1
|
Yao A, Zhang Y, Ouyang M, Wen L, Lai W. Expression profiles and functional analysis of transfer RNA-derived small RNAs (tsRNAs) in photoaged human dermal fibroblasts. Photochem Photobiol 2025; 101:505-516. [PMID: 39212206 DOI: 10.1111/php.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) refer to a newly established family of non-coding RNAs that regulate a diverse set of biological processes. However, the function of tsRNAs in skin photoaging remains unclear. This research aims to investigate the potential correlation between tsRNAs and skin photoaging. Human dermal fibroblasts (HDFs) were irradiated with UVA at 10 J/cm2 once a day lasting for 14 days, resulting in the establishment of a photoaging model induced by UVA. To identify the expression profiles and functions of tsRNAs, tsRNA sequencing and bioinformatics analysis were conducted. qPCR was employed to validate the results of differentially expressed (DE) tsRNAs. A total of 34 tsRNAs exhibited significant differential expression between the UVA and control groups (n = 3), with nine upregulated and 25 downregulated (log2 fold change >1.5, p-value <0.05). Six tsRNAs were selected at random and validated by qRT-PCR. The enrichment analysis of DE tsRNAs target genes indicated that the dysregulated tsRNAs appeared to be connected with cell cycle, DNA replication and the AGE-RAGE signaling pathway. The expression of tsRNAs was found to be aberrant in UVA-HDF. These findings provide insights into the UVA-induced damage and potential target genes for skin photoaging.
Collapse
Affiliation(s)
- Amin Yao
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Zhang
- Department of Dermato-Venereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mengting Ouyang
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wen
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Soheilifar MH, Masoudi-Khoram N, Shirkavand A, Ghorbanifar S. Non-coding RNAs in photoaging-related mechanisms: a new paradigm in skin health. Biogerontology 2022; 23:289-306. [PMID: 35587318 DOI: 10.1007/s10522-022-09966-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
The aging of skin is a biological process affected by environmental or genetic factors. Exposure to ultraviolet (UV) radiation is the main environmental factor causing skin aging. Cumulative UV-induced photodamage of the skin tissue is associated with premature cellular senescence, extracellular degradation, and inflammatory responses in photoaging processes. Non-coding RNAs (ncRNAs) are untranslated transcripts and master regulators of protein-coding genes. ncRNAs have a critical regulatory role in maintaining skin structure, skin barrier function, morphogenesis, and development. Altered ncRNA expression has been reported in various skin disorders such as photoaging and skin cancers. ncRNAs contribute to the suppression and promotion of photoaging by modulating signaling pathways such as mitogen-activated protein kinase (MAPK) pathway and regulating inflammatory cytokines, matrix metalloproteinases (MMPs), and senescence-associated genes. Elucidation of the functions of ncRNAs will improve the identification of molecular mechanisms underlying photoaging, and can be used in the development of therapeutic approaches in skin health and prevention of sun-induced aging. This review summarized the currently described ncRNAs and their functions in photoaging.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran.
