1
|
Matharu NK, Yadav S, Kumar M, Mishra RK. Role of vertebrate GAGA associated factor (vGAF) in early development of zebrafish. Cells Dev 2021; 166:203682. [PMID: 33994355 DOI: 10.1016/j.cdev.2021.203682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Homeotic genes and their genomic organization show remarkable conservation across bilaterians. Consequently, the regulatory mechanisms, which control hox gene expression, are also highly conserved. The crucial presence of conserved GA rich motifs between Hox genes has been previously observed but what factor binds to these is still unknown. Previously we have reported that the vertebrate homologue of Drosophila Trl-GAF preferentially binds to GA rich regions in Evx2-hoxd13 intergenic region of vertebrate HoxD cluster. In this study, we show that the vertebrate-GAF (v-GAF) binds at known cis-regulatory elements in the HoxD complex of zebrafish and mouse. We further used morpholino based knockdown and CRISPR-cas9 knockout technique to deplete the v-GAF in zebrafish. We checked expression of the HoxD genes and found gain of the HoxD4 gene in GAF knockout embryos. Further, we partially rescued the morphological phenotypes in GAF depleted embryos by providing GAF mRNA. Our results show that GAF binds at intergenic regions of the HoxD complex and is important for maintaining the spatial domains of HoxD4 expression during embryonic development.
Collapse
Affiliation(s)
- Navneet K Matharu
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Sonu Yadav
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India
| | - Megha Kumar
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India.
| |
Collapse
|
2
|
Platais C, Hakami F, Darda L, Lambert DW, Morgan R, Hunter KD. The role of HOX genes in head and neck squamous cell carcinoma. J Oral Pathol Med 2015; 45:239-47. [PMID: 26661059 DOI: 10.1111/jop.12388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2015] [Indexed: 12/13/2022]
Abstract
Recent decades have witnessed the publication of numerous studies reporting alterations in the genome and transcriptome of head and neck squamous cell carcinoma (HNSCC). Currently, the utilisation of these alterations as biomarkers and targets for therapy is limited and new, useful molecular characteristics are being sought. Many of the published HNSCC gene expression profiles demonstrate alterations in the expression of HOX genes. These are a family of Homeobox-containing genes which are involved in developmental patterning and morphogenesis in the embryo, and which are often aberrantly expressed in cancer. The 39 HOX genes found in the human genome are arranged in four paralogous groups at different chromosomal loci. These control a wide range of cellular processes, including proliferation and migration, which are relevant in the context of cancer development. In this review article, we will outline the biology of HOX genes in relation to cancer and summarise the accumulating evidence for their role in the development of HNSCC and the possibility that they could be a therapeutic target in this malignancy. We will also identify areas where our current understanding is weak to focus future work and appraise the ongoing strategies for pharmacological intervention.
Collapse
Affiliation(s)
- Christopher Platais
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fahad Hakami
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City-WR, Jeddah, Saudi Arabia
| | - Lav Darda
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Daniel W Lambert
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Richard Morgan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Keith D Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK.,Department of Oral Pathology and Biology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Bednarz P, Wilczyński B. Supervised learning method for predicting chromatin boundary associated insulator elements. J Bioinform Comput Biol 2015; 12:1442006. [PMID: 25385081 DOI: 10.1142/s0219720014420062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In eukaryotic cells, the DNA material is densely packed inside the nucleus in the form of a DNA-protein complex structure called chromatin. Since the actual conformation of the chromatin fiber defines the possible regulatory interactions between genes and their regulatory elements, it is very important to understand the mechanisms governing folding of chromatin. In this paper, we show that supervised methods for predicting chromatin boundary elements are much more effective than the currently popular unsupervised methods. Using boundary locations from published Hi-C experiments and modEncode tracks as features, we can tell the insulator elements from randomly selected background sequences with great accuracy. In addition to accurate predictions of the training boundary elements, our classifiers make new predictions. Many of them correspond to the locations of known insulator elements. The key features used for predicting boundary elements do not depend on the prediction method. Because of its miniscule size, chromatin state cannot be measured directly, we need to rely on indirect measurements, such as ChIP-Seq and fill in the gaps with computational models. Our results show that currently, at least in the model organisms, where we have many measurements including ChIP-Seq and Hi-C, we can make accurate predictions of insulator positions.
