1
|
Trzebny A, Taylor AD, Herren JK, Björkroth JK, Jedut S, Dabert M. Microsporidian infection of mosquito larvae changes the host-associated microbiome towards the synthesis of antimicrobial factors. Parasit Vectors 2025; 18:178. [PMID: 40382661 DOI: 10.1186/s13071-025-06813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Microsporidians (Microsporidia) are a group of obligate intracellular parasites that commonly infect mosquitoes. Recently, it has been shown that infection by these parasites can alter the composition and functionality of the mosquito-associated microbiome. The host-associated microbiome of the mosquito can play a pivotal role in various physiological processes of this host, including its vector competence for pathogens. Thus, understanding how microsporidians shape the mosquito microbiome may be crucial for elucidating interactions between these parasites and their mosquito hosts, which are also vectors for other parasites and pathogens. METHODS The effects of microsporidian infection on the microbiome structure and functionality of Culex pipiens and Culex torrentium larvae under semi-natural conditions were examined. The host-associated microbiome of Cx. pipiens (n = 498) and Cx. torrentium (n = 465) larvae, including that of the 97 infected individuals of these samples, was analysed using 16S DNA profiling and functional prediction analysis. RESULTS Microbiome network analysis revealed that, in the microsporidian-positive larvae, host microbial communities consistently grouped within a common bacterial module that included Aerococcaceae, Lactobacillaceae, Microbacteriaceae, Myxococcaceae, and Polyangiaceae. Indicator species analysis revealed two strong positive correlations between microsporidian infection and the presence of Weissella cf. viridescens and Wolbachia pipientis. Functional predictions of microbiome content showed enrichment in biosynthetic pathways for ansamycin and vancomycin antibiotic groups in infected larvae. Furthermore, the MexJK-OprM multidrug-resistance module was exclusively present in the infected larvae, while carbapenem- and vancomycin-resistance modules were specific to the microsporidian-free larvae. CONCLUSIONS Our results demonstrate that microsporidian infection alters the microbial community composition in mosquito larvae. Moreover, they show that microsporidian infection can increase the antimicrobial capabilities of the host-associated microbiome. These results provide novel insights into host microbiome-parasite interactions and have potential implications for the vector competencies of mosquitoes.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Abigail D Taylor
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Johanna K Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sylwia Jedut
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Skrzypczak N, Pyta K, Bohusz W, Leśniewska A, Gdaniec M, Ruszkowski P, Schilf W, Bartl F, Przybylski P. Cascade Transformation of the Ansamycin Benzoquinone Core into Benzoxazole Influencing Anticancer Activity and Selectivity. J Org Chem 2023; 88:9469-9474. [PMID: 37276434 PMCID: PMC10337034 DOI: 10.1021/acs.joc.3c00493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/07/2023]
Abstract
The metal-free cascade transformation of geldanamycin benzoquinone core is proposed at relatively mild conditions. This approach yields new benzoxazole ansamycin antibiotics and enables their functionalization in an atom-economic manner, irrespective of the type of amine used. The analysis of the heterocyclization course reveals the dependence of its rate on the nature of the para-substituent within the benzylamine moiety (EDG/EWG) and the strength of the base. The reduction of the ansamycin core enables an increase in anticancer potency and selectivity.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Krystian Pyta
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Lebenswissenschaftliche
Fakultät, Institut für Biologie, Biophysikalische Chemie Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Wiktor Bohusz
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Aleksandra Leśniewska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Maria Gdaniec
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Ruszkowski
- Department
of Pharmacology, Poznań University
of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland
| | - Wojciech Schilf
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Franz Bartl
- Lebenswissenschaftliche
Fakultät, Institut für Biologie, Biophysikalische Chemie Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Piotr Przybylski
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Trzebny A, Slodkowicz-Kowalska A, Björkroth J, Dabert M. Microsporidian Infection in Mosquitoes (Culicidae) Is Associated with Gut Microbiome Composition and Predicted Gut Microbiome Functional Content. MICROBIAL ECOLOGY 2023; 85:247-263. [PMID: 34939130 PMCID: PMC9849180 DOI: 10.1007/s00248-021-01944-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Anna Slodkowicz-Kowalska
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
4
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Tang D, Liu LL, He QR, Yan W, Li D, Gao JM. Ansamycins with Antiproliferative and Antineuroinflammatory Activity from Moss-Soil-Derived Streptomyces cacaoi subsp. asoensis H2S5. JOURNAL OF NATURAL PRODUCTS 2018; 81:1984-1991. [PMID: 30132670 DOI: 10.1021/acs.jnatprod.8b00203] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three new 21-membered macrocyclic benzenoid ansamycins, trienomycins J-L (1-3), together with seven known analogues, trienomycins A-G (4-10), were isolated from liquid culture of the moss soil-derived actinomycete Streptomyces cacaoi subsp. asoensis H2S5. The structures of the new compounds were elucidated by extensive NMR spectroscopic analysis and HRESIMS data. The absolute configurations of trienomycins were established by Marfey's method. Antiproliferative assays showed that compound 1 had the greatest activity against HepG2 cells, with an IC50 value of 0.1 μM. The induction of apoptosis of HepG2 cells by 1 was investigated by flow cytometry and evaluation of nuclear morphology. In addition, all of the compounds inhibited nitric oxide production with IC50 values of 0.02 to 8.3 μM, and compounds 1, 4, and 7 were the most potent inhibitors. These findings will facilitate the development of new antineuroinflammatory agents.
