1
|
Liu C, Chen J, Chen H, Zhang T, He D, Luo Q, Chi J, Hong Z, Liao Y, Zhang S, Wu Q, Cen H, Chen G, Li J, Wang L. PCSK9 Inhibition: From Current Advances to Evolving Future. Cells 2022; 11:cells11192972. [PMID: 36230934 PMCID: PMC9562883 DOI: 10.3390/cells11192972] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine protease synthesized primarily by the liver. It mainly promotes the degradation of low-density lipoprotein receptor (LDL-R) by binding LDL-R, reducing low-density lipoprotein cholesterol (LDL-C) clearance. In addition to regulating LDL-R, PCSK9 inhibitors can also bind Toll-like receptors (TLRs), scavenger receptor B (SR-B/CD36), low-density lipoprotein receptor-related protein 1 (LRP1), apolipoprotein E receptor-2 (ApoER2) and very-low-density lipoprotein receptor (VLDL-R) reducing the lipoprotein concentration and slowing thrombosis. In addition to cardiovascular diseases, PCSK9 is also used in pancreatic cancer, sepsis, and Parkinson’s disease. Currently marketed PCSK9 inhibitors include alirocumab, evolocumab, and inclisiran, as well as small molecules, nucleic acid drugs, and vaccines under development. This review systematically summarized the application, preclinical studies, safety, mechanism of action, and latest research progress of PCSK9 inhibitors, aiming to provide ideas for the drug research and development and the clinical application of PCSK9 in cardiovascular diseases and expand its application in other diseases.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510080, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Correspondence: (C.L.); (L.W.)
| | - Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Tong Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qiyuan Luo
- Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiaxin Chi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Zebin Hong
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yizhong Liao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shihui Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qizhe Wu
- Department of Neurosurgery, Institute of Neuroscience, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Guangzhong Chen
- Department of Neurosurgery, Institute of Neuroscience, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jinxin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Correspondence: (C.L.); (L.W.)
| |
Collapse
|
2
|
Layssol-Lamour CJ, Granat FA, Sahal AM, Braun JPD, Trumel C, Bourgès-Abella NH. Improving the Quality of EDTA-treated Blood Specimens from Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:188-194. [PMID: 35022109 PMCID: PMC8956217 DOI: 10.30802/aalas-jaalas-21-000093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Nonterminal blood sampling in laboratory mice is a very common procedure. With the goal of improving animal welfare, different sampling sites and methods have been compared but have not achieved a consensus. Moreover, most of these studies overlooked the quality of blood specimens collected. The main preanalytical concern with EDTA-treated blood specimens for hematology analyses is platelet aggregation, which is known to cause analytical errors. Our objective was to find a nonterminal blood sampling method with minimal adverse effects on mice and few or no platelet aggregates. We tested and compared 2 collection sites, 4 sampling methods, and 3 antithrombotic drugs in 80 C57BL6/j male and female mice by evaluating platelet aggregates on blood smears and platelet, WBC, and RBC counts. In addition, the blood collection process was carefully evaluated, and adverse effects were recorded. Platelet aggregation was lower in specimens collected from the jugular vein than from the facial vein, with no effect of the sampling device or the presence of an antithrombotic additive. Highly aggregated specimens were significantly associated with lower platelet counts, whereas aggregation had no effect on WBC or RBC counts. Adverse events during sampling were significantly associated with more numerous platelet aggregates. The jugular vein is thus a satisfactory sampling site in mice in terms of both animal welfare and low platelet aggregation. Using antithrombotic agents appears to be unnecessary, whereas improving sampling conditions remains a key requirement to ensure the quality of EDTA-treated blood specimens from mice.
Collapse
Affiliation(s)
- Catherine J Layssol-Lamour
- Centre Régional d’Exploration Fonctionnelle et de Ressources Expérimentales (CREFRE), Université de Toulouse, UMR 1037,INSERM, UPS, ENVT
| | - Fanny A Granat
- Centre de Recherches en Cancérologie de Toulouse, INSE=RM, Université de Toulouse; and
| | - Ambrine M Sahal
- Centre de Recherches en Cancérologie de Toulouse, INSE=RM, Université de Toulouse; and
| | | | - Catherine Trumel
- Centre Régional d’Exploration Fonctionnelle et de Ressources Expérimentales (CREFRE), Université de Toulouse, UMR 1037,INSERM, UPS, ENVT
| | - Nathalie H Bourgès-Abella
- Centre Régional d’Exploration Fonctionnelle et de Ressources Expérimentales (CREFRE), Université de Toulouse, UMR 1037,INSERM, UPS, ENVT
| |
Collapse
|
3
|
PCSK9 Regulates Nox2-Mediated Platelet Activation via CD36 Receptor in Patients with Atrial Fibrillation. Antioxidants (Basel) 2020; 9:antiox9040296. [PMID: 32252393 PMCID: PMC7222182 DOI: 10.3390/antiox9040296] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background: High levels of proprotein convertase subtilisin/kexin 9 (PCSK9) is predictive of cardiovascular events (CVEs) in atrial fibrillation (AF). We hypothesized that PCSK9 may directly induce platelet activation (PA). Methods: We measured platelet aggregation, recruitment, Thromboxane B2 (TxB2) formation and soluble P-selectin levels as markers of PA and soluble Nox2-derived peptide (sNox2-dp), H2O2, isoprostanes and oxidized Low-Density-Lipoprotein (oxLDL) to analyze oxidative stress (OS) in 88 patients having PCSK9 values < (n = 44) or > (n = 44) 1.2 ng/mL, balanced for age, sex and cardiovascular risk factors. Furthermore, we investigated if normal (n = 5) platelets incubated with PCSK9 (1.0–2.0 ng/mL) alone or with LDL (50 µg/mL) displayed changes of PA, OS and down-stream signaling. Results: PA and OS markers were significantly higher in patients with PCSK9 levels > 1.2 ng/mL compared to those with values < 1.2 ng/mL (p < 0.001). Levels of PCSK9 significantly correlated with markers of PA and OS. Platelets incubation with PCSK9 increased PA, OS and p38, p47 and Phospholipase A2 (PLA2) phosphorylation. These changes were amplified by adding LDL and blunted by CD36 or Nox2 inhibitors. Co-immunoprecipitation analysis revealed an immune complex of PCSK9 with CD36. Conclusions: We provide the first evidence that PCSK9, at concentration found in the circulation of AF patients, directly interacts with platelets via CD36 receptor and activating Nox2: this effect is amplified in presence of LDL.