Collapse
Affiliation(s)
- Paweł Bednarz
- Institute of Informatics, Warsaw University, Banacha 2, Warsaw 02-089, Poland
| | | |
Collapse
|
4
|
Cattenoz PB, Giangrande A. New insights in the clockwork mechanism regulating lineage specification: Lessons from the Drosophila nervous system. Dev Dyn 2014; 244:332-41. [PMID: 25399853 DOI: 10.1002/dvdy.24228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Powerful transcription factors called fate determinants induce robust differentiation programs in multipotent cells and trigger lineage specification. These factors guarantee the differentiation of specific tissues/organs/cells at the right place and the right moment to form a fully functional organism. Fate determinants are activated by temporal, positional, epigenetic, and post-transcriptional cues, hence integrating complex and dynamic developmental networks. In turn, they activate specific transcriptional/epigenetic programs that secure novel molecular landscapes. RESULTS In this review, we use the Drosophila Gcm glial determinant as a model to discuss the mechanisms that allow lineage specification in the nervous system. The dynamic regulation of Gcm via interlocked loops has recently emerged as a key event in the establishment of stable identity. Gcm induces gliogenesis while triggering its own extinction, thus preventing the appearance of metastable states and neoplastic processes. CONCLUSIONS Using simple animal models that allow in vivo manipulations provides a key tool to disentangle the complex regulation of cell fate determinants.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
5
|
Homeotic gene regulation: a paradigm for epigenetic mechanisms underlying organismal development. Subcell Biochem 2014; 61:177-207. [PMID: 23150252 DOI: 10.1007/978-94-007-4525-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic genome into chromatin within the nucleus eventually dictates the cell type specific expression pattern of genes. This higher order of chromatin organization is established during development and dynamically maintained throughout the life span. Developmental mechanisms are conserved in bilaterians and hence they have body plan in common, which is achieved by regulatory networks controlling cell type specific gene expression. Homeotic genes are conserved in metazoans and are crucial for animal development as they specify cell type identity along the anterior-posterior body axis. Hox genes are the best studied in the context of epigenetic regulation that has led to significant understanding of the organismal development. Epigenome specific regulation is brought about by conserved chromatin modulating factors like PcG/trxG proteins during development and differentiation. Here we discuss the conserved epigenetic mechanisms relevant to homeotic gene regulation in metazoans.
Collapse
|
6
|
GATA simple sequence repeats function as enhancer blocker boundaries. Nat Commun 2013; 4:1844. [PMID: 23673629 DOI: 10.1038/ncomms2872] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 04/11/2013] [Indexed: 11/09/2022] Open
Abstract
Simple sequence repeats (SSRs) account for ~3% of the human genome, but their functional significance still remains unclear. One of the prominent SSRs the GATA tetranucleotide repeat has preferentially accumulated in complex organisms. GATA repeats are particularly enriched on the human Y chromosome, and their non-random distribution and exclusive association with genes expressed during early development indicate their role in coordinated gene regulation. Here we show that GATA repeats have enhancer blocker activity in Drosophila and human cells. This enhancer blocker activity is seen in transgenic as well as native context of the enhancers at various developmental stages. These findings ascribe functional significance to SSRs and offer an explanation as to why SSRs, especially GATA, may have accumulated in complex organisms.