Collapse
Affiliation(s)
- Dan Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Wen Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| |
Collapse
|
6
|
Yang YH, Yang DS, Li GH, Liu R, Huang XW, Zhang KQ, Zhao PJ. New secondary metabolites from an engineering mutant of endophytic Streptomyces sp. CS. Fitoterapia 2018; 130:17-25. [PMID: 30076887 DOI: 10.1016/j.fitote.2018.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
In previous work, a series of bioactive natural products had been isolated from the plant endophytic Streptomyces sp. CS, which was isolated from Maytenus hookeri. To mine new active metabolites, we describe introducing an alien carbamoyltransferase (asm21) gene into the strain CS by conjugal transfer. As a result, three recombinatorial mutants named CS/asm21-1, CS/asm21-2 and CS/asm21-4 were successfully constructed. Three mutants and wild type CS were cultured on solid medium, and the extracts were detected and analyzed by liquid chromatography-mass spectrometry (LC-MS). The LC-MS profiles showed several unknown peaks that were present in the spectra of extracts of the CS/asm21-4 cultured on oatmeal solid medium. Then, three new naphthomycins O-Q (1-3), a new macrolide hookerolide (4) as well as nine known compounds were obtained from the solid cultured medium. Their structures were identified by spectra data. These new compounds showed moderate antimicrobial activities.
Collapse
Affiliation(s)
- Yin-He Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Da-Song Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Rui Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Xiao-Wei Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China.
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
7
|
Qi F, Lei C, Li F, Zhang X, Wang J, Zhang W, Fan Z, Li W, Tang GL, Xiao Y, Zhao G, Li S. Deciphering the late steps of rifamycin biosynthesis. Nat Commun 2018; 9:2342. [PMID: 29904078 PMCID: PMC6002545 DOI: 10.1038/s41467-018-04772-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/12/2018] [Indexed: 12/12/2022] Open
Abstract
Rifamycin-derived drugs, including rifampin, rifabutin, rifapentine, and rifaximin, have long been used as first-line therapies for the treatment of tuberculosis and other deadly infections. However, the late steps leading to the biosynthesis of the industrially important rifamycin SV and B remain largely unknown. Here, we characterize a network of reactions underlying the biosynthesis of rifamycin SV, S, L, O, and B. The two-subunit transketolase Rif15 and the cytochrome P450 enzyme Rif16 are found to mediate, respectively, a unique C–O bond formation in rifamycin L and an atypical P450 ester-to-ether transformation from rifamycin L to B. Both reactions showcase interesting chemistries for these two widespread and well-studied enzyme families. The enzymes Rif15 and Rif16 are involved in the late steps of the biosynthesis of rifamycins, a group of antibiotics. Here, the authors characterized these two proteins and found that they catalyse unusual biochemical reactions.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Chao Lei
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Fengwei Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Xingwang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Zhen Fan
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
8
|
Sun C, Zhang C, Qin X, Wei X, Liu Q, Li Q, Ju J. Genome mining of Streptomyces olivaceus SCSIO T05: Discovery of olimycins A and B and assignment of absolute configurations. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Affiliation(s)
- Gerrit Jürjens
- Institute of Organic Chemistry
and Center of Biomolecuclar Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry
and Center of Biomolecuclar Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
10
|
Harmrolfs K, Mancuso L, Drung B, Sasse F, Kirschning A. Preparation of new alkyne-modified ansamitocins by mutasynthesis. Beilstein J Org Chem 2014; 10:535-43. [PMID: 24605171 PMCID: PMC3943755 DOI: 10.3762/bjoc.10.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/29/2014] [Indexed: 11/23/2022] Open
Abstract
The preparation of alkyne-modified ansamitocins by mutasynthetic supplementation of Actinosynnema pretiosum mutants with alkyne-substituted aminobenzoic acids is described. This modification paved the way to introduce a thiol linker by Huisgen-type cycloaddition which can principally be utilized to create tumor targeting conjugates. In bioactivity tests, only those new ansamitocin derivatives showed strong antiproliferative activity that bear an ester side chain at C-3.
