1
|
Cushnie TPT, Luang-In V, Sexton DW. Necrophages and necrophiles: a review of their antibacterial defenses and biotechnological potential. Crit Rev Biotechnol 2025; 45:625-642. [PMID: 39198023 DOI: 10.1080/07388551.2024.2389175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 09/01/2024]
Abstract
With antibiotic resistance on the rise, there is an urgent need for new antibacterial drugs and products to treat or prevent infection. Many such products in current use, for example human and veterinary antibiotics and antimicrobial food preservatives, were discovered and developed from nature. Natural selection acts on all living organisms and the presence of bacterial competitors or pathogens in an environment can favor the evolution of antibacterial adaptations. In this review, we ask if vultures, blow flies and other carrion users might be a good starting point for antibacterial discovery based on the selection pressure they are under from bacterial disease. Dietary details are catalogued for over 600 of these species, bacterial pathogens associated with the diets are described, and an overview of the antibacterial defenses contributing to disease protection is given. Biotechnological applications for these defenses are then discussed, together with challenges facing developers and possible solutions. Examples include use of (a) the antimicrobial peptide (AMP) gene sarcotoxin IA to improve crop resistance to bacterial disease, (b) peptide antibiotics such as serrawettin W2 as antibacterial drug leads, (c) lectins for targeted drug delivery, (d) bioconversion-generated chitin as an antibacterial biomaterial, (e) bacteriocins as antibacterial food preservatives and (f) mutualistic microbiota bacteria as alternatives to antibiotics in animal feed. We show that carrion users encounter a diverse range of bacterial pathogens through their diets and interactions, have evolved many antibacterial defenses, and are a promising source of genes, molecules, and microbes for medical, agricultural, and food industry product development.
Collapse
Affiliation(s)
- T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham, Thailand
| | - Vijitra Luang-In
- Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Maha Sarakham, Thailand
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Kong H, Liu Z, Yang P, Yuan L, Jing W, Dong C, Zheng M, Tian Z, Hou Q, Zhu S. Effects of Larval Density on Plutella xylostella Resistance to Granulosis Virus. INSECTS 2020; 11:insects11120857. [PMID: 33276568 PMCID: PMC7761614 DOI: 10.3390/insects11120857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Generally, the transmission of pathogens is positively density-dependent; therefore, the risk of insects becoming infected by diseases increases with increasing population density. It has been reported that some phase-polyphenic insects from high-density conditions are more resistant (or susceptible or identical) to pathogens than those from low-density conditions. This phenomenon is termed “density-dependent prophylaxis” (DDP). The diamondback moth (DBM), Plutella xylostella, one of the most destructive insect pests affecting cruciferous crops, is non phase-polyphenic. Biological control, especially by pathogens, plays an important role in the integrated pest management program of DBM. However, whether the P. xylostella larval population exhibits DDP has not been elucidated. The resistance of DBM larvae to P. xylostella granulosis virus (Plxy GV) and their immune response to the virus under different density treatments were investigated under laboratory conditions. Our results demonstrated that P. xylostella larvae exhibited DDP within a certain limited density. This study may help to elucidate the biocontrol effect of different density populations of P. xylostella by granulosis virus and guide improvements in future management strategy. Abstract It has been reported that some phase-polyphenic insects from high-density conditions are more resistant to pathogens than those from low-density conditions. This phenomenon is termed “density-dependent prophylaxis” (DDP). However, whether non phase-polyphenic insects exhibit DDP has rarely been elucidated. The diamondback moth (DBM), Plutella xylostella, one of the most destructive insect pests affecting cruciferous crops, is non phase-polyphenic. In this study, the resistance of DBM larvae to P. xylostella granulosis virus (Plxy GV) and their immune response to the virus when reared at densities of 1, 2, 5, 10, 15, and 20 larvae per Petri dish were investigated under laboratory conditions. Compared with larvae reared at lower densities, larvae reared at moderate density showed a significantly higher survival rate, but the survival rate significantly decreased with further increases in rearing density. Furthermore, the phenoloxidase, lysozyme and antibacterial activity and total hemocyte count in the hemolymph of the larvae, regardless of whether they were challenged with the virus, from different larval densities corresponded to the observed differences in resistance to Plxy GV. These results demonstrated that P. xylostella larvae exhibited DDP within a certain limited density. This study may help to elucidate the biocontrol effect of different density populations of P. xylostella by granulosis virus and guide improvements in future management strategy.
