detected. Together, our results demonstrate that passage through a living host leads to slower growth and higher rates of genomic and phenotypic variation compared to in vitro populations. Results suggest that the dynamics of population growth and genomewide rearrangement contribute to the maintenance of a commensal and opportunistic life history of C. albicans.
Collapse
|
8
|
Chibana H, Magee PT. The enigma of the major repeat sequence of Candida albicans. Future Microbiol 2009; 4:171-9. [PMID: 19257844 DOI: 10.2217/17460913.4.2.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The major repeat sequence, discovered in the yeast Candida albicans, is a stretch of repeated DNA that occurs nine times in the haploid genome of this opportunistic fungal pathogen and probably a similar number of times in the genome of Candida dubliniensis. In C. albicans it constitutes 1-2% of the genome. Its occurrence is limited to those two species. Despite its major role as a genomic feature, its function, mode of expansion in size due to duplication of internal subunits, and its origin and mechanism of distribution throughout the genome are not understood, although it is associated with chromosome translocations, chromosome length polymorphisms and regulation of the yeast-hypha dimorphic transition. The polymorphism of the major repeat sequence has been exploited in epidemiology and taxonomic studies. This review describes its sequence, occurrence, use in epidemiology and examines the evidence for its role in chromosome dynamics.
Collapse
Affiliation(s)
- Hiroji Chibana
- Research Center for Pathogenic Fungi & Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chiba 260-8673, Japan.
| | | |
Collapse
|
9
|
Wellinghausen N, Moericke A, Bundschuh S, Friedrich W, Schulz AS, Gatz SA. Multifocal osteomyelitis caused by Candida dubliniensis. J Med Microbiol 2009; 58:386-390. [PMID: 19208893 DOI: 10.1099/jmm.0.003970-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida dubliniensis is an emerging fungal pathogen, especially in immunodeficient patients. We report what is to the best of our knowledge the first case of multifocal osteomyelitis following disseminated infection in a patient after haematopoietic stem cell transplantation. PFGE for typing of C. dubliniensis was developed and the necessity of long-term antifungal therapy is discussed.
Collapse
Affiliation(s)
- Nele Wellinghausen
- Institute of Medical Microbiology and Hygiene, University Hospital of Ulm, Ulm, Germany
| | - Angelika Moericke
- Institute of Medical Microbiology and Hygiene, University Hospital of Ulm, Ulm, Germany
| | - Silke Bundschuh
- University Hospital for Children's and Adolescent Medicine, Ulm, Germany
| | - Wilhelm Friedrich
- University Hospital for Children's and Adolescent Medicine, Ulm, Germany
| | - Ansgar S Schulz
- University Hospital for Children's and Adolescent Medicine, Ulm, Germany
| | - Susanne A Gatz
- University Hospital for Children's and Adolescent Medicine, Ulm, Germany
| |
Collapse
|
10
|
Paugam A, Baixench MT, Viguié C. [An update on Candida dubliniensis]. Med Mal Infect 2007; 38:1-7. [PMID: 18065177 DOI: 10.1016/j.medmal.2007.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/07/2007] [Indexed: 11/17/2022]
Abstract
Eleven years ago, Irish authors, using molecular biology, demonstrated the existence of Candida dubliniensis, a new species of Candida close to Candida albicans. Initially isolated from AIDS patients with oral candidiasis, this species was detected, even in immunocompetent patients. Recently, with new, easy to implement identification tests (latex, immunochromatography), numerous epidemiological studies were undertaken. In most studies, C. dubliniensis was most often identified in the oral cavity. In the absence of HIV infection, the proportion C. dubliniensis/C. albicans ranged from 1 to 5% but it increased to 15-20% in case of HIV infection. It should be stressed that, from an experimental point of view, the acquisition of a secondary resistance to fluconazole is more quickly obtained with C. dubliniensis that with C. albicans, this resistance remains exceptionally observed in clinical observations.
Collapse
Affiliation(s)
- A Paugam
- Laboratoire de parasitologie-mycologie, groupe hospitalier Cochin-Saint-Vincent-de-Paul, Assistance publique-Hôpitaux de Paris, université Paris-Descartes, Paris, France.