Collapse
Affiliation(s)
- Kirsten Harmrolfs
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Lena Mancuso
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Binia Drung
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Center for Infectious Research (HZI), Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| |
Collapse
|
11
|
|
12
|
Del Valle DJ, Krische MJ. Total synthesis of (+)-trienomycins A and F via C-C bond-forming hydrogenation and transfer hydrogenation. J Am Chem Soc 2013; 135:10986-9. [PMID: 23862627 PMCID: PMC3757526 DOI: 10.1021/ja4061273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The triene-containing C17-benzene ansamycins trienomycins A and F were prepared in 16 steps (longest linear sequence, LLS) and 28 total steps. The C11-C13 stereotriad was generated via enantioselective Ru-catalyzed alcohol CH syn crotylation followed by chelation-controlled carbonyl dienylation. Enantioselective Rh-catalyzed acetylene-aldehyde reductive coupling mediated by gaseous H2 was used to form a diene that ultimately was subjected to diene-diene ring closing metathesis to form the macrocycle. The present approach is 14 steps shorter (LLS) than the prior syntheses of trienomycins A and F, and 8 steps shorter than any prior synthesis of a triene-containing C17-benzene ansamycin.
Collapse
Affiliation(s)
- David J Del Valle
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
13
|
Yang YH, Fu XL, Li LQ, Zeng Y, Li CY, He YN, Zhao PJ. Naphthomycins L-N, ansamycin antibiotics from Streptomyces sp. CS. JOURNAL OF NATURAL PRODUCTS 2012; 75:1409-1413. [PMID: 22742732 DOI: 10.1021/np300109s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previous analyses of the naphthomycin biosynthetic gene cluster and a comparison with known naphthomycin-type products from Streptomyces sp. CS have suggested that new products can be found from this strain. In this study, screening by LC-MS of Streptomyces sp. CS products formed under different culture conditions revealed several unknown peaks in the product spectra of extracts derived from oatmeal medium cultures. Three new naphthomycins, naphthomycins L (1), M (2), and N (3), and the known naphthomycins A (4), E (5), and D (6) were obtained. The structures were elucidated using spectroscopic data from 1D and 2D NMR and HRESIMS experiments.
Collapse
Affiliation(s)
- Yin-He Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Wang X, Porco JA. Synthesis of the Tetracyclic Core of the Tetrapetalones through Transannular Oxidative [4+3] Cyclization. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200500247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Wang X, Porco JA. Synthesis of the Tetracyclic Core of the Tetrapetalones through Transannular Oxidative [4+3] Cyclization. Angew Chem Int Ed Engl 2005; 44:3067-71. [PMID: 15832389 DOI: 10.1002/anie.200500247] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiang Wang
- Department of Chemistry and Center for Chemical Methodology and Library Development, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
17
|
Abstract
Kendomycin, also known as (-)-TAN 2162, is a novel polyketide-derived ansamycin isolated from Streptomyces sp., which exhibits potent antagonist and agonist activities at the endothelin and calcitonin receptors, respectively. This bacterial metabolite also possesses a strong antibiotic activity against a range of gram-positive and -negative bacteria and cytostatic effects on the growth of human cancer cell lines. When a novel macroglycosidation reaction is employed as the key step, the first enantioselective total synthesis of kendomycin has been accomplished. A Friedel-Crafts-type ring closure of the acyclic precursor containing tetrahydropyran and benzofuran moieties produces the macrocycle as a single stereoisomer in good yield, thus establishing the aryl C-glycosidic linkage of the ansa core. This reaction requires a phenolic glycosyl acceptor and appears to proceed through a rapid O-glycosidation followed by a slow rearrangement to an aryl C-glycoside. The requisite secomacrocycle is prepared by the Pd(0)-catalyzed B-alkyl Suzuki-Miyaura cross-coupling of two subunits, which in turn can be expeditiously assembled from readily available building blocks in a modular fashion.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Chemistry, Princeton University, Princeton, NJ 08544-1009, USA
| | | | | |
Collapse
|
18
|
Lemarchand A, Bach T. Synthesis of a para-quinone macrolactam related to geldanamycin by ring closing metathesis. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.06.147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|