Collapse
Affiliation(s)
- Hailong Kong
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
- Correspondence: ; Tel.: +86-514-8797-8110
| | - Zhonglin Liu
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
| | - Pingjun Yang
- Suzhou Plant Protection and Plant Quarantine Station, Stadium Road, NO. 4, Suzhou 215006, China;
| | - Lin Yuan
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
| | - Wanghui Jing
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
| | - Chuanlei Dong
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
| | - Minyuan Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
| | - Qiuli Hou
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
| | - Shude Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China; (Z.L.); (L.Y.); (W.J.); (C.D.); (M.Z.); (Z.T.); (Q.H.); (S.Z.)
| |
Collapse
|
3
|
Abstract
The composition of insect hemolymph can change depending on many factors, e.g. access to nutrients, stress conditions, and current needs of the insect. In this chapter, insect immune-related polypeptides, which can be permanently or occasionally present in the hemolymph, are described. Their division into peptides or low-molecular weight proteins is not always determined by the length or secondary structure of a given molecule but also depends on the mode of action in insect immunity and, therefore, it is rather arbitrary. Antimicrobial peptides (AMPs) with their role in immunity, modes of action, and classification are presented in the chapter, followed by a short description of some examples: cecropins, moricins, defensins, proline- and glycine-rich peptides. Further, we will describe selected immune-related proteins that may participate in immune recognition, may possess direct antimicrobial properties, or can be involved in the modulation of insect immunity by both abiotic and biotic factors. We briefly cover Fibrinogen-Related Proteins (FREPs), Down Syndrome Cell Adhesion Molecules (Dscam), Hemolin, Lipophorins, Lysozyme, Insect Metalloproteinase Inhibitor (IMPI), and Heat Shock Proteins. The reader will obtain a partial picture presenting molecules participating in one of the most efficient immune strategies found in the animal world, which allow insects to inhabit all ecological land niches in the world.
Collapse
Affiliation(s)
- Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jakub Kordaczuk
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
4
|
Expression of the Shrimp wap gene in Drosophila elicits defense responses and protease inhibitory activity. Sci Rep 2018; 8:8779. [PMID: 29884877 PMCID: PMC5993750 DOI: 10.1038/s41598-018-26466-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/10/2018] [Indexed: 11/13/2022] Open
Abstract
The wap gene encodes a single whey acidic protein (WAP) domain-containing peptide from Chinese white shrimp (Fenneropenaeus chinensis), which shows broad-spectrum antimicrobial activities and proteinase inhibitory activities in vitro. To explore the medical applications of the WAP peptide, a wap gene transgenic Drosophila melanogaster was constructed. In wap-expressing flies, high expression levels of wap gene (>100 times) were achieved, in contrast to those of control flies, by qRT-PCR analysis. The wap gene expression was associated with increased resistance to microbial infection and decreased bacterial numbers in the flies. In addition, the WAP protein extract from wap-expressing flies, compared with control protein extract from control flies, showed improved antimicrobial activities against broad Gram-positive and Gram-negative bacteria, including the clinical drug resistant bacterium of methicillin-resistant S. aureus (MRSA), improved protease inhibitor activities against crude proteinases and commercial proteinases, including elastase, subtilis proteinase A, and proteinase K in vitro, and improved growth rate and microbial resistance, as well as wound-healing in loach and mouse models. These results suggest that wap-expressing flies could be used as a food additive in aquaculture to prevent infections and a potential antibacterial for fighting drug-resistant bacteria.
Collapse
|
5
|
Mishra S, Kumar P, Malik A. Evaluation of Beauveria bassiana infection in the hemolymph serum proteins of the housefly, Musca domestica L. (Diptera: Muscidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24714-24724. [PMID: 28936573 DOI: 10.1007/s11356-017-0193-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Beauveria bassiana plays a prominent role in biocontrol of houseflies, Musca domestica (L.). Thus, a deeper insight into immune response of M. domestica during B. bassiana infection was warranted to assist the production of more efficient mycoinsecticides. The present study investigates changes in protein profile of M. domestica hemolymph serum post B. bassiana infection using two-dimensional difference gel electrophoresis (2D-DIGE) followed by identification of selected proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The non-infected or control group of flies showed an expression of 54 proteins, while M. domestica infected with B. bassiana expressed a total of 68 hemolymph serum proteins. Thirty three proteins were expressed in both groups of houseflies, whereas 35 proteins were exclusively expressed in infected flies and 21 proteins were exclusively expressed in control flies. Among the 33 proteins which were expressed in both groups of houseflies, 17 proteins showed downregulation, while16 proteins were upregulated in the infected flies compared to the non-infected ones. The results from this study are expected to facilitate better understanding of insect's immune response mechanism.
