1
|
Dias AMGC, Santos RD, Iranzo O, Roque ACA. Affinity adsorbents for proline-rich peptide sequences: a new role for WW domains. RSC Adv 2016. [DOI: 10.1039/c6ra10900d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The WW domain derived from human Yes-associated protein (hYAP65_WW) recognizes proline-rich peptides.
Collapse
Affiliation(s)
- A. M. G. C. Dias
- UCIBIO
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - R. dos Santos
- UCIBIO
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - O. Iranzo
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - A. C. A. Roque
- UCIBIO
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| |
Collapse
|
2
|
Soufi A, Sawasdichai A, Shukla A, Noy P, Dafforn T, Smith C, Jayaraman PS, Gaston K. DNA compaction by the higher-order assembly of PRH/Hex homeodomain protein oligomers. Nucleic Acids Res 2010; 38:7513-25. [PMID: 20675722 PMCID: PMC2995075 DOI: 10.1093/nar/gkq659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 01/12/2023] Open
Abstract
Protein self-organization is essential for the establishment and maintenance of nuclear architecture and for the regulation of gene expression. We have shown previously that the Proline-Rich Homeodomain protein (PRH/Hex) self-assembles to form oligomeric complexes that bind to arrays of PRH binding sites with high affinity and specificity. We have also shown that many PRH target genes contain suitably spaced arrays of PRH sites that allow this protein to bind and regulate transcription. Here, we use analytical ultracentrifugation and electron microscopy to further characterize PRH oligomers. We use the same techniques to show that PRH oligomers bound to long DNA fragments self-associate to form highly ordered assemblies. Electron microscopy and linear dichroism reveal that PRH oligomers can form protein-DNA fibres and that PRH is able to compact DNA in the absence of other proteins. Finally, we show that DNA compaction is not sufficient for the repression of PRH target genes in cells. We conclude that DNA compaction is a consequence of the binding of large PRH oligomers to arrays of binding sites and that PRH is functionally and structurally related to the Lrp/AsnC family of proteins from bacteria and archaea, a group of proteins formerly thought to be without eukaryotic equivalents.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD and Department of Biological Sciences University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Anyaporn Sawasdichai
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD and Department of Biological Sciences University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Anshuman Shukla
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD and Department of Biological Sciences University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Peter Noy
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD and Department of Biological Sciences University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Tim Dafforn
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD and Department of Biological Sciences University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Corinne Smith
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD and Department of Biological Sciences University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Padma-Sheela Jayaraman
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD and Department of Biological Sciences University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Kevin Gaston
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD and Department of Biological Sciences University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
3
|
Soufi A, Noy P, Buckle M, Sawasdichai A, Gaston K, Jayaraman PS. CK2 phosphorylation of the PRH/Hex homeodomain functions as a reversible switch for DNA binding. Nucleic Acids Res 2009; 37:3288-300. [PMID: 19324893 PMCID: PMC2691835 DOI: 10.1093/nar/gkp197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proline-rich homeodomain protein (PRH/Hex) regulates transcription by binding to specific DNA sequences and regulates mRNA transport by binding to translation initiation factor eIF4E. Protein kinase CK2 plays multiple roles in the regulation of gene expression and cell proliferation. Here, we show that PRH interacts with the β subunit of CK2 in vitro and in cells and that CK2 phosphorylates PRH. Phosphorylation of PRH by CK2 inhibits the DNA binding activity of this protein and dephosphorylation restores DNA binding indicating that this modification acts as a reversible switch. We show that phosphorylation of the homeodomain is sufficient to block DNA binding and we identify two amino acids within this the domain that are phosphorylated by CK2: S163 and S177. Site-directed mutagenesis demonstrates that mutation of either of these residues to glutamic acid partially mimics phosphorylation but is insufficient to completely block DNA binding whereas an S163E/S177E double mutation severely inhibits DNA binding. Significantly, the S163E and S177E mutations and the S163E/S177E double mutation all inhibit the ability of PRH to regulate transcription in cells. Since these amino acids are conserved between many homeodomain proteins, our results suggest that CK2 may regulate the activity of several homeodomain proteins in this manner.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
4
|
Williams H, Jayaraman PS, Gaston K. DNA wrapping and distortion by an oligomeric homeodomain protein. J Mol Biol 2008; 383:10-23. [PMID: 18755198 DOI: 10.1016/j.jmb.2008.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/04/2008] [Accepted: 08/01/2008] [Indexed: 12/29/2022]
Abstract
Many transcription factors alter DNA or chromatin structure. Changes in chromatin structure are often brought about by the recruitment of chromatin-binding proteins, chromatin-modifying proteins, or other transcription co-activator or co-repressor proteins. However, some transcription factors form oligomeric assemblies that may themselves induce changes in DNA conformation and chromatin structure. The proline-rich homeodomain (PRH/Hex) protein is a transcription factor that regulates cell differentiation and cell proliferation, and has multiple roles in embryonic development. Earlier, we showed that PRH can repress transcription by multiple mechanisms, including the recruitment of co-repressor proteins belonging to the TLE family of chromatin-binding proteins. Our in vivo crosslinking studies have shown that PRH forms oligomeric complexes in cells and a variety of biophysical techniques suggest that the protein forms octamers. However, as yet we have little knowledge of the role played by PRH oligomerisation in the regulation of promoter activity or of the architecture of promoters that are regulated directly by PRH in cells. Here, we compare the binding of PRH and the isolated PRH homeodomain to DNA fragments with single and multiple PRH sites, using gel retardation assays and DNase I and chemical footprinting. We show that the PRH oligomer binds to multiple sites within the human Goosecoid promoter with high affinity and that the binding of PRH brings about DNA distortion. We suggest that PRH octamers wrap DNA in order to bring about transcriptional repression.