| | | | | |
Collapse
|
11
|
Magee BB, Sanchez MD, Saunders D, Harris D, Berriman M, Magee PT. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans. Fungal Genet Biol 2007; 45:338-50. [PMID: 17719250 PMCID: PMC2277252 DOI: 10.1016/j.fgb.2007.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Candida dubliniensis and Candida albicans, the most common human fungal pathogen, have most of the same genes and high sequence similarity, but C. dubliniensis is less virulent. C. albicans causes both mucosal and hematogenously disseminated disease, C. dubliniensis mostly mucosal infections. Pulse-field electrophoresis, genomic restriction enzyme digests, Southern blotting, and the emerging sequence from the Wellcome Trust Sanger Institute were used to determine the karyotype of C. dubliniensis type strain CD36. Three chromosomes have two intact homologues. A translocation in the rDNA repeat on chromosome R exchanges telomere-proximal regions of R and chromosome 5. Translocations involving the remaining chromosomes occur at the Major Repeat Sequence. CD36 lacks an MRS on chromosome R but has one on 3. Of six other C. dubliniensis strains, no two had the same electrophoretic karyotype. Despite extensive chromosome rearrangements, karyotypic differences between C. dubliniensis and C. albicans are unlikely to affect gene expression. Karyotypic instability may account for the diminished pathogenicity of C. dubliniensis.
Collapse
Affiliation(s)
- B B Magee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bougnoux ME, Diogo D, François N, Sendid B, Veirmeire S, Colombel JF, Bouchier C, Van Kruiningen H, d'Enfert C, Poulain D. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol 2006; 44:1810-20. [PMID: 16672411 PMCID: PMC1479199 DOI: 10.1128/jcm.44.5.1810-1820.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a human commensal that is also responsible for superficial and systemic infections. Little is known about the carriage of C. albicans in the digestive tract and the genome dynamics that occur during commensalisms of this diploid species. The aim of this study was to evaluate the prevalence, diversity, and genetic relationships among C. albicans isolates recovered during natural colonization of the digestive tract of humans, with emphasis on Crohn's disease patients who produce anti-yeast antibodies and may have altered Candida sp. carriage. Candida sp. isolates were recovered from 234 subjects within 25 families with multiple cases of Crohn's disease and 10 control families, sampled at the oral and fecal sites. Prevalences of Candida sp. and C. albicans carriage were 53.4% and 46.5%, respectively, indicating frequent commensal carriage. No differences in prevalence of carriage could be observed between Crohn's disease patients and healthy subjects. Multilocus sequence typing (MLST) of C. albicans isolates revealed frequent colonization of a subject or several members of the same family by genetically indistinguishable or genetically close isolates. These latter isolates differed by loss-of-heterozygosity events at one or several of the MLST loci. These loss-of-heterozygosity events could be due to either chromosome loss followed by duplication or large mitotic recombination events between complementary chromosomes. This study was the first to jointly assess commensal carriage of C. albicans, intrafamilial transmission, and microevolution. The high frequency of each of these events suggests that the digestive tract provides an important and natural niche for microevolutions of diploid C. albicans through the loss of heterozygosity.
Collapse
Affiliation(s)
- M-E Bougnoux
- Unité Postulante Biologie et Pathogénicité Fongiques, INRA USC 2019, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Song X, Eribe ERK, Sun J, Hansen BF, Olsen I. Genetic relatedness of oral yeasts within and between patients with marginal periodontitis and subjects with oral health. J Periodontal Res 2005; 40:446-52. [PMID: 16302922 DOI: 10.1111/j.1600-0765.2005.00816.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Yeasts are found in periodontal pockets at a frequency of 15-21%. However, the genetic relatedness of oral yeasts within and between patients with marginal periodontitis is not clear. OBJECTIVES Assay genetic relatedness of oral yeasts from marginal periodontitis patients and oral health subjects, as well as genetic relatedness of yeasts from different oral sites in these two groups of participants. MATERIAL AND METHODS Yeast isolates were collected from 23 marginal periodontitis patients and 19 oral health subjects. Random amplified polymorphic DNA (RAPD) fingerprinting and the Dendron computer-assisted program for gel analyses were applied for estimation of genetic relatedness of yeasts. RESULTS The similarity coefficient (S(AB)) of the marginal periodontitis group ranged from 0.49 to 1.00 with an average of 0.64 +/- 0.11, whereas the S(AB) of the oral health group ranged from 0.62 to 1.00 with an average of 0.72 +/- 0.07. Three genetic clusters and 73 genotypes were obtained from the marginal periodontitis group, whereas three genetic clusters and 55 genotypes were found in the oral health group. In the pooled dendrogram, 57% of the yeast isolates and the type strain of Candida albicans fell in a major cluster V. There were no significant differences between the frequencies of clusters from the different oral sites within the two participant groups. CONCLUSIONS Genetically heterogeneous yeasts were found in the oral cavities of marginal periodontitis patients and oral health subjects. Similar genetic clustering patterns were obtained from the yeasts of the two groups, with cluster V being most predominant. Yeasts of the marginal periodontitis group were more genetically diverse than yeasts of the oral health group, and some yeasts of the marginal periodontitis group exhibited unique genetic patterns. There was no clear association between yeast genetic clusters and oral sites in the two participant groups.