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afshan Shirkavand
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran
| | - Shima Ghorbanifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran
| |
Collapse
|
3
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Ziętek M, Matkowski R, Nowak D. Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. Int J Mol Sci 2021; 22:E529. [PMID: 33430277 PMCID: PMC7825728 DOI: 10.3390/ijms22020529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is a highly metastatic type of cancer, which arises frequently from transformed pigment cells and melanocytes as a result of long-term UV radiation exposure. In recent years, the incidence of newly diagnosed melanoma patients reached 5% of all cancer cases. Despite the development of novel targeted therapies directed against melanoma-specific markers, patients' response to treatment is often weak or short-term due to a rapid acquisition of drug resistance. Among the factors affecting therapy effectiveness, elements of the tumor microenvironment play a major role. Melanoma niche encompasses adjacent cells, such as keratinocytes, cancer-associated fibroblasts (CAFs), adipocytes, and immune cells, as well as components of the extracellular matrix and tumor-specific physicochemical properties. In this review, we summarize the current knowledge concerning the influence of cancer-associated cells (keratinocytes, CAFs, adipocytes) on the process of melanomagenesis, tumor progression, invasiveness, and the emergence of drug resistance in melanoma. We also address how melanoma can alter the differentiation and activation status of cells present in the tumor microenvironment. Understanding these complex interactions between malignant and cancer-associated cells could improve the development of effective antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| |
Collapse
|
4
|
Yang L, Hu Z, Jin Y, Huang N, Xu S. MiR-4497 mediates oxidative stress and inflammatory injury in keratinocytes induced by ultraviolet B radiation through regulating NF-κB expression. Ital J Dermatol Venerol 2020; 157:84-91. [PMID: 33314897 DOI: 10.23736/s2784-8671.20.06825-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND To investigate the role and underlying mechanism of miR-4497 in oxidative stress and inflammatory injury in keratinocytes induced by ultraviolet B (UVB) radiation. METHODS An injury model of keratinocytes induced by UVB radiation was constructed. RT-qPCR, MTT assay and flow cytometry were adopted to detect miR-4497 expression in HaCaT cells, cell proliferation, and cell apoptosis, respectively. The levels of cytokines TNF-α, IL-18, IL-6 and IL-1β in cell culture supernatant were tested by ELISA. ROS levels in the cells were labeled by DCFH-DA fluorescent probe, and then quantitative fluorescence analysis was performed by flow cytometry. SOD activity in the cells was measured by xanthine oxidase assay kit. Western blot was used to determine NF-κB expression in cytoplasm and nucleus, and p-IκBα expression in the cells. RESULTS UVB radiation significantly increased miR-4497 expression in HaCaT cells, inhibited cell proliferation, and promoted cell apoptosis. Meanwhile, UVB radiation caused the promotion of secretion of cytokines TNF-α, IL-18, IL-6 and IL-1β. The production of reactive oxygen species (ROS) was promoted by UVB radiation, while SOD activity was inhibited. Nuclear transfer of NF-κB signal was also induced by UVB radiation. In addition, downregulation of miR-4497 expression significantly inhibited the effects of UVB radiation on cell proliferation, apoptosis, cytokine secretion, redox level and NF-κB signal in HaCaT cells, while overexpression of miR-4497 further enhanced these effects of UVB radiation on HaCaT cells. CONCLUSIONS UVB may promote the expression of inflammatory and oxidative stress signals in keratinocytes by upregulating miR-4497 expression, thus mediating cell injury.
Collapse
Affiliation(s)
| | | | | | | | - Su Xu
- Department of Dermatology
| |
Collapse
|
5
|
The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020; 21:ijms21155281. [PMID: 32722415 PMCID: PMC7432402 DOI: 10.3390/ijms21155281] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism’s ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Collapse
|
6
|
Zhang C, Xie X, Yuan Y, Wang Y, Zhou M, Li X, Zhen P. MiR-664 Protects Against UVB Radiation-Induced HaCaT Cell Damage via Downregulating ARMC8. Dose Response 2020; 18:1559325820929234. [PMID: 32547335 PMCID: PMC7270940 DOI: 10.1177/1559325820929234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background: MiR-664 has been demonstrated to play an important role in dermal diseases.