Collapse
|
7
|
Riviere G, Wu GC, Fellous A, Goux D, Sourdaine P, Favrel P. DNA methylation is crucial for the early development in the Oyster C. gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:739-53. [PMID: 23877618 DOI: 10.1007/s10126-013-9523-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/04/2013] [Indexed: 05/02/2023]
Abstract
In vertebrates, epigenetic modifications influence gene transcription, and an appropriate DNA methylation is critical in development. Indeed, a precise temporal and spatial pattern of early gene expression is mandatory for a normal embryogenesis. However, such a regulation and its underlying mechanisms remain poorly understood in more distant organisms such as Lophotrochozoa. Thus, despite DNA in the oyster genome being methylated, the role of DNA methylation in development is unknown. To clarify this point, oyster genomic DNA was examined during early embryogenesis and found differentially methylated. Reverse transcriptase quantitative polymerase chain reaction indicated stage-specific levels of transcripts encoding DNA-methyltransferase (DNMT) and methyl-binding domain proteins. In addition, as highlighted by electronic microscopy and immunohistochemistry, the DNMT inhibitor 5-aza-cytidine induced alterations in the quantity and the localisation of methylated DNA and severe dose-dependent development alterations and was lethal after zygotic genome reinitiation. Furthermore, methyl-DNA-immunoprecipitation-quantitative polymerase chain reaction revealed that the transcription level of most of the homeobox gene orthologues examined, but not of the other early genes investigated, was inversely correlated with their specific DNA methylation. Altogether, our results demonstrate that DNA methylation influences gene expression in Crassostrea gigas and is critical for oyster development, possibly by specifically controlling the transcription level of homeobox orthologues. These findings provide evidence for the importance of epigenetic regulation of development in Lophotrochozoans and bring new insights into the early life of C. gigas, one of the most important aquaculture resources worldwide.
Collapse
Affiliation(s)
- Guillaume Riviere
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA) Esplanade de la paix, Université de Caen Basse-Normandie, 14032, Caen Cedex, France,
| | | | | | | | | | | |
Collapse
|
8
|
Vasanthi D, Nagabhushan A, Matharu NK, Mishra RK. A functionally conserved Polycomb response element from mouse HoxD complex responds to heterochromatin factors. Sci Rep 2013; 3:3011. [PMID: 24145990 PMCID: PMC3804862 DOI: 10.1038/srep03011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022] Open
Abstract
Anterior-posterior body axis in all bilaterians is determined by the Hox gene clusters that are activated in a spatio-temporal order. This expression pattern of Hox genes is established and maintained by regulatory mechanisms that involve higher order chromatin structure and Polycomb group (PcG) and trithorax group (trxG) proteins. We identified earlier a Polycomb response element (PRE) in the mouse HoxD complex that is functionally conserved in flies. We analyzed the molecular and genetic interactions of mouse PRE using Drosophilamelanogaster and vertebrate cell culture as the model systems. We demonstrate that the repressive activity of this PRE depends on PcG/trxG genes as well as the heterochromatin components. Our findings indicate that a wide range of factors interact with the HoxD PRE that can contribute to establishing the expression pattern of homeotic genes in the complex early during development and maintain that pattern at subsequent stages.
Collapse
Affiliation(s)
- Dasari Vasanthi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial research, Uppal Road, Hyderabad 500007, India
| | | | | | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To evaluate recent developments in nutritional epigenomics and related challenges, opportunities, and implications for cancer control and prevention. RECENT FINDINGS Cancer is one of the leading causes of death worldwide, and understanding the factors that contribute to cancer development may facilitate the development of strategies for cancer prevention and control. Cancer development involves genetic and epigenetic alterations. Genetic marks are permanent, whereas epigenetic marks are dynamic, change with age, and are influenced by the external environment. Thus, epigenetics provides a link between the environment, diet, and cancer development. Proper food selection is imperative for better health and to avoid cancer and other diseases. Nutrients either contribute directly to cancer prevention or support the repair of genomic and epigenomic damage caused by exposure to cancer-causing agents such as toxins, free radicals, radiation, and infectious agents. Nutritional epigenomics provides an opportunity for cancer prevention because selected nutrients have the potential to reverse cancer-associated epigenetic marks in different tumor types. A number of natural foods and their bioactive components have been shown to have methylation-inhibitory and deacetylation-inhibitory properties. SUMMARY Natural foods and bioactive food components have characteristics and functions that are similar to epigenetic inhibitors and therefore have potential in cancer control and prevention.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-7324, USA.
