1
|
Yang K, Xiao W. Functions and mechanisms of the Ubc13-UEV complex and lysine 63-linked polyubiquitination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5372-5387. [PMID: 35640002 DOI: 10.1093/jxb/erac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Guo H, Wang L, Hu R, He Y, Xiao W. Molecular cloning and functional characterization of Physcomitrella patens UBC13-UEV1 genes required for Lys63-linked polyubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110518. [PMID: 32563457 DOI: 10.1016/j.plantsci.2020.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Ubc13 and Ubc/E2 variant (Uev) form a stable heterodimer to mediate Lys63-linked polyubiquitination. Unicellular eukaryotic genomes often contain single UBC13 and UEV gene; however, multiple homologs were found in higher plants. As initial land plants, Physcomitrella patens occupies a key evolutionary position between green algae and higher plants. In this study, we report the identification and functional characterization of two UBC13 and three UEV1 genes from P. patens. Both PpUbc13s form heterodimers with PpUev1B or PpUev1C, which catalyze Lys63-linked polyubiquitination in vitro and functionally complement the yeast ubc13 mms2 null mutant from killing by DNA-damaging agents. In contrast, PpUev1A is unable to interact with Ubc13s and cannot complement the yeast mms2 mutant. Two single mutations, PpUev1A-D12N and ΔCT, barely have any effect; however, the corresponding double mutation makes PpUev1A functional in both heterodimer formation and complementation. This study identifies a critical Uev residue located in the Ubc13-Uev interface and reveals that mosses began to evolve multiple UBC13 and UEV orthologs in order to adapt to the terrestrial environment. The evolutionary significance of PpUEV1A is discussed.
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Linxiao Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
3
|
Increased meiotic crossovers and reduced genome stability in absence of Schizosaccharomyces pombe Rad16 (XPF). Genetics 2014; 198:1457-72. [PMID: 25293972 DOI: 10.1534/genetics.114.171355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizosaccharomyces pombe Rad16 is the ortholog of the XPF structure-specific endonuclease, which is required for nucleotide excision repair and implicated in the single strand annealing mechanism of recombination. We show that Rad16 is important for proper completion of meiosis. In its absence, cells suffer reduced spore viability and abnormal chromosome segregation with evidence for fragmentation. Recombination between homologous chromosomes is increased, while recombination within sister chromatids is reduced, suggesting that Rad16 is not required for typical homolog crossovers but influences the balance of recombination between the homolog and the sister. In vegetative cells, rad16 mutants show evidence for genome instability. Similar phenotypes are associated with mutants affecting Rhp14(XPA) but are independent of other nucleotide excision repair proteins such as Rad13(XPG). Thus, the XPF/XPA module of the nucleotide excision repair pathway is incorporated into multiple aspects of genome maintenance even in the absence of external DNA damage.
Collapse
|
4
|
Køhler JB, Jørgensen MLM, Beinoraité G, Thorsen M, Thon G. Concerted action of the ubiquitin-fusion degradation protein 1 (Ufd1) and Sumo-targeted ubiquitin ligases (STUbLs) in the DNA-damage response. PLoS One 2013; 8:e80442. [PMID: 24265825 PMCID: PMC3827193 DOI: 10.1371/journal.pone.0080442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/02/2013] [Indexed: 01/04/2023] Open
Abstract
In eukaryotes many players in the DNA-damage response (DDR) catalyze protein sumoylation or ubiquitylation. Emphasis has been placed on how these modifications orchestrate the sequential recruitment of repair factors to sites of DNA damage or stalled replication forks. Here, we shed light on a pathway in which sumoylated factors are eliminated through the coupled action of Sumo-targeted ubiquitin ligases (STUbLs) and the ubiquitin-fusion degradation protein 1 (Ufd1). Ufd1 is a subunit of the Cdc48-Ufd1-Npl4 complex implicated in the sorting of ubiquitylated substrates for degradation by the proteasome. We find that in fission yeast, Ufd1 interacts physically and functionally with the Sumo-targeted ubiquitin ligase (STUbL) Rfp1, homologous to human RNF4, and with the Sumo E3 ligase Pli1, homologous to human PIAS1. Deleting a C-terminal domain of Ufd1 that mediates the interaction of Ufd1 with Rfp1, Pli1, and Sumo (ufd1ΔCt213-342) lead to an accumulation of high-molecular-weight Sumo conjugates and caused severe genomic instabilities. The spectrum of sensitivity of ufd1ΔCt213-342 cells to genotoxins, the epistatic relationships of ufd1ΔCt213-342 with mutations in DNA repair factors, and the localization of the repair factor Rad22 in ufd1ΔCt213-342 cells point to ufd1ΔCt213-342 cells accumulating aberrant structures during replication that require homologous recombination (HR) for their repair. We present evidence that HR is however often not successful in ufd1ΔCt213-342 cells and we identify Rad22 as one of the high-molecular-weight conjugates accumulating in the ufd1ΔCt213-342 mutant consistent with Rad22 being a STUbL/Ufd1 substrate. Suggesting a direct role of Ufd1 in the processing of Sumo-conjugates, Ufd1 formed nuclear foci colocalizing with Sumo during the DDR, and Sumo-conjugates accumulated in foci in the ufd1ΔCt213-342 mutant. Broader functional relationships between Ufd1 and STUbLs conceivably affect numerous cellular processes beyond the DDR.
