1
|
Tricostatin A-treated round spermatid enhances preimplantation embryo developmental competency following round spermatid injection in mice. ZYGOTE 2021; 30:373-379. [PMID: 34823620 DOI: 10.1017/s0967199421000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been documented that the inefficacy of round spermatid injection (ROSI) might be caused by abnormal epigenetic modifications. Therefore, this study aimed to evaluate the effect of trichostatin A (TSA) as an epigenetic modifier of preimplantation embryo development in activated ROSI oocytes. Matured oocytes were collected from superovulated female mice. Testes were placed in human tubal fluid medium and masses were then cut into small pieces to disperse spermatogenic cells. Round spermatids were treated with TSA and subsequently injected into oocytes. The expression level of the development-related genes including Oct4, Sox2, Nanog, Dnmt and Hdac transcripts were evaluated using qRT-PCR. Immunohistochemistry was performed to confirm the presence of Oct-4 protein at the blastocyst stage. There was no statistically significant difference in fertilization rate following ROSI/+TSA compared with the non-treated ROSI and intracytoplasmic sperm injection (ICSI) groups. Importantly, TSA treatment increased blastocyst formation from 38% in non-treated ROSI to 68%. The relative expression level of developmentally related genes increased and Dnmt transcripts decreased in ROSI/+TSA-derived embryos, similar to the expression levels observed in the ICSI-derived embryos. In conclusion, our results indicate that spermatid treatment with TSA prior to ROSI would increase the success rate of development to the blastocyst stage and proportion of pluripotent cells.
Collapse
|
2
|
Tocci A. The unknown human trophectoderm: implication for biopsy at the blastocyst stage. J Assist Reprod Genet 2020; 37:2699-2711. [PMID: 32892265 DOI: 10.1007/s10815-020-01925-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022] Open
Abstract
Trophectoderm biopsy is increasingly performed for pre-implantation genetic testing of aneuploidies and considered a safe procedure on short-term clinical outcome, without strong assessment of long-term consequences. Poor biological information on human trophectoderm is available due to ethical restrictions. Therefore, most studies have been conducted in vitro (choriocarcinoma cell lines, embryonic and pluripotent stem cells) and on murine models that nevertheless poorly reflect the human counterpart. Polarization, compaction, and blastomere differentiation (e.g., the basis to ascertain trophectoderm origin) are poorly known in humans. In addition, the trophectoderm function is poorly known from a biological point of view, although a panoply of questionable and controversial microarray studies suggest that important genes overexpressed in trophectoderm are involved in pluripotency, metabolism, cell cycle, endocrine function, and implantation. The intercellular communication system between the trophectoderm cells and the inner cell mass, modulated by cell junctions and filopodia in the murine model, is obscure in humans. For the purpose of this paper, data mainly on primary cells from human and murine embryos has been reviewed. This review suggests that the trophectoderm origin and functions have been insufficiently ascertained in humans so far. Therefore, trophectoderm biopsy should be considered an experimental procedure to be undertaken only under approved rigorous experimental protocols in academic contexts.
Collapse
Affiliation(s)
- Angelo Tocci
- Reproductive Medicine Unit, Gruppo Donnamed, Via Giuseppe Silla 12, Rome, Italy.
| |
Collapse
|
3
|
Canon E, Jouneau L, Blachère T, Peynot N, Daniel N, Boulanger L, Maulny L, Archilla C, Voisin S, Jouneau A, Godet M, Duranthon V. Progressive methylation of POU5F1 regulatory regions during blastocyst development. Reproduction 2018; 156:145-161. [PMID: 29866767 DOI: 10.1530/rep-17-0689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/01/2018] [Indexed: 01/14/2023]
Abstract
The POU5F1 gene encodes one of the 'core' transcription factors necessary to establish and maintain pluripotency in mammals. Its function depends on its precise level of expression, so its transcription has to be tightly regulated. To date, few conserved functional elements have been identified in its 5' regulatory region: a distal and a proximal enhancer, and a minimal promoter, epigenetic modifications of which interfere with POU5F1 expression and function in in vitro-derived cell lines. Also, its permanent inactivation in differentiated cells depends on de novo methylation of its promoter. However, little is known about the epigenetic regulation of POU5F1 expression in the embryo itself. We used the rabbit blastocyst as a model to analyze the methylation dynamics of the POU5F1 5' upstream region, relative to its regulated expression in different compartments of the blastocyst over a 2-day period of development. We evidenced progressive methylation of the 5' regulatory region and the first exon accompanying differentiation and the gradual repression of POU5F1 Methylation started in the early trophectoderm before complete transcriptional inactivation. Interestingly, the distal enhancer, which is known to be active in naïve pluripotent cells only, retained a very low level of methylation in primed pluripotent epiblasts and remained less methylated in differentiated compartments than the proximal enhancer. This detailed study identified CpGs with the greatest variations in methylation, as well as groups of CpGs showing a highly correlated behavior, during differentiation. Moreover, our findings evidenced few CpGs with very specific behavior during this period of development.