| |
Collapse
|
10
|
Marconett CN, Zhou B, Rieger ME, Selamat SA, Dubourd M, Fang X, Lynch SK, Stueve TR, Siegmund KD, Berman BP, Borok Z, Laird-Offringa IA. Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation. PLoS Genet 2013; 9:e1003513. [PMID: 23818859 PMCID: PMC3688557 DOI: 10.1371/journal.pgen.1003513] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/04/2013] [Indexed: 12/16/2022] Open
Abstract
Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. Understanding the role of epigenetic control of gene expression is critical to the full description of biological processes, such as development and regeneration. Herein we utilize the differentiation of cells from the distal lung to gain insight into the correlation between the epigenetic landscape, molecular signaling events, and eventual changes in transcription and phenotype. We found that by integrating epigenetic profiling with whole genome transcriptomic data we were able to determine which molecular signaling events were activated and repressed during adult alveolar epithelial cell differentiation, and we identified epigenetic changes that contributed to these changes. Furthermore, we validated the role of one of these predicted but not previously identified pathways, retinoid X receptor signaling, in this process.
Collapse
Affiliation(s)
- Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Beiyun Zhou
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Megan E. Rieger
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suhaida A. Selamat
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mickael Dubourd
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine/Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Sean K. Lynch
- Department of Product Engineering, Division of Manufacturing Operations, MAXIM Integrated Products, Sunnyvale, California, United States of America
| | - Theresa Ryan Stueve
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly D. Siegmund
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Benjamin P. Berman
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- University of Southern California Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zea Borok
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ite A. Laird-Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Srivastava S, Puri D, Garapati HS, Dhawan J, Mishra RK. Vertebrate GAGA factor associated insulator elements demarcate homeotic genes in the HOX clusters. Epigenetics Chromatin 2013; 6:8. [PMID: 23607454 PMCID: PMC3639804 DOI: 10.1186/1756-8935-6-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background Hox genes impart segment identity to body structures along the anterior-posterior axis and are crucial for the proper development of all organisms. Multiple regulatory elements, best defined in Drosophila melanogaster, ensure that Hox expression patterns follow the spatial and temporal colinearity reflected in their tight genomic organization. However, the precise mechanisms that regulate colinear patterns of Hox gene expression remain unclear, especially in higher vertebrates where it is not fully determined how the distinct activation domains of the tightly clustered Hox genes are defined independently of each other. Here, we report the identification of a large number of novel cis-elements at mammalian Hox clusters that can help in regulating their precise expression pattern. Results We have identified DNA elements at all four murine Hox clusters that show poor association with histone H3 in chromatin immunoprecipitation (ChIP)-chip tiling arrays. The majority of these elements lie in the intergenic regions segregating adjacent Hox genes; we demonstrate that they possess efficient enhancer-blocking activity in mammalian cells. Further, we find that these histone-free intergenic regions bear GA repeat motifs and associate with the vertebrate homolog of the GAGA binding boundary factor. This suggests that they can act as GAGA factor-dependent chromatin boundaries that create independent domains, insulating each Hox gene from the influence of neighboring regulatory elements. Conclusions Our results reveal a large number of potential regulatory elements throughout the murine Hox clusters. We further demarcate the precise location of several novel cis-elements bearing chromatin boundary activity that appear to segregate successive Hox genes. This reflects a pattern reminiscent of the organization of homeotic genes in Drosophila, where such regulatory elements have been characterized. Our findings thus provide new insights into the regulatory processes and evolutionarily conserved epigenetic mechanisms that control homeotic gene expression.
Collapse
Affiliation(s)
- Surabhi Srivastava
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, India.