Collapse
|
5
|
Penney M, Samejima I, Wilkinson CR, McInerny CJ, Mathiassen SG, Wallace M, Toda T, Hartmann-Petersen R, Gordon C. Fission yeast 26S proteasome mutants are multi-drug resistant due to stabilization of the Pap1 transcription factor. PLoS One 2012; 7:e50796. [PMID: 23209828 PMCID: PMC3507774 DOI: 10.1371/journal.pone.0050796] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/25/2012] [Indexed: 01/12/2023] Open
Abstract
Here we report the result of a genetic screen for mutants resistant to the microtubule poison methyl benzimidazol-2-yl carbamate (MBC) that were also temperature sensitive for growth. In total the isolated mutants were distributed in ten complementation groups. Cloning experiments revealed that most of the mutants were in essential genes encoding various 26S proteasome subunits. We found that the proteasome mutants are multi-drug resistant due to stabilization of the stress-activated transcription factor Pap1. We show that the ubiquitylation and ultimately the degradation of Pap1 depend on the Rhp6/Ubc2 E2 ubiquitin conjugating enzyme and the Ubr1 E3 ubiquitin-protein ligase. Accordingly, mutants lacking Rhp6 or Ubr1 display drug-resistant phenotypes.
Collapse
Affiliation(s)
- Mary Penney
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Itaru Samejima
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Caroline R. Wilkinson
- Cell Regulation Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, United Kingdom
| | - Christopher J. McInerny
- Division of Molecular and Cellular Biology, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Søs G. Mathiassen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mairi Wallace
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | | - Colin Gordon
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Wen R, Li J, Xu X, Cui Z, Xiao W. Zebrafish Mms2 promotes K63-linked polyubiquitination and is involved in p53-mediated DNA-damage response. DNA Repair (Amst) 2011; 11:157-66. [PMID: 22055568 DOI: 10.1016/j.dnarep.2011.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The ubiquitin-conjugating enzyme Ubc13 together with a Ubc/E2 variant (Uev) form a stable complex and mediate K63-linked polyubiquitination, which is implicated in DNA damage tolerance in yeast and mammalian cells. The zebrafish Danio rerio is a lower vertebrate model organism widely used in the studies of vertebrate development and environmental stress responses. Here we report the identification and functional characterization of two zebrafish UEV genes, Drmms2 and Druev1. Their deduced amino acid sequences indicate that the two UEV genes evolved separately prior to the appearance of vertebrates. Both zebrafish Uevs form a stable complex with DrUbc13 as well as Ubc13s from yeast and human, and are able to promote Ubc13-mediated K63 polyubiquitination in vitro, suggesting that their biochemical activities are conserved. Despite the fact that both zebrafish UEV genes can functionally replace the yeast MMS2 DNA-damage tolerance function, they exhibited differences in DNA-damage response in zebrafish embryos: ablation of DrMms2, but not DrUev1, enhances both spontaneous and DNA-damage induced expression of p53 effectors p21 and mdm2. In addition, DrUbc13 specifically binds Drp53 in an in vitro assay. These observations collectively indicate that zebrafish Mms2 and Ubc13 form a stable complex, which is required for p53-mediated DNA-damage response.