Collapse
Affiliation(s)
- Xiaobo Song
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
14
|
Sullivan DJ, Moran GP, Coleman DC. Candida dubliniensis: ten years on. FEMS Microbiol Lett 2005; 253:9-17. [PMID: 16213674 DOI: 10.1016/j.femsle.2005.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/09/2005] [Accepted: 09/09/2005] [Indexed: 11/17/2022] Open
Abstract
Candida dubliniensis was first described as a novel species in 1995. This organism is very closely related to the important human yeast pathogen, Candida albicans. However, despite the very close phylogenetic relationship between C. albicans and C. dubliniensis and the fact that they share a large number of phenotypic traits, epidemiological and virulence model data indicate that the former is a far more successful pathogen. In order to investigate the molecular basis of the lower virulence of C. dubliniensis recent comparative genomic hybridisation studies have revealed the absence and divergence of specific genes implicated in candidal virulence. Data from the C. dubliniensis genome sequencing project will allow a complete comparison between the genomes of the two species to be performed and thus enhance our understanding of candidal virulence and how virulence has evolved in Candida species.
Collapse
Affiliation(s)
- Derek J Sullivan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School and Hospital, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | | | |
Collapse
|
15
|
Pujol C, Daniels KJ, Lockhart SR, Srikantha T, Radke JB, Geiger J, Soll DR. The closely related species Candida albicans and Candida dubliniensis can mate. EUKARYOTIC CELL 2005; 3:1015-27. [PMID: 15302834 PMCID: PMC500882 DOI: 10.1128/ec.3.4.1015-1027.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Because Candida dubliniensis is closely related to Candida albicans, we tested whether it underwent white-opaque switching and mating and whether white-opaque switching depended on MTL homozygosity and mating depended on switching, as they do in C. albicans. We also tested whether C. dubliniensis could mate with C. albicans. Sequencing revealed that the MTLalpha locus of C. dubliniensis was highly similar to that of C. albicans. Hybridization with the MTLa1, MTLa2, MTLalpha1, and MTLalpha2 open reading frames of C. albicans further revealed that, as in C. albicans, natural strains of C. dubliniensis exist as a/alpha, a/a, and alpha/alpha, but the proportion of MTL homozygotes is 33%, 10 times the frequency of natural C. albicans strains. C. dubliniensis underwent white-opaque switching, and, as in C. albicans, the switching was dependent on MTL homozygosis. C. dubliniensis a/a and alpha/alpha cells also mated, and, as in C. albicans, mating was dependent on a switch from white to opaque. However, white-opaque switching occurred at unusually high frequencies, opaque cell growth was frequently aberrant, and white-opaque switching in many strains was camouflaged by an additional switching system. Mating of C. dubliniensis was far less frequent in suspension cultures, due to the absence of mating-dependent clumping. Mating did occur, however, at higher frequencies on agar or on the skin of newborn mice. The increases in MTL homozygosity, the increase in switching frequencies, the decrease in the quality of switching, and the decrease in mating efficiency all reflected a general deterioration in the regulation of developmental processes, very probably due to the very high frequency of recombination and genomic reorganization characteristic of C. dubliniensis. Finally, interspecies mating readily occurred between opaque C. dubliniensis and C. albicans strains of opposite mating type in suspension, on agar, and on mouse skin. Remarkably, the efficiency of interspecies mating was higher than intraspecies C. dubliniensis mating, and interspecies karyogamy occurred readily with apparently the same sequence of nuclear migration, fusion, and division steps observed during intraspecies C. albicans and C. dubliniensis mating and Saccharomyces cerevisiae mating.
Collapse
Affiliation(s)
- Claude Pujol
- Department of Biological Sciences, 302 BBE, The University of Iowa, Iowa City, IA 52242.
| | | | | | | | | | | | | |
Collapse
|
16
|
Marra RE, Huang JC, Fung E, Nielsen K, Heitman J, Vilgalys R, Mitchell TG. A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D (Filobasidiella neoformans). Genetics 2005; 167:619-31. [PMID: 15238516 PMCID: PMC1470921 DOI: 10.1534/genetics.103.023408] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To construct a genetic linkage map of the heterothallic yeast, Cryptococcus neoformans (Filobasidiella neoformans), we crossed two mating-compatible strains and analyzed 94 progeny for the segregation of 301 polymorphic markers, consisting of 228 restriction site polymorphisms, 63 microsatellites, two indels, and eight mating-type (MAT)-associated markers. All but six markers showed no significant (P < 0.05) segregation distortion. At a minimum LOD score of 6.0 and a maximum recombination frequency of 0.30, 20 linkage groups were resolved, resulting in a map length of approximately 1500 cM. Average marker density is 5.4 cM (range 1-28.7 cM). Hybridization of selected markers to blots of electrophoretic karyotypes unambiguously assigned all linkage groups to chromosomes and led us to conclude that the C. neoformans genome is approximately 20.2 Mb, comprising 14 chromosomes ranging in size from 0.8 to 2.3 Mb, with a ratio of approximately 13.2 kb/cM averaged across the genome. However, only 2 of 12 ungrouped markers hybridized to chromosome 10. The hybridizations revealed at least one possible reciprocal translocation involving chromosomes 8, 9, and 12. This map has been critical to genome sequence assembly and will be essential for future studies of quantitative trait inheritance.