| | | | | | | | | |
Collapse
|
12
|
Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys. SUSTAINABILITY 2013. [DOI: 10.3390/su5010163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Abstract
Breast cancer incidence is rising worldwide with an increase in aggressive neoplasias in young women. Possible factors involved include lifestyle changes, notably diet that is known to make an impact on gene transcription. However, among dietary factors, there is sufficient support for only greater body weight and alcohol consumption whereas numerous studies revealing an impact of specific diets and nutrients on breast cancer risk show conflicting results. Also, little information is available from middle- and low-income countries. The diversity of gene expression profiles found in breast cancers indicates that transcription control is critical for the outcome of the disease. This suggests the need for studies on nutrients that affect epigenetic mechanisms of transcription, such as DNA methylation and post-translational modifications of histones. In the present review, a new examination of the relationship between diet and breast cancer based on transcription control is proposed in light of epidemiological, animal and clinical studies. The mechanisms underlying the impact of diets on breast cancer development and factors that impede reaching clear conclusions are discussed. Understanding the interaction between nutrition and epigenetics (gene expression control via chromatin structure) is critical in light of the influence of diet during early stages of mammary gland development on breast cancer risk, suggesting a persistent effect on gene expression as shown by the influence of certain nutrients on DNA methylation. Successful development of breast cancer prevention strategies will require appropriate models, identification of biological markers for rapid assessment of preventive interventions, and coordinated worldwide research to discern the effects of diet.
Collapse
|
14
|
McDonald P, Maizi BM, Arking R. Chemical regulation of mid- and late-life longevities in Drosophila. Exp Gerontol 2012; 48:240-9. [PMID: 23044027 DOI: 10.1016/j.exger.2012.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/16/2023]
Abstract
We tested the effects of a Class I histone deacetylase inhibitor (HDAcI), sodium butyrate (NaBu), on the longevity of normal- and long-lived strains of Drosophila melanogaster. This HDAcI has mixed effects in the normal-lived Ra strain as it decreases mortality rates and increases longevity when administered in the transition or senescent spans, but decreases longevity when administered over the health span only or over the entire adult lifespan. Mostly deleterious effects are noted when administered by either method to the long-lived La strain. Thus "mid- to late-life" drugs may have different stage-specific effects on different genomes of a model organism. A different HDAcI (suberoylanilide hydroxamic acid, SAHA) administered to the normal-lived strain showed similar late-life extending effects, suggesting that this is not an isolated effect of one drug. These data also show that the use of an HDAcI can significantly alter the mortality rate of the senescent span by decreasing its vulnerability, or short-term risk of death, in a manner similar to that of dietary restriction. These studies may help to shed light on the frailty syndrome affecting some aging organisms.
Collapse
Affiliation(s)
- Philip McDonald
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States.
| | | | | |
Collapse
|
15
|
Champagne FA. Epigenetics and developmental plasticity across species. Dev Psychobiol 2012; 55:33-41. [PMID: 22711291 DOI: 10.1002/dev.21036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
Abstract
Plasticity is a typical feature of development and can lead to divergent phenotypes. There is increasing evidence that epigenetic mechanisms, such as DNA methylation, are present across species, are modifiable by the environment, and are involved in developmental plasticity. Thus, in the context of the concept of developmental homology, epigenetic mechanisms may serve to create a process homology between species by providing a common molecular pathway through which environmental experiences shape development, ultimately leading to phenotypic diversity. This article will highlight evidence derived from across-species investigations of epigenetics, development, and plasticity which may contribute to our understanding of the homology that exists between species and between ancestors and descendants.
Collapse
Affiliation(s)
- Frances A Champagne
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA.
| |
Collapse
|
16
|
Groszmann M, Greaves IK, Albert N, Fujimoto R, Helliwell CA, Dennis ES, Peacock WJ. Epigenetics in plants-vernalisation and hybrid vigour. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:427-37. [PMID: 21459171 DOI: 10.1016/j.bbagrm.2011.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/26/2022]
Abstract
In this review we have analysed two major biological systems involving epigenetic control of gene activity. In the first system we demonstrate the interplay between genetic and epigenetic controls over the transcriptional activity of FLC, a major repressor of flowering in Arabidopsis. FLC is down-regulated by low temperature treatment (vernalisation) releasing the repressor effect on flowering. We discuss the mechanisms of the reduced transcription and the memory of the vernalisation treatment through vegetative development. We also discuss the resetting of the repressed activity level of the FLC gene, following vernalisation, to the default high activity level and show it occurs during both male and female gametogenesis but with different timing in each. In the second part of the review discussed the complex multigenic system which is responsible for the patterns of gene activity which bring about hybrid vigour in crosses between genetically similar but epigenetically distinct parents. The epigenetic systems that we have identified as contributing to the heterotic phenotype are the 24nt siRNAs and their effects on RNA dependent DNA methylation (RdDM) at the target loci leading to changed expression levels. We conclude that it is likely that epigenetic controls are involved in expression systems in many aspects of plant development and plant function.