Collapse
Affiliation(s)
- Sapna Mishra
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110 016, India.
| | - Peeyush Kumar
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110 016, India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110 016, India
| |
Collapse
|
6
|
Yang D, Wang Q, Cao R, Chen L, Liu Y, Cong M, Wu H, Li F, Ji C, Zhao J. Molecular characterization, expression and antimicrobial activities of two c-type lysozymes from manila clam Venerupis philippinarum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:109-118. [PMID: 28344168 DOI: 10.1016/j.dci.2017.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 06/06/2023]
Abstract
Lysozymes play an important role in the innate immune responses with which mollusks respond to bacterial invasion through its lytic activity. In the present study, two c-type lysozymes (designed as VpCLYZ-1 and VpCLYZ-2, respectively) were identified and characterized from the manila clam Venerupis philippinarum. The full-length cDNA of VpCLYZ-1 and VpCLYZ-2 was of 629 and 736 bp, encoding a polypeptide of 156 and153 amino acid residues, respectively. The deduced amino acid sequences of VpCLYZs showed high similarity to other known invertebrate c-type lysozymes. Multiple alignments and phylogenetic relationship strongly suggested that VpCLYZ-1 and VpCLYZ-2 belonged to the c-type lysozyme family. Both VpCLYZ-1 and VpCLYZ-2 transcripts were constitutively expressed in a wide range of tissues with different levels. The VpCLYZ-1 transcript was dominantly expressed in hepatopancreas and hemocytes, while VpCLYZ-2 transcript was mainly expressed in the tissues of hepatopancreas and gills. Both the mRNA expression of VpCLYZ-1 and VpCLYZ-2 was significantly up-regulated at 12 h post Vibrio anguillarum challenge. The recombinant VpCLYZ-1 and VpCLYZ-2 (designed as rVpCLYZ-1 and rVpCLYZ-2) exhibited lytic activity against all tested bacteria, and rVpCLYZ-1 showed higher activities than rVpCLYZ-2 in killing Micrococcus luteus and V. anguillarum. Overall, our results suggested that VpCLYZ-1 and VpCLYZ-2 belonged to the c-type lysozyme family, and played important roles in the immune responses of manila clam, especially in the elimination of pathogens.
Collapse
Affiliation(s)
- Dinglong Yang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China
| | - Ruiwen Cao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lizhu Chen
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongliang Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Ming Cong
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China
| | - Fei Li
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
7
|
Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis). PLoS One 2016; 11:e0161384. [PMID: 27575006 PMCID: PMC5019359 DOI: 10.1371/journal.pone.0161384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions.
Collapse
|
8
|
Wang Y, Duan H, Li L, Wang X, Li J, Bu Y, Luo C. A chemiluminescence sensor for determination of lysozyme using magnetic graphene oxide multi-walled carbon nanotube surface molecularly imprinted polymers. RSC Adv 2016. [DOI: 10.1039/c5ra20845a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, a new chemiluminescence sensor possessing high selectivity and sensitivity was established for determination of lysozyme using magnetic graphene oxide–multi-walled carbon nanotube surface molecularly imprinted polymer.