Collapse
Affiliation(s)
- Robert E Marra
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wu W, Pujol C, Lockhart SR, Soll DR. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 2005; 169:1311-27. [PMID: 15654090 PMCID: PMC1449533 DOI: 10.1534/genetics.104.033167] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida albicans, which is diploid, possesses a single mating-type (MTL) locus on chromosome 5, which is normally heterozygous (a/alpha). To mate, C. albicans must undergo MTL homozygosis to a/a or alpha/alpha. Three possible mechanisms may be used in this process, mitotic recombination, gene conversion, or loss of one chromosome 5 homolog, followed by duplication of the retained homolog. To distinguish among these mechanisms, 16 spontaneous a/a and alpha/alpha derivatives were cloned from four natural a/alpha strains, P37037, P37039, P75063, and P34048, grown on nutrient agar. Eighteen polymorphic (heterozygous) markers were identified on chromosome 5, 6 to the left and 12 to the right of the MTL locus. These markers were then analyzed in MTL-homozygous derivatives of the four natural a/alpha strains to distinguish among the three mechanisms of homozygosis. An analysis of polymorphisms on chromosomes 1, 2, and R excluded meiosis as a mechanism of MTL homozygosis. The results demonstrate that while mitotic recombination was the mechanism for homozygosis in one offspring, loss of one chromosome 5 homolog followed by duplication of the retained homolog was the mechanism in the remaining 15 offspring, indicating that the latter mechanism is the most common in the spontaneous generation of MTL homozygotes in natural strains of C. albicans in culture.
Collapse
Affiliation(s)
- Wei Wu
- Department of Biological Sciences, University of Iowa, Iowa City, 52242, USA
| | | | | | | |
Collapse
|
18
|
Sullivan DJ, Moran GP, Pinjon E, Al-Mosaid A, Stokes C, Vaughan C, Coleman DC. Comparison of the epidemiology, drug resistance mechanisms, and virulence of and. FEMS Yeast Res 2004; 4:369-76. [PMID: 14734017 DOI: 10.1016/s1567-1356(03)00240-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Candida dubliniensis is a pathogenic yeast species that was first identified as a distinct taxon in 1995. Epidemiological studies have shown that C. dubliniensis is prevalent throughout the world and that it is primarily associated with oral carriage and oropharyngeal infections in human immunodeficiency virus (HIV)-infected and acquired immune deficiency syndrome (AIDS) patients. However, unlike Candida albicans, C. dubliniensis is rarely found in the oral microflora of normal healthy individuals and is responsible for as few as 2% of cases of candidemia (compared to approximately 65% for C. albicans). The vast majority of C. dubliniensis isolates identified to date are susceptible to all of the commonly used antifungal agents, however, reduced susceptibility to azole drugs has been observed in clinical isolates and can be readily induced in vitro. The primary mechanism of fluconazole resistance in C. dubliniensis has been shown to be overexpression of the major facilitator efflux pump Mdr1p. It has also been observed that a large number of C. dubliniensis strains express a non-functional truncated form of Cdr1p, and it has been demonstrated that this protein does not play a significant role in fluconazole resistance in the majority of strains examined to date. Data from a limited number of infection models reflect findings from epidemiological studies and suggest that C. dubliniensis is less pathogenic than C. albicans. The reasons for the reduced virulence of C. dubliniensis are not clear as it has been shown that the two species express a similar range of virulence factors. However, although C. dubliniensis produces hyphae, it appears that the conditions and dynamics of induction may differ from those in C. albicans. In addition, C. dubliniensis is less tolerant of environmental stresses such as elevated temperature and NaCl and H(2)O(2) concentration, suggesting that C. albicans may have a competitive advantage when colonising and causing infection in the human body. It is our hypothesis that a genomic comparison between these two closely-related species will help to identify virulence factors responsible for the far greater virulence of C. albicans and possibly identify factors that are specifically implicated in either superficial or systemic candidal infections.
Collapse
Affiliation(s)
- Derek J Sullivan
- Microbiology Research Unit, Department of Oral Medicine, Oral Surgery and Oral Pathology, Dublin Dental School and Hospital, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|