However, the functions of miR-664 in ultraviolet B (UVB) radiation-induced
keratinocytes damage remain to be elucidated. Objective: The present study aimed to investigate the molecular mechanisms under the
UVB-induced keratinocytes damage and provide translational insights for
future therapeutics and UVB protection. Methods: HaCaT cells were transfected with miR-664, either alone or combined with UVB
irradiation. Levels of messenger RNA and protein were tested by quantitative
real-time polymerase chain reaction and Western blot analyses. Cell
proliferation, percentage of apoptotic cells, and expression levels of
apoptosis-related factors were measured by Cell Counting Kit-8 assay, flow
cytometry assay, and Western blot analysis, respectively. Results: We found that a significant increase in miR-664 was observed in UVB-induced
HaCaT cells. Overexpressed miR-664 promoted cell vitalities and suppressed
apoptosis of UVB-induced HaCaT cells. Additionally, the loss/gain of
armadillo-repeat-containing protein 8 (ARMC8) rescued/blocked the effects of
miR-664 on the proliferation of UVB-induced HaCaT cells. Conclusions: Our data demonstrate that miR-664 functions as a protective regulator in
UVB-induced HaCaT cells via regulating ARMC8.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiongxiong Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yawen Yuan
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiangzhi Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Public Health, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Peilin Zhen
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| |
Collapse
|
7
|
MicroRNA-141-3p and microRNA-200a-3p regulate α-melanocyte stimulating hormone-stimulated melanogenesis by directly targeting microphthalmia-associated transcription factor. Sci Rep 2020; 10:2149. [PMID: 32034251 PMCID: PMC7005774 DOI: 10.1038/s41598-020-58911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, it has been reported that non-coding RNAs, especially microRNAs (miRNAs) and long non-coding RNAs, act as melanogenesis-regulating molecules in melanocytes. We found that the expression levels of miR-141-3p and miR-200a-3p were decreased significantly by α-melanocyte-stimulating hormone (α-MSH) stimulation in mouse melanocyte B16-4A5 cells, as demonstrated by a miRNA array. Overexpression of miR-141-3p and miR-200a-3p in B16-4A5 cells suppressed melanogenesis and tyrosinase activity. Moreover, both miR-141-3p and miR-200a-3p showed direct targeting of microphthalmia-associated transcription factor using a luciferase reporter assay. Furthermore, topical transfection of miR-141-3p and miR-200a-3p to three-dimensional reconstructed human skin tissue inhibited α-MSH-stimulated melanin biosynthesis. Taken together, our findings indicate that downregulation of miR-141-3p and miR-200a-3p during the α-MSH-stimulated melanogenesis process acts as an important intrinsic signal. This result is expected to lead to the development of miRNA-based whitening therapeutics.
Collapse
|
8
|
Zhang Y, Yang C, Yang S, Guo Z. MiRNA‐27a decreases ultraviolet B irradiation‐induced cell damage. J Cell Biochem 2019; 121:1032-1038. [PMID: 31452277 DOI: 10.1002/jcb.29337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- YuanJing Zhang
- Department of Dermatology the First Affiliated Hospital of Anhui Medical University Hefei China
| | - ChunJun Yang
- Department of Dermatology the Second Affiliated Hospital of Anhui Medical University Hefei China
| | - Sen Yang
- Department of Dermatology the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Ze Guo
- Department of Dermatology the First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
9
|
Pan Q, Chen J, Guo L, Lu X, Liao S, Zhao C, Wang S, Liu H. Mechanistic insights into environmental and genetic risk factors for systemic lupus erythematosus. Am J Transl Res 2019; 11:1241-1254. [PMID: 30972159 PMCID: PMC6456562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organ systems with diverse presentation, primarily affecting women of reproductive age. Various genetic and environmental risk factors are involved in the pathogenesis of SLE, and many SLE susceptibility genes have been identified recently; however, gene therapy is not a viable clinical option at this time. Thus, environmental risks factors, particularly regional characteristics that can be controlled, need to be further investigated. Here, we systematically explored these risk factors, including ultraviolet radiation, seasonal distribution, geographical distribution, and climate factors, and also summarized the mechanisms related to these risk factors. Probable mechanisms were explicated in at least four aspects including inflammatory mediators, apoptosis and autophagy in keratinocytes, epigenetic factors, and gene-environment interactions. This information is expected to provide practical insights into these risk factors in order to benefit patients with SLE and facilitate the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Linjie Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
- Division of Rheumatology, Huizhou Central People’s HospitalHuizhou 516001, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Sijie Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| |