Collapse
Affiliation(s)
- Michael Groszmann
- Commonwealth Scientific and Industrial Research Organisation, Plant Industry, Canberra ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Chromosomal organization at the level of gene complexes. Cell Mol Life Sci 2010; 68:977-90. [PMID: 21080026 PMCID: PMC3043239 DOI: 10.1007/s00018-010-0585-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/17/2010] [Accepted: 10/26/2010] [Indexed: 01/10/2023]
Abstract
Metazoan genomes primarily consist of non-coding DNA in comparison to coding regions. Non-coding fraction of the genome contains cis-regulatory elements, which ensure that the genetic code is read properly at the right time and space during development. Regulatory elements and their target genes define functional landscapes within the genome, and some developmentally important genes evolve by keeping the genes involved in specification of common organs/tissues in clusters and are termed gene complex. The clustering of genes involved in a common function may help in robust spatio-temporal gene expression. Gene complexes are often found to be evolutionarily conserved, and the classic example is the hox complex. The evolutionary constraints seen among gene complexes provide an ideal model system to understand cis and trans-regulation of gene function. This review will discuss the various characteristics of gene regulatory modules found within gene complexes and how they can be characterized.
Collapse
|
18
|
|
19
|
Huang J, Wang H, Xie X, Gao H, Guo G. Developmental changes in DNA methylation of pollen mother cells of David lily during meiotic prophase I. Mol Biol 2010. [DOI: 10.1134/s0026893310050110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Carnero A, LLeonart ME. Epigenetic mechanisms in senescence, immortalisation and cancer. Biol Rev Camb Philos Soc 2010; 86:443-55. [DOI: 10.1111/j.1469-185x.2010.00154.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Burridge KA, Friedman MH. Environment and vascular bed origin influence differences in endothelial transcriptional profiles of coronary and iliac arteries. Am J Physiol Heart Circ Physiol 2010; 299:H837-46. [PMID: 20543076 PMCID: PMC2944485 DOI: 10.1152/ajpheart.00002.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/10/2010] [Indexed: 12/20/2022]
Abstract
Atherosclerotic plaques tend to form in the major arteries at certain predictable locations. As these arteries vary in atherosusceptibility, interarterial differences in endothelial cell biology are of considerable interest. To explore the origin of differences observed between typical atheroprone and atheroresistant arteries, we used DNA microarrays to compare gene expression profiles of harvested porcine coronary (CECs) and iliac artery endothelial cells (IECs) grown in static culture out to passage 4. Fewer differences were observed between the transcriptional profiles of CECs and IECs in culture compared with in vivo, suggesting that most differences observed in vivo were due to distinct environmental cues in the two arteries. One-class significance of microarrays revealed that most in vivo interarterial differences disappeared in culture, as fold differences after passaging were not significant for 85% of genes identified as differentially expressed in vivo at 5% false discovery rate. However, the three homeobox genes, HOXA9, HOXA10, and HOXD3, remained underexpressed in coronary endothelium for all passages by at least nine-, eight-, and twofold, respectively. Continued differential expression, despite removal from the in vivo environment, suggests that primarily heritable or epigenetic mechanism(s) influences transcription of these three genes. Quantitative real-time polymerase chain reaction confirmed expression ratios for seven genes associated with atherogenesis and over- or underexpressed by threefold in CECs relative to IECs. The present study provides evidence that both local environment and vascular bed origin modulate gene expression in arterial endothelium. The transcriptional differences observed here may provide new insights into pathways responsible for coronary artery susceptibility.