Collapse
Affiliation(s)
- E Canon
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Jouneau
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - T Blachère
- Univ LyonUniversité Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - N Peynot
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - N Daniel
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Boulanger
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Maulny
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - C Archilla
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - S Voisin
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - A Jouneau
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - M Godet
- Univ LyonUniversité Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - V Duranthon
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| |
Collapse
|
4
|
Whitmill A, Liu Y, Timani KA, Niu Y, He JJ. Tip110 Deletion Impaired Embryonic and Stem Cell Development Involving Downregulation of Stem Cell Factors Nanog, Oct4, and Sox2. Stem Cells 2017; 35:1674-1686. [PMID: 28436127 DOI: 10.1002/stem.2631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
HIV-1 Tat-interacting protein of 110 kDa, Tip110, plays important roles in multiple biological processes. In this study, we aimed to characterize the function of Tip110 in embryonic development. Transgenic mice lacking expression of a functional Tip110 gene (Tip110-/- ) died post-implantation, and Tip110-/- embryos exhibited developmental arrest between 8.5 and 9.5 days post coitum. However, in vitro cultures of Tip110-/- embryos showed that Tip110 loss did not impair embryo growth from the zygote to the blastocyst. Extended in vitro cultures of Tip110-/- blastocysts showed that Tip110 loss impaired both blastocyst outgrowth and self-renewal and survival of blastocyst-derived embryonic stem cells. Microarray analysis of Tip110-/- embryonic stem cells revealed that Tip110 loss altered differentiation, pluripotency, and cycling of embryonic stem cells and was associated with downregulation of several major stem cell factors including Nanog, Oct4, and Sox2 through a complex network of signaling pathways. Taken together, these findings document for the first time the lethal effects of complete loss of Tip110 on mammalian embryonic development and suggest that Tip110 is an important regulator of not only embryonic development but also stem cell factors. Stem Cells 2017;35:1674-1686.
Collapse
Affiliation(s)
- Amanda Whitmill
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ying Liu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khalid Amine Timani
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yinghua Niu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
5
|
Gao L, Zhao M, Li P, Kong J, Liu Z, Chen Y, Huang R, Chu J, Quan J, Zeng R. Glycogen synthase kinase 3 (GSK3)-inhibitor SB216763 promotes the conversion of human umbilical cord mesenchymal stem cells into neural precursors in adherent culture. Hum Cell 2017; 30:11-22. [PMID: 27604750 DOI: 10.1007/s13577-016-0146-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
Abstract
The ability to generate neural progenitor cells from human umbilical cord mesenchymal stem cells (hUC-MSCs) has provided an option to treat neurodegenerative diseases. To establish a method for this purpose, we characterized the early neural markers of hUC-MSCs-derived cells under different conditions. We found that neither the elimination of signals for alternative fate nor N2 supplement was sufficient to differentiate hUC-MSCs into neural precursor cells, but the GSK3 inhibitor SB216763 could promote an efficient neural commitment of hUC-MSCs. The results indicated that Wnt/β-catenin might play an important role during the early neural differentiation of hUC-MSCs. Here, we report a method for hUC-MSCs to commit efficiently into a neural fate within a short period of time. This protocol provides an efficient method for hUC-MSCs-based neural regeneration.