Collapse
Affiliation(s)
- Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Huimin Duan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Leilei Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xiaojiao Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanan Bu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
9
|
Mishra S, Kumar P, Malik A. The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15171-15178. [PMID: 26233748 DOI: 10.1007/s11356-015-5105-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Entomopathogenic fungi that manifest infections by overcoming insect's immune response could be a successful control agent for the house fly, Musca domestica L. which is a major domestic, medical, and veterinary pest. In this study, the immune response of house fly to Beauveria bassiana infection was investigated to reveal fundamental aspects of house fly hemocyte biology, such as hemocyte numbers and size, which is poorly understood. The total hemocyte counts (THCs) in B. bassiana-infected house fly showed an initial increase (from 6 to 9 h), followed by subsequent decrease (9 to 12 h) with increase in time of infection. The THCs was slightly greater in infected flies than the non-infected ones. Insight into relative hemocyte counts depicted a significant increase in prohemocyte (PR) and decrease in granulocyte (GR) in infected house flies compared to non-infected ones. The relative cell area of hemocyte cells showed a noticeable increase in PR and intermediate cells (ICs), while a considerable reduction was observed for plasmatocyte (PL) and GR. The considerable variation in relative cell number and cell area in the B. bassiana-infected house flies indicated stress development during infection. The present study highlights changes occurring during B. bassiana invasion to house fly leading to establishment of infection along with facilitation in understanding of basic hemocyte biology. The results of the study is expected to help in better understanding of house fly immune response during fungal infection, so as to assist production of more efficient mycoinsecticides for house fly control using B. bassiana.
Collapse
Affiliation(s)
- Sapna Mishra
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi, 110 016, India.
| | - Peeyush Kumar
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi, 110 016, India
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi, 110 016, India
| |
Collapse
|
10
|
Fleming A, Kumar H, Joyner C, Reynolds A, Nayduch D. Temporospatial fate of bacteria and immune effector expression in house flies fed GFP-Escherichia coli O157:H7. MEDICAL AND VETERINARY ENTOMOLOGY 2014; 28:364-71. [PMID: 24712451 PMCID: PMC4192108 DOI: 10.1111/mve.12056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 05/11/2023]
Abstract
The house fly Musca domestica L. (Diptera: Muscidae) harbours and transmits a variety of human enteropathogens including Escherichia coli (Enterobacteriales: Enterobacteriaceae) O157:H7. Interactions between ingested bacteria and the fly gut directly impact bacterial persistence, survival and ultimately fly vector competence. We assessed the temporospatial fate of green fluorescent protein (GFP)-expressing E. coli O157:H7 (GFP-ECO157) in house flies along with fly antimicrobial responses up to 12 h post-ingestion. In flies fed GFP-ECO157, culture and microscopy revealed a steady decrease in bacterial load over 12 h, which is likely to be attributable to the combined effects of immobilization within the peritrophic matrix, lysis and peristaltic excretion. However, flies can putatively transmit this pathogen in excreta because intact bacteria were observed in the crop and rectum. Quantitative reverse-transcriptase polymerase chain reaction analysis of antimicrobial peptides (AMPs) and lysozyme gene expression showed minimal upregulation in both the gut and carcass of house flies fed GFP-ECO157. However, these genes were upregulated in fly heads and salivary glands, and effector proteins were detected in the gut in some flies. Collectively, these data indicate that house flies can serve as reservoirs of E. coli O157:H7 for up to 12 h, and factors in addition to AMPs and lysozyme may contribute to bacteria destruction in the gut.
Collapse
Affiliation(s)
- A. Fleming
- Department of Biology, Georgia Southern University, Statesboro, GA, U.S.A
| | - H.V. Kumar
- Department of Biology, Georgia Southern University, Statesboro, GA, U.S.A
| | - C. Joyner
- Department of Biology, Georgia Southern University, Statesboro, GA, U.S.A
| | - A. Reynolds
- Department of Biology, Georgia Southern University, Statesboro, GA, U.S.A
| | - D. Nayduch
- Department of Biology, Georgia Southern University, Statesboro, GA, U.S.A
- Correspondence: D. Nayduch, Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, U.S.A, Tel: +1 785-537-5566, Fax: +1 785-537-5560,
| |
Collapse
|
11
|
Bahrndorff S, Gill C, Lowenberger C, Skovgård H, Hald B. The effects of temperature and innate immunity on transmission of Campylobacter jejuni (Campylobacterales: Campylobacteraceae) between life stages of Musca domestica (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:670-677. [PMID: 24897861 DOI: 10.1603/me13220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The house fly (Musca domestica L.) is a well-established vector of human pathogens, including Campylobacter spp., which can cause infection of broiler chicken flocks, and through contaminated broiler meat can cause outbreaks of campylobacteriosis in humans. We investigated whether Campylobacter jejuni (Jones) could be transferred between life stages of M. domestica (larvae-pupae-adults) and determined bacterial counts of C. jejuni at different time points after bacterial exposure. C. jejuni was transmitted from infected larvae to pupae, but not to the adult stage. Infected larvae maintained at 25 degrees C had mean bacterial numbers of 6.5 +/- 0.2 SE log10 (colony forming units [CFU]/g) that subsequently dropped to 3.6 +/- 0.3 SE log10 (CFU/g) 8 h after infection. Pupae originating from infected larvae contained mean bacterial numbers of 5.3 +/- 0.1 SE log10 (CFU/g), and these numbers dropped to 4.8 +/- 0.1 SE log10 (CFU/g) 24 h after pupation. The decline in C. jejuni numbers during pupal development coincided with increased expression of antimicrobial peptides, including cecropin, diptericin, attacin, and defensin, in the larva-pupa transition stage and a later second peak in older pupae (4 or 48 h). Conversely, there was a reduced expression of the digestive enzyme, lysozyme, in pupae and adults compared with larvae.