Collapse
Affiliation(s)
- Kelley A Burridge
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
22
|
Barber BA, Rastegar M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat 2010; 192:261-74. [PMID: 20739155 DOI: 10.1016/j.aanat.2010.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/10/2023]
Abstract
The process of mammalian development is established through multiple complex molecular pathways acting in harmony at the genomic, proteomic, and epigenomic levels. The outcome is profoundly influenced by the role of epigenetics through transcriptional regulation of key developmental genes. Epigenetics refer to changes in gene expression that are inherited through mechanisms other than the underlying DNA sequence, which control cellular morphology and identity. It is currently well accepted that epigenetics play central roles in regulating mammalian development and cellular differentiation by dictating cell fate decisions via regulation of specific genes. Among these genes are the Hox family members, which are master regulators of embryonic development and stem cell differentiation and their mis-regulation leads to human disease and cancer. The Hox gene discovery led to the establishment of a fundamental role for basic genetics in development. Hox genes encode for highly conserved transcription factors from flies to humans that organize the anterior-posterior body axis during embryogenesis. Hox gene expression during development is tightly regulated in a spatiotemporal manner, partly by chromatin structure and epigenetic modifications. Here, we review the impact of different epigenetic mechanisms in development and stem cell differentiation with a clear focus on the regulation of Hox genes.
Collapse
Affiliation(s)
- Benjamin A Barber
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg MB R3E 0J9, Canada
| | | |
Collapse
|
23
|
Archer T, Beninger RJ, Palomo T, Kostrzewa RM. Epigenetics and biomarkers in the staging of neuropsychiatric disorders. Neurotox Res 2010; 18:347-66. [PMID: 20237880 DOI: 10.1007/s12640-010-9163-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 01/29/2010] [Accepted: 02/18/2010] [Indexed: 01/05/2023]
Abstract
Epigenetics, or alterations in the phenotype or gene expression due to mechanisms other than changes in the underlying DNA sequence, reflects the sensitivity and responsiveness of human and animal brains in constantly varying circumstances regulating gene expression profiles that define the biomarkers and present the ultimate phenotypical outcomes, such as cognition and emotion. Epigenetics is associated with functionally relevant alterations to the genome in such a fashion that under the particular conditions of early, adolescent, and adult life, environmental signals may activate intracellular pathways that remodel the "epigenome," triggering changes in gene expression and neural function. Thus, genetic influences in neuropsychiatric disorders that are subject to clinical staging, epigenetics in schizophrenia, epigenetic considerations in the expression of sensorimotor gating resulting from disease conditions, biomarkers of drug use and addiction, current notions on the role of dopamine in schizophrenia spectrum disorders, and the discrete interactions of biomarkers in persistent memory were to greater or lesser extents reflected upon. The relative contributions of endophenotypes and epistasis for mediating epigenetic phenomena and the outcomes as observed in the analysis of biomarkers appear to offer a multitude of interactive combinations to further complicate the labyrinthine machinations of diagnosis, intervention, and prognosis.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, 405 30, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
24
|
Bogdarina I, Haase A, Langley-Evans S, Clark AJL. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat. PLoS One 2010; 5:e9237. [PMID: 20169056 PMCID: PMC2821904 DOI: 10.1371/journal.pone.0009237] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 01/23/2010] [Indexed: 02/07/2023] Open
Abstract
Adverse events in pregnancy may 'programme' offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11beta-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence.
Collapse
Affiliation(s)
- Irina Bogdarina
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrea Haase
- Division of Nutritional Sciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Simon Langley-Evans
- Division of Nutritional Sciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Adrian J. L. Clark
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
25
|
[Polycomb group protein complexes]. YI CHUAN = HEREDITAS 2009; 31:977-81. [PMID: 19840918 DOI: 10.3724/sp.j.1005.2009.00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transcriptional repressors of the polycomb group (PcG) proteins regulate the targeted genes expression through chromatin modifications. They can be separated biochemically and functionally into two major core multiprotein complexes: PRC1 (Polycomb repressive complex 1) and PRC2 (Polycomb repressive complex 2). Studies revealed that PcG proteins were not only crucial for correct execution of developmental programs but also involved in the regulation of cell proliferation, differentiation, and tumorigenesis. This paper summarizes the components of PcG proteins complexes, its silencing mechanisms and biological functions, and discusses the study of PcG proteins in future.