Collapse
Affiliation(s)
- Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Gatti L, Hoe KL, Hayles J, Righetti SC, Carenini N, Bo LD, Kim DU, Park HO, Perego P. Ubiquitin-proteasome genes as targets for modulation of cisplatin sensitivity in fission yeast. BMC Genomics 2011; 12:44. [PMID: 21247416 PMCID: PMC3032702 DOI: 10.1186/1471-2164-12-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022] Open
Abstract
Background The ubiquitin(Ub)-proteasome pathway is implicated in the regulation of a variety of cellular functions and plays a major role in stress response in eukaryotic cells, by targeting misfolded and damaged proteins for degradation. In addition, in the presence of DNA damage, the Ub-proteasome system regulates proteins involved in sensing, repairing, and/or tolerating the damage. Antitumor agents such as cisplatin can activate the pathway, but the role of specific pathway components in cell sensitivity/response to the drug is not known. Since platinum compounds represent clinically relevant antitumor agents and a major limitation to their use is the development of drug resistance, there is an urgent need for identifying targets for improving their efficacy. Results In the present study, we performed a genome-wide screening for sensitivity to cisplatin using non-essential haploid deletion mutants of the fission yeast Schizosaccharomyces pombe, belonging to a collection of haploid strains constructed through homologous recombination. Using this approach, we identified three Ub-proteasome mutants exhibiting hypersensitivity to cisplatin (ubp16, ubc13 and pmt3) and ten mutants (including ufd2, beta7 20S, rpt6/let1) resistant to the drug. In addition, the importance of lub1 gene emerged from the comparison between the present screening and gene expression profile data previously obtained in fission yeast. Conclusions The factors identified in the present study allowed us to highlight most finely the close relationship between the Ub-proteasome system and DNA damage response mechanisms, thus establishing a comprehensive framework of regulators likely relevant also in higher eukaryotes. Our results provide the proof of principle of the involvement of specific genes modulated by cisplatin treatment in cell response to the drug, suggesting their potential role as targets for modulating cisplatin sensitivity. In this regard, the prospective identification of novel targets for modulation of cisplatin sensitivity in an eukaryotic model organism appears particularly intriguing towards the discovery of strategies to overcome cisplatin resistance in human tumors.
Collapse
Affiliation(s)
- Laura Gatti
- Fondazione IRCCS, Istituto Nazionale per Studio e Cura dei Tumori, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dolan WP, Le AH, Schmidt H, Yuan JP, Green M, Forsburg SL. Fission yeast Hsk1 (Cdc7) kinase is required after replication initiation for induced mutagenesis and proper response to DNA alkylation damage. Genetics 2010; 185:39-53. [PMID: 20176980 PMCID: PMC2870973 DOI: 10.1534/genetics.109.112284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/16/2010] [Indexed: 11/18/2022] Open
Abstract
Genome stability in fission yeast requires the conserved S-phase kinase Hsk1 (Cdc7) and its partner Dfp1 (Dbf4). In addition to their established function in the initiation of DNA replication, we show that these proteins are important in maintaining genome integrity later in S phase and G2. hsk1 cells suffer increased rates of mitotic recombination and require recombination proteins for survival. Both hsk1 and dfp1 mutants are acutely sensitive to alkylation damage yet defective in induced mutagenesis. Hsk1 and Dfp1 are associated with the chromatin even after S phase, and normal response to MMS damage correlates with the maintenance of intact Dfp1 on chromatin. A screen for MMS-sensitive mutants identified a novel truncation allele, rad35 (dfp1-(1-519)), as well as alleles of other damage-associated genes. Although Hsk1-Dfp1 functions with the Swi1-Swi3 fork protection complex, it also acts independently of the FPC to promote DNA repair. We conclude that Hsk1-Dfp1 kinase functions post-initiation to maintain replication fork stability, an activity potentially mediated by the C terminus of Dfp1.