Collapse
Affiliation(s)
- Hannah Williams
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
5
|
Soufi A, Jayaraman PS. PRH/Hex: an oligomeric transcription factor and multifunctional regulator of cell fate. Biochem J 2008; 412:399-413. [PMID: 18498250 PMCID: PMC2570084 DOI: 10.1042/bj20080035] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 12/31/2022]
Abstract
The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a critical regulator of vertebrate development. PRH is able to regulate cell proliferation and differentiation and is required for the formation of the vertebrate body axis, the haematopoietic and vascular systems and the formation of many vital organs. PRH is a DNA-binding protein that can repress and activate the transcription of its target genes using multiple mechanisms. In addition, PRH can regulate the nuclear transport of specific mRNAs making PRH a member of a select group of proteins that control gene expression at the transcriptional and translational levels. Recent biophysical analysis of the PRH protein has shown that it forms homo-oligomeric complexes in vivo and in vitro and that the proline-rich region of PRH forms a novel dimerization interface. Here we will review the current literature on PRH and discuss the complex web of interactions centred on this multifunctional protein.
Collapse
Key Words
- development
- gene regulation
- haematopoiesis
- haematopoietically expressed homeobox (hex)
- homeodomain
- oligomerization
- proline-rich homeodomain (prh)
- transcription
- ade, anterior definitive endoderm
- aml, acute myelogenous leukaemia
- ap-1, activator protein-1
- apl, acute promyelocytic leukaemia
- auc, analytical ultracentrifugation
- ave, anterior visceral endoderm
- bmp, bone morphogenetic protein
- bre, bmp-responsive element
- cml, chronic myelogenous leukaemia
- cre, camp-response-element
- creb, cre-binding protein
- e, embryonic day
- eif-4e, eukaryotic initiation factor 4e
- emsa, electrophoretic mobility-shift assay
- es, embryonic stem
- esm-1, endothelial cell-specific molecule-1
- fgf, fibroblast growth factor
- hex, haematopoietically expressed homeobox
- hnf, hepatocyte nuclear factor
- hox, homeobox
- hsc, haematopoietic stem cell
- huvec, human umbilical-vein endothelial cell
- nk, nuclear body-associated kinase
- nmhc-b, non-muscle myosin heavy chain b
- ntcp, sodium-dependent bile acid co-transporter
- pml, promyelocytic leukaemic
- prh, proline-rich homeodomain
- rarα, retinoic acid receptor α
- sm, smooth muscle
- srf, serum-response factor
- tbp, tata-box-binding protein
- tg, thyroglobulin
- tie, tk with immunoglobulin-like and egf (endothelial growth factor)-like domains
- tk, thymidine kinase
- tle, transducin-like enhancer
- tn, tinman
- tsh, thyroid-stimulating hormone
- ttf, thyroid transcription factor
- ve, visceral endoderm
- vegf, vascular endothelial growth factor
- vegfr, vegf receptor
- vsmc, vascular smooth muscle cell
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute of Biomedical Research, Division of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Padma-Sheela Jayaraman
- Institute of Biomedical Research, Division of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| |
Collapse
|
6
|
Soufi A, Smith C, Clarke AR, Gaston K, Jayaraman PS. Oligomerisation of the developmental regulator proline rich homeodomain (PRH/Hex) is mediated by a novel proline-rich dimerisation domain. J Mol Biol 2006; 358:943-62. [PMID: 16540119 DOI: 10.1016/j.jmb.2006.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 02/02/2006] [Accepted: 02/02/2006] [Indexed: 11/22/2022]
Abstract
Homeodomain proteins regulate multiple developmental pathways by altering gene expression temporally and in a tissue-specific fashion. The Proline Rich Homeodomain protein (PRH/Hex) is a transcription factor and an essential regulator of embryonic development and haematopoiesis. Recent discoveries have implicated self-association as an important feature of transcription factor function. Here, we show using a variety of techniques including gel-filtration, analytical ultracentrifugation, electron microscopy and in vitro cross-linking, that purified recombinant PRH is oligomeric and we use in vivo cross-linking to confirm that this protein exists as oligomers in cells. This is the first demonstration that a homeodomain protein can oligomerise in vivo. Consistent with these findings we show that a fraction of endogenous and exogenous PRH appears as discrete foci within the nucleus and at the nuclear periphery. The N-terminal domain of PRH is involved in the regulation of cell proliferation and transcriptional repression and can make multiple protein-protein interactions. We show that this region of PRH contains a novel proline-rich dimerisation domain that mediates oligomerisation. We propose a model that explains how PRH forms oligomers and we discuss how these oligomers might control transcription.