Collapse
|
12
|
Wang Q, Wang C, Mu C, Wu H, Zhang L, Zhao J. A novel C-type lysozyme from Mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate C-type lysozymes. PLoS One 2013; 8:e67469. [PMID: 23818979 PMCID: PMC3688608 DOI: 10.1371/journal.pone.0067469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/18/2013] [Indexed: 11/19/2022] Open
Abstract
A c-type lysozyme (named as MgCLYZ) gene was cloned from the mussel Mytilus galloprovincialis. Blast analysis indicated that MgCLYZ was a salivary c-type lysozyme which was mainly found in insects. The nucleotide sequence of MgCLYZ was predicted to encode a polypeptide of 154 amino acid residues with the signal peptide comprising the first 24 residues. The deduced mature peptide of MgCLYZ was of a calculated molecular weight of 14.4 kD and a theoretical isoelectric point (pI) of 8.08. Evolution analysis suggested that bivalve branch of the invertebrate c-type lysozymes phylogeny tree underwent positive selection during evolution. By quantitative real-time RT-PCR (qRT-PCR) analysis, MgCLYZ transcript was widely detected in all examined tissues and responded sensitively to bacterial challenge in hemocytes and hepatopancreas. The optimal temperature and pH of recombinant MgCLYZ (rMgCLYZ) were 20°C and 4, respectively. The rMgCLYZ displayed lytic activities against Gram-positive bacteria including Micrococcus luteus and Staphyloccocus aureus, and Gram-negative bacteria including Vibrio anguillarum, Enterobacter cloacae, Pseudomonas putida, Proteus mirabilis and Bacillus aquimaris. These results suggest that MgCLYZ perhaps play an important role in innate immunity of M. galloprovincialis, and invertebrate c-type lysozymes might be under positive selection in a species-specific manner during evolution for undergoing adaptation to different environment and diverse pathogens.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People’s Republic of China
| | - Chunyan Wang
- School of Marine Science, Ningbo University, Ningbo, People’s Republic of China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, People’s Republic of China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People’s Republic of China
| | - Linbao Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People’s Republic of China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People’s Republic of China
| |
Collapse
|
13
|
Van Herreweghe JM, Michiels CW. Invertebrate lysozymes: Diversity and distribution, molecular mechanism and in vivo function. J Biosci 2012; 37:327-48. [DOI: 10.1007/s12038-012-9201-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Transcriptomic analysis of the housefly (Musca domestica) larva using massively parallel pyrosequencing. Mol Biol Rep 2011; 39:1927-34. [PMID: 21643958 DOI: 10.1007/s11033-011-0939-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/25/2011] [Indexed: 02/03/2023]
Abstract
To explore the transcriptome of Musca domestica larvae and to identify unique sequences, we used massively parallel pyrosequencing on the Roche 454-FLX platform to generate a substantial EST dataset of this fly. As a result, we obtained a total of 249,555 ESTs with an average read length of 373 bp. These reads were assembled into 13,206 contigs and 20,556 singletons. Using BlastX searches of the Swissprot and Nr databases, we were able to identify 4,814 contigs and 8,166 singletons as unique sequences. Subsequently, the annotated sequences were subjected to GO analysis and the search results showed a majority of the query sequences were assignable to certain gene ontology terms. In addition, functional classification and pathway assignment were performed by KEGG and 2,164 unique sequences were mapped into 184 KEGG pathways in total. As the first attempt on large-scale RNA sequencing of M. domestica, this general picture of the transcriptome can establish a fundamental resource for further research on functional genomics.
Collapse
|