Collapse
Affiliation(s)
- William P. Dolan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Anh-Huy Le
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Henning Schmidt
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Ji-Ping Yuan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Marc Green
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Susan L. Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| |
Collapse
|
9
|
Ball LG, Zhang K, Cobb JA, Boone C, Xiao W. The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol Microbiol 2009; 73:89-102. [PMID: 19496932 DOI: 10.1111/j.1365-2958.2009.06748.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA. While translesion synthesis has been well characterized, little is known about the molecular events involved in error-free bypass, although it has been assumed that homologous recombination (HR) is required for such a mode of lesion bypass. We undertook a genome-wide synthetic genetic array screen for novel genes involved in error-free PRR and observed evidence of genetic interactions between error-free PRR and HR. Furthermore, this screen identified and assigned four genes, CSM2, PSY3, SHU1 and SHU2, whose products form a stable Shu complex, to the error-free PRR pathway. Previous studies have indicated that the Shu complex is required for efficient HR and that inactivation of any of these genes is able to suppress the severe phenotypes of top3 and sgs1. We confirmed and further extended some of the reported observations and demonstrated that error-free PRR mutations are also epistatic to sgs1. Based on the above analyses, we propose a model in which error-free PRR utilizes the Shu complex to recruit HR to facilitate template switching, followed by double-Holliday junction resolution by Sgs1-Top3. This mechanism appears to be conserved throughout eukaryotes.
Collapse
Affiliation(s)
- Lindsay G Ball
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
10
|
Wen R, Torres-Acosta JA, Pastushok L, Lai X, Pelzer L, Wang H, Xiao W. Arabidopsis UEV1D promotes Lysine-63-linked polyubiquitination and is involved in DNA damage response. THE PLANT CELL 2008; 20:213-27. [PMID: 18178771 PMCID: PMC2254933 DOI: 10.1105/tpc.107.051862] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 12/06/2007] [Accepted: 12/17/2007] [Indexed: 05/17/2023]
Abstract
DNA damage tolerance (DDT) in budding yeast requires Lys-63-linked polyubiquitination of the proliferating cell nuclear antigen. The ubiquitin-conjugating enzyme Ubc13 and the Ubc enzyme variant (Uev) methyl methanesulfonate2 (Mms2) are required for this process. Mms2 homologs have been found in all eukaryotic genomes examined; however, their roles in multicellular eukaryotes have not been elucidated. We report the isolation and characterization of four UEV1 genes from Arabidopsis thaliana. All four Uev1 proteins can form a stable complex with At Ubc13 or with Ubc13 from yeast or human and can promote Ubc13-mediated Lys-63 polyubiquitination. All four Uev1 proteins can replace yeast MMS2 DDT functions in vivo. Although these genes are ubiquitously expressed in most tissues, UEV1D appears to express at a much higher level in germinating seeds and in pollen. We obtained and characterized two uev1d null mutant T-DNA insertion lines. Compared with wild-type plants, seeds from uev1d null plants germinated poorly when treated with a DNA-damaging agent. Those that germinated grew slower, and the majority ceased growth within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant decrease in germination in the presence of DNA damage. This report links Ubc13-Uev with functions in DNA damage response in Arabidopsis.
Collapse
Affiliation(s)
- Rui Wen
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | | | | | |
Collapse
|
11
|
Krause K, Kothe E. Use of RNA fingerprinting to identify fungal genes specifically expressed during ectomycorrhizal interaction. J Basic Microbiol 2006; 46:387-99. [PMID: 17009294 DOI: 10.1002/jobm.200610153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ecosystem soil is characterized by interactions between microorganisms and plants including mycorrhiza--mutualistic interactions between fungi and plant roots. Species of the basidiomycete genus Tricholoma form ectomycorrhiza with tree roots which is characterized by morphological and metabolic changes of both partners, yet molecular mechanisms of the interaction are poorly understood. We performed differential display with arbitrarily primed RT-PCR using ectomycorrhiza between the basidiomycete Tricholoma vaccinum and its compatible host spruce (Picea abies) to isolate mycorrhiza-specific fungal gene fragments. 76 differentially expressed PCR fragments were verified and checked for plant or fungal origin and expression pattern. Of 20 fungal fragments with mycorrhiza-specific expression, sequence analyses were performed to identify homologs with known function of the encoded protein. Among the genes identified were orthologs to an aldehyde dehydrogenase, an alcohol dehydrogenase and a protein of the MATE transporter family, all with possible function in plant pathogen response. A phospholipase B, a beta-glucosidase and a binding protein of basic amino acids might play a role in nutrient exchange and growth in planta. A protein similar to inactive E2 compounds of ubiquitin-conjugating enzymes like CROC-1 and MMS2, a Ras protein and an APS kinase were placed in signal transduction and two retrotransposons of the Ty3-gypsy and the Ty1-copia family are expressed most likely due to stress.