Collapse
|
26
|
Bogdarina IG, King PJ, Clark AJL. Characterization of the angiotensin (AT1b) receptor promoter and its regulation by glucocorticoids. J Mol Endocrinol 2009; 43:73-80. [PMID: 19411305 PMCID: PMC2709481 DOI: 10.1677/jme-09-0036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Angiotensin II acts through two pharmacologically distinct receptors known as AT1 and AT2. Duplication of the AT1 receptor in rodents into At1a and b subtypes allows tissue-specific expression of the AT1b in adrenal and pituitary tissue. Adrenal expression of this receptor is increased in the offspring of rat mothers exposed to a low-protein diet and this is associated with the undermethylation of its promoter. This phenomenon is blocked by the inhibition of maternal glucocorticoid synthesis by metyrapone. We have mapped the transcriptional start site of the promoter and demonstrated that a 1.2 kbp fragment upsteam of this site is effective in driving luciferase expression in mouse Y1 cells. A combination of bioinformatic analysis, electrophoretic mobility shift analysis (EMSA), and mutagenesis studies demonstrates: i) the presence of a putative TATA box and CAAT box; ii) the presence of three Sp1 response elements, capable of binding SP1; mutation of any pair of these sites effectively disables this promoter; iii) the presence of four potential glucocorticoid response elements which each bind glucocorticoid receptor in EMSA, although only two confer dexamethasone inhibition on the promoter; iv) the presence of two AP1 sites. Mutagenesis of the distal AP1 site greatly diminishes promoter function but this is also associated with the loss of dexamethasone inhibition. These studies will facilitate an understanding of the mechanisms by which fetal programming leads to long term alterations in gene expression and the development of adult disease.
Collapse
|
27
|
Kumar RP. Polycomb group proteins: remembering how to catch chromatin during replication. Bioessays 2009; 31:822-5. [PMID: 19554611 DOI: 10.1002/bies.200900059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polycomb group (PcG) proteins maintain the expression state of PcG-responsive genes during development of multicellular organisms. Recent observations suggest that "the H3K27me3 modification" acts to maintain Polycomb repressive complex (PRC) 2, the enzyme that creates this modification, on replicating chromatin. This could in turn promote propagation of H3K27me3 on newly replicated daughter chromatin, and promote recruitment of PRC1. Other work suggests that PRC1-class complexes can be maintained on replicating chromatin, at least in vitro, independently of H3K27me3. Thus, histone modifications and PcG proteins themselves may both be maintained through replication.
Collapse
|
28
|
Meagher RB, Kandasamy MK, McKinney EC, Roy E. Chapter 5. Nuclear actin-related proteins in epigenetic control. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:157-215. [PMID: 19766970 PMCID: PMC2800988 DOI: 10.1016/s1937-6448(09)77005-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The nuclear actin-related proteins (ARPs) share overall structure and low-level sequence homology with conventional actin. They are indispensable subunits of macromolecular machines that control chromatin remodeling and modification leading to dynamic changes in DNA structure, transcription, and DNA repair. Cellular, genetic, and biochemical studies suggest that the nuclear ARPs are essential to the epigenetic control of the cell cycle and cell proliferation in all eukaryotes, while in plants and animals they also exert epigenetic controls over most stages of multicellular development including organ initiation, the switch to reproductive development, and senescence and programmed cell death. A theme emerging from plants and animals is that in addition to their role in controlling the general compaction of DNA and gene silencing, isoforms of nuclear ARP-containing chromatin complexes have evolved to exert dynamic epigenetic control over gene expression and different phases of multicellular development. Herein, we explore this theme by examining nuclear ARP phylogeny, activities of ARP-containing chromatin remodeling complexes that lead to epigenetic control, expanding developmental roles assigned to several animal and plant ARP-containing complexes, the evidence that thousands of ARP complex isoforms may have evolved in concert with multicellular development, and ARPs in human disease.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|