Collapse
|
10
|
Dong H, Jiang W, Chen H, Jiang S, Zang Y, Yu B. MicroRNA-145 attenuates IL-6-induced enhancements of sensitivity to UVB irradiation by suppressing MyD88 in HaCaT cells. Int J Immunopathol Pharmacol 2018; 32:2058738418795940. [PMID: 30198366 PMCID: PMC6131290 DOI: 10.1177/2058738418795940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) play vital roles in various immune diseases including
systemic lupus erythematosus (SLE). The current study aimed to assess the role
of miR-145 in interleukin-6 (IL-6)-treated HaCaT cells under ultraviolet B (UVB)
irradiation and further explore the potential regulatory mechanism. HaCaT cells
were pretreated with IL-6 and then exposed to UVB to assess the effect of IL-6
on sensitivity of HaCaT cells to UVB irradiation. The levels of miR-145 and
MyD88 were altered by transfection and the transfected efficiency was verified
by quantitative reverse transcription polymerase chain reaction
(qRT-PCR)/western blot analysis. Cell viability, percentage of apoptotic cells
and expression levels of apoptosis-related factors were measured by trypan blue
assay, flow cytometry assay, and western blot analysis, respectively. In
addition, the levels of c-Jun N-terminal kinases (JNK) and nuclear factor-κB
(NF-κB) signaling pathway-related factors were assessed by western blot
analysis. IL-6 treatments significantly aggravated the reduction of cell
viability and promotion of cell apoptosis caused by UVB irradiation in HaCaT
cells. Interestingly, miR-145 level was augmented by UVB exposure and miR-145
mimic alleviated IL-6-induced increase of sensitivity to UVB irradiation in
HaCaT cells, as dramatically increased cell viability and reduced cell
apoptosis. Opposite effects were observed in miR-145 inhibitor-transfected
cells. Meanwhile, MyD88 was negatively regulated by miR-145 and MyD88 mediated
the regulatory effect of miR-145 on IL-6- and UVB-treated cells. In addition,
miR-145 mimic inhibited the JNK and NF-κB pathways by down-regulating MyD88. In
conclusion, the present study demonstrated that miR-145 alleviated IL-6-induced
increase of sensitivity to UVB irradiation by down-regulating MyD88 in HaCaT
cells.
Collapse
Affiliation(s)
- Hui Dong
- 1 Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Jiang
- 1 Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongquan Chen
- 2 Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shui Jiang
- 2 Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunshu Zang
- 2 Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Yu
- 2 Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
MiR-340/iASPP axis affects UVB-mediated retinal pigment epithelium (RPE) cell damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:9-16. [PMID: 29982095 DOI: 10.1016/j.jphotobiol.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Long-term exposure to ultraviolet B (UVB) light increases the risk of UVB damage due to increased UVB absorption by the retina and may further lead to age-related eye diseases. The retinal pigment epithelium (RPE) cell is a main target of UVB reaching the retina; its degeneration is an essential event in UVB-mediated age-related macular degeneration (AMD). Herein, we first evaluated the expression and effect of iASPP, an inhibitory regulator of apoptosis, in UVB-induced RPE cell damage. Through the mechanism of RNA interference at the post-transcriptional level, miRNA affects a variety of cellular processes, including UVB-mediated cell damage. We next screened for upstream candidate miRNAs that may regulate iASPP expression. Among 8 candidate miRNAs, UVB significantly increased miR-340 levels. We also confirmed the direct binding of miR-340 to the 3'UTR of iASPP, and assessed the combined effect of miR-340 and iASPP on UVB-induced RPE cell damage. Taken together, we demonstrated the possible mechanisms involved in UVB-induced retinal damage. In RPE cells, UVB irradiation inhibits iASPP expression through inducing miR-340 expression, thereby promoting RPE cell apoptosis and suppressing cell viability via affecting p53, p21 and caspase-3 protein expression. Targeting miR-340 to rescue iASPP expression in RPE cells may help treat UVB-mediated retinal damage.
Collapse
|
12
|
Abstract
The advent of RNA interference (RNAi) technology has profoundly impacted molecular biology research and medicine but has also advanced the field of skin care. Both effector molecules of RNAi, short-interfering RNA molecules and microRNAs (miRNAs), have been explored for their relative impact and utility for treating a variety of skin conditions. These post-transcriptional RNA regulatory molecules down-modulate protein expression through targeting of the 3' untranslated regions of messenger RNAs, leading to their degradation or repression through sequestration. As researchers hunt for genetic linkages to skin diseases, miRNA regulators have emerged as key players in the biology of keratinocytes, fibroblasts, melanocytes, and other cells of the skin. Herein, we attempt to coalesce the current efforts to combat various skin disorders and diseases through the development of miRNA-based technologies.