Collapse
Affiliation(s)
- Abdenour Soufi
- Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD, UK
| | | | | | | | | |
Collapse
|
7
|
Soufi A, Gaston K, Jayaraman PS. Purification and characterisation of the PRH homeodomain: Removal of the N-terminal domain of PRH increases the PRH homeodomain-DNA interaction. Int J Biol Macromol 2006; 39:45-50. [PMID: 16494938 DOI: 10.1016/j.ijbiomac.2006.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/18/2006] [Accepted: 01/18/2006] [Indexed: 11/27/2022]
Abstract
The Proline-Rich Homeodomain (PRH) protein is a regulator of transcription and translation and plays a key role in the control of cell proliferation and cell differentiation. PRH contains an N-terminal proline-rich domain that can repress transcription when expressed as a fusion protein with an unrelated DNA binding domain, a central homeodomain that binds to specific DNA sequences and an acidic C-terminal domain of no known function. In order to investigate the structure and functions of PRH we have purified the full-length protein and truncated proteins corresponding to different domains of PRH fused to histidine tags. Here we compare the effects of elution conditions and column volume on protein purification and we investigate the DNA binding activity of these proteins. We show that the PRH homeodomain co-purifies with nucleic acids even after nuclease treatment and that a high salt-wash is required to remove bound nucleic acids. In contrast with the full-length PRH protein, the PRH homeodomain binds to DNA with high affinity. We show that a truncated protein comprising the homeodomain and C-terminal domain also binds to DNA with high affinity and we conclude that the N-terminal domain of PRH inhibits the homeodomain-DNA interaction.
Collapse
Affiliation(s)
- Abdenour Soufi
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
8
|
Visser NFC, Lingeman H, Irth H. Sample preparation for peptides and proteins in biological matrices prior to liquid chromatography and capillary zone electrophoresis. Anal Bioanal Chem 2005; 382:535-58. [PMID: 15834556 DOI: 10.1007/s00216-005-3120-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 01/17/2005] [Accepted: 01/24/2005] [Indexed: 11/30/2022]
Abstract
The determination of peptides and proteins in a biological matrix normally includes a sample-preparation step to obtain a sample that can be injected into a separation system in such a way that peptides and proteins of interest can be determined qualitatively and/or quantitatively. This can be a rather challenging, labourious and/or time-consuming process. The extract obtained after sample preparation is further separated using a compatible separation system. Liquid chromatography (LC) is the generally applied technique for this purpose, but capillary zone electrophoresis (CZE) is an alternative, providing fast, versatile and efficient separations. In this review, the recent developments in the combination of sample-preparation procedures with LC and CZE, for the determination of peptides and proteins, will be discussed. Emphasis will be on purification from and determination in complex biological matrices (plasma, cell lysates, etc.) of these compounds and little attention will be paid to the proteomics area. Additional focus will be put on sample-preparation conditions, which can be 'hard' or 'soft', and on selectivity issues. Selectivity issues will be addressed in combination with the used separation technique and a comparison between LC and CZE will be made.
Collapse
Affiliation(s)
- N F C Visser
- Faculty of Sciences, Division of Chemistry, Department of Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Bess KL, Swingler TE, Rivett AJ, Gaston K, Jayaraman PS. The transcriptional repressor protein PRH interacts with the proteasome. Biochem J 2003; 374:667-75. [PMID: 12826010 PMCID: PMC1223646 DOI: 10.1042/bj20030769] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 06/25/2003] [Indexed: 02/07/2023]
Abstract
PRH (proline-rich homeodomain protein)/Hex is important in the control of cell proliferation and differentiation. We have shown previously that PRH contains two domains that can bring about transcriptional repression independently; the PRH homeodomain represses transcription by binding to TATA box sequences, whereas the proline-rich N-terminal domain can repress transcription by interacting with members of the Groucho/TLE (transducin-like enhancer of split) family of co-repressor proteins. The proteasome is a multi-subunit protein complex involved in the processing and degradation of proteins. Some proteasome subunits have been suggested to play a role in the regulation of transcription. In the present study, we show that PRH interacts with the HC8 subunit of the proteasome in the context of both 20 and 26 S proteasomes. Moreover, we show that PRH is associated with the proteasome in haematopoietic cells and that the proline-rich PRH N-terminal domain is responsible for this interaction. Whereas PRH can be cleaved by the proteasome, it does not appear to be degraded rapidly in vitro or in vivo, and the proteolytic activity of the proteasome is not required for transcriptional repression by PRH. However, proteasomal digestion of PRH can liberate truncated PRH proteins that retain the ability to bind to DNA. We discuss these findings in terms of the biological role of PRH in gene regulation and the control of cell proliferation.
Collapse
Affiliation(s)
- Kirstin L Bess
- Department of Biochemistry, University of Bristol, University Walk, Bristol BS81TD, UK
| | | | | | | | | |
Collapse
|