Collapse
Affiliation(s)
- Liyang Gao
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Mingyan Zhao
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Peng Li
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Junchao Kong
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhijun Liu
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yonghua Chen
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rui Huang
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rong Zeng
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
6
|
Cheng X, Xu S, Song C, He L, Lian X, Liu Y, Wei J, Pang L, Wang S. Roles of ERα during mouse trophectoderm lineage differentiation: revealed by antagonist and agonist of ERα. Dev Growth Differ 2016; 58:327-38. [PMID: 27037955 DOI: 10.1111/dgd.12276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/04/2016] [Accepted: 02/20/2016] [Indexed: 11/26/2022]
Abstract
During mouse early embryogenesis, blastomeres increase in number by the morula stage. Among them, the outer cells are polarized and differentiated into trophectoderm (TE), while the inner cells remain unpolarized and give rise to inner cell mass (ICM). TE provides an important liquid environment for ICM development. In spite of extensive research, the molecular mechanisms underlying TE formation are still obscure. In order to investigate the roles of estrogen receptor α (ERα) in this course, mouse 8-cell embryos were collected and cultured in media containing ERα specific antagonist MPP and/or agonist PPT. The results indicated that MPP treatment inhibits blastocyst formation in a dose-dependent manner, while PPT, at proper concentration, promotes the cavitation ratio of mouse embryos. Immunofluorescence staining results showed that MPP significantly decreased the nuclear expression of CDX2 in morula, but no significant changes of OCT4 were observed. Moreover, after MPP treatment, the expression levels of the genes related to TE specification, Tead4, Gata3 and Cdx2, were significantly reduced. Overall, these results indicated that ERα might affect mouse embryo cavitation by regulating TE lineage differentiation.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Songhua Xu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Chanchan Song
- Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Lin He
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Xiuli Lian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yue Liu
- Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Jianen Wei
- Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Lili Pang
- Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Shie Wang
- Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
7
|
Bou G, Liu S, Guo J, Zhao Y, Sun M, Xue B, Wang J, Wei Y, Kong Q, Liu Z. Cdx2 represses Oct4 function via inducing its proteasome-dependent degradation in early porcine embryos. Dev Biol 2015; 410:36-44. [PMID: 26708097 DOI: 10.1016/j.ydbio.2015.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/25/2022]
Abstract
Reciprocal repression of inner cell mass specific factor OCT4 and trophectoderm specific factor CDX2 promotes mouse first lineage segregation. Studies in mouse embryonic stem (ES) cells revealed that they bind to each other's regulatory regions to reciprocally suppress transcription, additionally they form protein complex for mutual antagonism. However, so far the molecular interaction of Oct4 and Cdx2 in other mammal's early embryo is not yet investigated. Here, over-expression of Cdx2 in early porcine embryo showed CDX2 represses Oct4 through neither the transcriptional repression nor forming repressive complex, but promoting OCT4 nuclear export and proteasomal degradation. The results showed novel molecular regulation of CDX2 on Oct4, and provided important clues for clarifying the mechanism of interaction between CDX2 and Oct4 in embryo of mammals other than mouse.
Collapse
Affiliation(s)
- Gerelchimeg Bou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shichao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Guo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yueming Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingju Sun
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Binghua Xue
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanchang Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingran Kong
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Peter Y, Weingarten M, Akhavan N, Hanau J. A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Kondratiuk I, Bazydlo K, Maleszewski M, Szczepanska K. Delay of polarization event increases the number of Cdx2-positive blastomeres in mouse embryo. Dev Biol 2012; 368:54-62. [PMID: 22609553 DOI: 10.1016/j.ydbio.2012.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 11/29/2022]
Abstract
During preimplantation mouse embryo development expression of Cdx2 is induced in outer cells, which are the trophectoderm (TE) precursors. The mechanism of Cdx2 upregulation in these cells remains unclear. However, it has been suggested that the cell position and polarization may play a crucial role in this process. In order to elucidate the role of these two parameters in the formation of TE we analyzed the expression pattern of Cdx2 in the embryos in which either the position of cells and the time of polarization or only the position of cells was experimentally disrupted. Such embryos developed from the blastomeres that were isolated from 8-cell embryos either before or after the compaction, i.e. before or after the cell polarization took place. We found that in the embryos developed from polar blastomeres originated from the 8-cell compacted embryo, the experimentally imposed outer position was not sufficient to induce the Cdx2 in these blastomeres which in the intact embryo would form the inner cells. However, when the polarization at the 8-cell stage was disrupted, the embryos developed from such an unpolarized blastomeres showed the increased number of cells expressing Cdx2. We found that in such experimentally obtained embryos the polarization was delayed until the 16-cell stage. These results suggest that the main factor responsible for upregulation of Cdx2 expression in outer blastomeres, i.e. TE precursors, is their polarity.
Collapse
Affiliation(s)
- Ilona Kondratiuk
- Department of Embryology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | |
Collapse
|