Collapse
Affiliation(s)
- Katrin Krause
- University of Jena, Dept. Microbiology, Microbial Phytopathology, Neugasse 25, D-07743 Jena, Germany.
| | | |
Collapse
|
12
|
Silva SH, Pereira-Júnior OS, Silva CS, Brigatto OM, Macedo E, Rodrigues V. Characterization of the gene expression related to the process of DNA damage tolerance in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2006; 101 Suppl 1:157-60. [PMID: 17308764 DOI: 10.1590/s0074-02762006000900025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/26/2006] [Indexed: 11/22/2022] Open
Abstract
In the course of its complex life cycle, the parasite Schistosoma mansoni need to adapt to distinct environments, and consequently is exposed to various DNA damaging agents. The Schistosoma genome sequencing initiative has uncovered sequences from genes and transcripts related to the process of DNA damage tolerance as the enzymes UBC13, MMS2, and RAD6. In the present work, we evaluate the importance of this process in different stages of the life cycle of this parasite. The importance is evidenced by expression and phylogenetic profiles, which show the conservation of this pathway from protozoa to mammalians on evolution.
Collapse
Affiliation(s)
- S H Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Frampton J, Irmisch A, Green CM, Neiss A, Trickey M, Ulrich HD, Furuya K, Watts FZ, Carr AM, Lehmann AR. Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell 2006; 17:2976-85. [PMID: 16641370 PMCID: PMC1483034 DOI: 10.1091/mbc.e05-11-1008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 03/24/2006] [Accepted: 04/13/2006] [Indexed: 11/11/2022] Open
Abstract
Ubiquitination of proliferating cell nuclear antigen (PCNA) plays a crucial role in regulating replication past DNA damage in eukaryotes, but the detailed mechanisms appear to vary in different organisms. We have examined the modification of PCNA in Schizosaccharomyces pombe. We find that, in response to UV irradiation, PCNA is mono- and poly-ubiquitinated in a manner similar to that in Saccharomyces cerevisiae. However in undamaged Schizosaccharomyces pombe cells, PCNA is ubiquitinated in S phase, whereas in S. cerevisiae it is sumoylated. Furthermore we find that, unlike in S. cerevisiae, mutants defective in ubiquitination of PCNA are also sensitive to ionizing radiation, and PCNA is ubiquitinated after exposure of cells to ionizing radiation, in a manner similar to the response to UV-irradiation. We show that PCNA modification and cell cycle checkpoints represent two independent signals in response to DNA damage. Finally, we unexpectedly find that PCNA is ubiquitinated in response to DNA damage when cells are arrested in G2.
Collapse
Affiliation(s)
- Jonathan Frampton
- *Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Anja Irmisch
- *Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Catherine M. Green
- *Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Andrea Neiss
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; and
| | - Michelle Trickey
- *Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Helle D. Ulrich
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; and
- Clare Hall Laboratories, Cancer Research UK, South Mimms, Herts EN6 3LD, United Kingdom
| | - Kanji Furuya
- *Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Felicity Z. Watts
- *Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Antony M. Carr
- *Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Alan R. Lehmann
- *Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| |
Collapse
|
14
|
Andersen PL, Zhou H, Pastushok L, Moraes T, McKenna S, Ziola B, Ellison MJ, Dixit VM, Xiao W. Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. ACTA ACUST UNITED AC 2005; 170:745-55. [PMID: 16129784 PMCID: PMC2171356 DOI: 10.1083/jcb.200502113] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ubc13, a ubiquitin-conjugating enzyme (Ubc), requires the presence of a Ubc variant (Uev) for polyubiquitination. Uevs, although resembling Ubc in sequence and structure, lack the active site cysteine residue and are catalytically inactive. The yeast Uev (Mms2) incites noncanonical Lys63-linked polyubiquitination by Ubc13, whereas the increased diversity of Uevs in higher eukaryotes suggests an unexpected complication in ubiquitination. In this study, we demonstrate that divergent activities of mammalian Ubc13 rely on its pairing with either of two Uevs, Uev1A or Mms2. Structurally, we demonstrate that Mms2 and Uev1A differentially modulate the length of Ubc13-mediated Lys63-linked polyubiquitin chains. Functionally, we describe that Ubc13-Mms2 is required for DNA damage repair but not nuclear factor kappaB (NF-kappaB) activation, whereas Ubc13-Uev1A is involved in NF-kappaB activation but not DNA repair. Our finding suggests a novel regulatory mechanism in which different Uevs direct Ubcs to diverse cellular processes through physical interaction and alternative polyubiquitination.