Collapse
Affiliation(s)
- Paul Lawrence
- Biocogent, LLC, 25 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Joseph Ceccoli
- Biocogent, LLC, 25 Health Sciences Drive, Stony Brook, NY 11790 USA
| |
Collapse
|
13
|
Harada M, Jinnin M, Wang Z, Hirano A, Tomizawa Y, Kira T, Igata T, Masuguchi S, Fukushima S, Ihn H. The expression of miR-124 increases in aged skin to cause cell senescence and it decreases in squamous cell carcinoma. Biosci Trends 2016; 10:454-459. [PMID: 27818465 DOI: 10.5582/bst.2016.01102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Skin senescence is induced by various factors including intrinsic aging and extrinsic aging. The current study compared the expression of microRNAs in young facial skin and senescent facial skin, and this study identified skin aging-related microRNAs. According to the results from a microRNA PCR Array, miR-124 was the microRNA that increased the most in senescent skin compared to young skin. Real-time PCR with a greater number of samples indicated that the increase in miR-124 levels in senescent facial skin was statistically significant. In situ hybridization was performed, and results indicated that the signal for miR-124 was evident in keratinocytes of senescent skin but not in those of young skin. The morphology of cultured normal human epidermal keratinocytes (NHEKs) transfected with a miR-124 mimic changed to an enlarged and irregular shape. In addition, the number of NHEKs positive for senescence-associated β-galactosidase (SA-β-gal) increased significantly as a result of the overexpression of the miR-124 mimic. The expression of miR-124 increased in UVB-irradiated NHEKs compared to controls in a dose-dependent manner. Expression of miR-124 in A431, a human cutaneous squamous cell carcinoma (SCC) cell line, decreased significantly compared to that in NHEKs. Forced overexpression of miR-124 as a result of the transfection of a miR-124 mimic in A431 resulted in the significant suppression of the proportion of cancer cells. The current results indicated that miR-124 increases as a result of cell senescence and that it decreases during tumorigenesis. The effect of supplementation of miR-124 in an SCC cell line suggests that senescence induction therapy with microRNA may be a new therapeutic approach for treatment of SCC.
Collapse
Affiliation(s)
- Miho Harada
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen C, Lu J, Hao L, Zheng Z, Zhang N, Wang Z. Discovery and characterization of miRNAs in mouse thymus responses to ionizing radiation by deep sequencing. Int J Radiat Biol 2016; 92:548-557. [PMID: 27686407 DOI: 10.1080/09553002.2016.1207821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To investigate the potential regulatory roles of microRNA (miRNA) in mouse response to ionizing radiation (IR)-induced thymus injury, miRNA expression profiles of mouse thymus with or without IR were analyzed using deep sequencing technology. Potential target candidates of the identified miRNA were predicted using RNAhybrid and miRanda. Differently expressed miRNA targets functional annotation and pathways were noted using Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and non-redundant (NR) databases. In this study, there were 112 differently expressed miRNAs identified, including 45 known mature and 67 novel miRNAs, which meanwhile contained 77 up-regulated and 35 down-regulated miRNAs. The results of quantitative RT-polymerase chain reaction (qRT-PCR) verification were in agreement with the sequencing analysis. And the target genes of miRNA were annotated. These results revealed the differences of miRNA expression, further extended the biological knowledge and greatly facilitated future studies on the function of miRNA in IR-induced thymus injury.
Collapse
Affiliation(s)
- Chen Chen
- a School of Life Sciences , Zhengzhou University , Zhengzhou , Henan , China
| | - Jike Lu
- a School of Life Sciences , Zhengzhou University , Zhengzhou , Henan , China ;,b The Quartermaster Equipment Institute of General Logistics Department of People's Liberation Army , Beijing China
| | - Limin Hao
- b The Quartermaster Equipment Institute of General Logistics Department of People's Liberation Army , Beijing China
| | - Zhiqiang Zheng
- b The Quartermaster Equipment Institute of General Logistics Department of People's Liberation Army , Beijing China
| | - Naixun Zhang
- c College of Forestry , Northeast Forestry University , Harbin , Heilongjiang , China
| | - Zhenyu Wang
- d Department of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| |
Collapse
|
15
|
Jayanthy A, Setaluri V. Light-regulated microRNAs. Photochem Photobiol 2014; 91:163-72. [PMID: 25389067 DOI: 10.1111/php.12386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023]
Abstract
In addition to exposure to passive diurnal cycles of sunlight, humans are also subjected to intentional acute exposure to other types of electromagnetic radiation (EM). Understanding the molecular mechanisms involved in the physiological, pathological and therapeutic responses to exposure to radiation is an active area of research. With the advent of methods to readily catalog and identify patterns of changes in gene expression, many studies have reported changes in gene expression upon exposure of various human and mouse cells in vitro, whole experimental organisms such as mice and parts of human body. However, the molecular mechanisms underlying these broad ranging changes in gene expression are not yet fully understood. MicroRNAs, which are short, noncoding RNAs that regulate gene expression by targeting many messenger RNAs, are also emerging as important mediators of radiation-induced changes in gene expression and hence critical for the manifestation of light-induced cellular phenotypes and physiological responses. In this article, we review available knowledge on microRNAs implicated in responses to various forms of solar and other EM radiation. Based on this knowledge, we elaborate some unifying themes in the regulation and functions of some of these miRNAs.
Collapse
Affiliation(s)
- Ashika Jayanthy
- Department of Dermatology and Graduate Program in Comparative Biomedical Sciences, School of Medicine and Public Health & School of Veterinary Medicine, University of Wisconsin, Madison, WI
| | | |
Collapse
|
16
|
miR-1246 releases RTKN2-dependent resistance to UVB-induced apoptosis in HaCaT cells. Mol Cell Biochem 2014; 394:299-306. [DOI: 10.1007/s11010-014-2108-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/15/2014] [Indexed: 02/06/2023]
|
17
|
LEE KWANGSIK, CHA HWAJUN, LEE GHANGTAI, LEE KUNKOOK, HONG JINTAE, AHN KYUJOONG, AN INSOOK, AN SUNGKWAN, BAE SEUNGHEE. Troxerutin induces protective effects against ultraviolet B radiation through the alteration of microRNA expression in human HaCaT keratinocyte cells. Int J Mol Med 2014; 33:934-42. [DOI: 10.3892/ijmm.2014.1641] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/20/2014] [Indexed: 11/05/2022] Open
|
18
|
Li W, Zhou BR, Hua LJ, Guo Z, Luo D. Differential miRNA profile on photoaged primary human fibroblasts irradiated with ultraviolet A. Tumour Biol 2013; 34:3491-500. [DOI: 10.1007/s13277-013-0927-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/12/2013] [Indexed: 12/27/2022] Open
|
19
|
Xu Y, Zhou B, Wu D, Yin Z, Luo D. Baicalin modulates microRNA expression in UVB irradiated mouse skin. J Biomed Res 2013; 26:125-34. [PMID: 23554741 PMCID: PMC3597329 DOI: 10.1016/s1674-8301(12)60022-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/25/2011] [Accepted: 11/23/2011] [Indexed: 12/31/2022] Open
Abstract
This study aimed to evaluate the effects of baicalin on ultraviolet radiation B (UVB)-mediated microRNA (miRNA) expression in mouse skin. We determined miRNA expression profiles in UVB irradiated mice, baicalin treated irradiated mice, and untreated mice, and conducted TargetScan and Gene Ontology analyses to predict miRNA targets. Three miRNAs (mmu-miR-125a-5p, mmu-miR-146a, and mmu-miR-141) were downregulated and another three (mmu-miR-188-5p, mmu-miR-223 and mmu-miR-22) were upregulated in UVB irradiated mice compared with untreated mice. Additionally, these miRNAs were predicted to be related to photocarcinogenesis, hypomethylation and apoptosis. Three miRNAs (mmu-miR-378, mmu-miR-199a-3p and mmu-miR-181b) were downregulated and one (mmu-miR-23a) was upregulated in baicalin treated mice compared with UVB irradiated mice, and they were predicted to be related to DNA repair signaling pathway. These deregulated miRNAs are potentially involved in the pathogenesis of photodamage, and may aid treatment and prevention of UVB-induced dermatoses.
Collapse
Affiliation(s)
- Yang Xu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | |
Collapse
|