Collapse
Affiliation(s)
- Parker L Andersen
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sheedy DM, Dimitrova D, Rankin JK, Bass KL, Lee KM, Tapia-Alveal C, Harvey SH, Murray JM, O'Connell MJ. Brc1-mediated DNA repair and damage tolerance. Genetics 2005; 171:457-68. [PMID: 15972456 PMCID: PMC1456763 DOI: 10.1534/genetics.105.044966] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The structural maintenance of chromosome (SMC) proteins are key elements in controlling chromosome dynamics. In eukaryotic cells, three essential SMC complexes have been defined: cohesin, condensin, and the Smc5/6 complex. The latter is essential for DNA damage responses; in its absence both repair and checkpoint responses fail. In fission yeast, the UV-C and ionizing radiation (IR) sensitivity of a specific hypomorphic allele encoding the Smc6 subunit, rad18-74 (renamed smc6-74), is suppressed by mild overexpression of a six-BRCT-domain protein, Brc1. Deletion of brc1 does not result in a hypersensitivity to UV-C or IR, and thus the function of Brc1 relative to the Smc5/6 complex has remained unclear. Here we show that brc1Delta cells are hypersensitive to a range of radiomimetic drugs that share the feature of creating lesions that are an impediment to the completion of DNA replication. Through a genetic analysis of brc1Delta epistasis and by defining genes required for Brc1 to suppress smc6-74, we find that Brc1 functions to promote recombination through a novel postreplication repair pathway and the structure-specific nucleases Slx1 and Mus81. Activation of this pathway through overproduction of Brc1 bypasses a repair defect in smc6-74, reestablishing resolution of lesions by recombination.
Collapse
Affiliation(s)
- Daniel M Sheedy
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pastushok L, Xiao W. DNA Postreplication Repair Modulated by Ubiquitination and Sumoylation. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:279-306. [PMID: 15588847 DOI: 10.1016/s0065-3233(04)69010-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
17
|
Onishi M, Nakamura Y, Koga T, Takegawa K, Fukui Y. Isolation of suppressor mutants of phosphatidylinositol 3-phosphate 5-kinase deficient cells in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2003; 67:1772-9. [PMID: 12951513 DOI: 10.1271/bbb.67.1772] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ste12+ gene of Schizosaccharomyces pombe codes for a phosphatidylinositol (PI) 3-phosphate 5'-kinase, which is required for efficient mating. Suppressor mutants for sterility of ste12Delta cells were screened for. Most of the mutant genes turned out to be recessive. Six genes were cloned and the open reading frames responsible for the suppressor activity were identified. They included genes coding for proteins with domains homologous to calcium transporters, casein kinase II, UBC13, AMSH, Vps23p, and Vps27p of Saccharomyces cerevisiae. Disruption of these genes resulted in suppression of the defects of the ste12Delta cells, including low mating efficiency and formation of large vacuoles. Since many of these gene products are homologous to the proteins involved in vesicle transport, sterility caused by inactivation of ste12 may be due to a disordered vesicle transport system.
Collapse
Affiliation(s)
- Masayuki Onishi
- Laboratory of Biological Chemistry, Graduate School of Agricultural and Life Science, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2003; 20:455-62. [PMID: 12728936 DOI: 10.1002/yea.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|