Collapse
|
4
|
Cangrelor alleviates bleomycin-induced pulmonary fibrosis by inhibiting platelet activation in mice. Mol Immunol 2020; 120:83-92. [PMID: 32106023 DOI: 10.1016/j.molimm.2020.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
Pulmonary fibrosis is a progressive chronic inflammatory lung disease whose pathogenesis is complicated. Platelets and neutrophils play important roles in the progression of pulmonary inflammation. We have reported that cangrelor, a non-sepesific GPR17 antagonist, alleviates pulmonary fibrosis partly by inhibiting macrophage inflammation in mice. Cangrelor is also a well-known anti-platelet agent. To test whether cangrelor mitigated pulmonary fibrosis partly through the inhibition of platelets, bleomycin (BLM) was used to induce pulmonary fibrosis in C57BL/6 J mice. We found that cangrelor (10 mg/kg) not only significantly decreased BLM-induced release of inflammatory cytokines (PF4, CD40 L and MPO), but also decreased the increment of platelets, neutrophils and platelet-neutrophil aggregates in the fibrotic lung and in the peripheral blood of BLM-treated mice. In addition, cangrelor decreased the number of CD40 and MPO double positive neutrophils and the expression level of CD40 in BLM-treated mouse lungs. Based on these results we conclude that cangrelor alleviates BLM-induced lung inflammation and pulmonary fibrosis in mice, partly through inhibition of platelet activation, therefore reducing the infiltration of neutrophils due to the adhesion of platelets and neutrophils mediated by CD40 - CD40 L interaction. Cangrelor could be a potential therapeutic medicine for pulmonary fibrosis.
Collapse
|
5
|
Lieschke F, Zheng Y, Schaefer JH, van Leyen K, Foerch C. Measurement of Platelet Function in an Experimental Stroke Model With Aspirin and Clopidogrel Treatment. Front Neurol 2020; 11:85. [PMID: 32117036 PMCID: PMC7026492 DOI: 10.3389/fneur.2020.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/23/2020] [Indexed: 01/19/2023] Open
Abstract
Dual antiplatelet treatment (DAPT) increases the risk of tPA-associated hemorrhagic transformation (HT) in ischemic stroke. To investigate the effects of DAPT in rodents, reliable indicators of platelet function utilizing a minimally invasive procedure are required. We here established a fluorescence-based assay to monitor DAPT efficiency in a mouse model of ischemic stroke with HT. Male C57/BL6 mice were fed with aspirin and clopidogrel (ASA+CPG). Venous blood was collected, stimulated with thrombin, labeled with anti-CD41-FITC and anti-CD62P-PE, and analyzed by flow cytometry. Subsequently, animals were subjected to experimental stroke and tail bleeding tests. HT was quantified using NIH ImageJ software. In ASA+CPG mice, the platelet activation marker CD62P was reduced by 40.6 ± 4.2% (p < 0.0001) compared to controls. In vitro platelet function correlated inversely with tail bleeding tests (r = −0.8, p = 0.0033, n = 12). Twenty-four hours after drug withdrawal, platelet activation rates in ASA+CPG mice were still reduced by 20.2 ± 4.1% (p = 0.0026) compared to controls, while tail bleeding volumes were increased by 4.0 ± 1.4 μl (p = 0.004). Conventional tests using light transmission aggregometry require large amounts of blood and thus cannot be used in experimental stroke studies. In contrast, flow cytometry is a highly sensitive method that utilizes small volumes and can easily be incorporated into the experimental stroke workflow. Our test can be used to monitor the inhibitory effects of DAPT in mice. Reduced platelet activation is indicative of an increased risk for tPA-associated cerebral hemorrhage following experimental stroke. The test can be applied to individual animals and implemented flexibly prior and subsequent to experimental stroke.
Collapse
Affiliation(s)
- Franziska Lieschke
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Yi Zheng
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Jan Hendrik Schaefer
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Christian Foerch
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Smeda M, Kieronska A, Proniewski B, Jasztal A, Selmi A, Wandzel K, Zakrzewska A, Wojcik T, Przyborowski K, Derszniak K, Stojak M, Kaczor D, Buczek E, Watala C, Wietrzyk J, Chlopicki S. Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour. Oncotarget 2018; 9:17810-17824. [PMID: 29707148 PMCID: PMC5915156 DOI: 10.18632/oncotarget.24891] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
Platelet inhibition has been considered an effective strategy for combating cancer metastasis and compromising disease malignancy although recent clinical data provided evidence that long-term platelet inhibition might increase incidence of cancer deaths in initially cancer-free patients. In the present study we demonstrated that dual anti-platelet therapy based on aspirin and clopidogrel (ASA+Cl), a routine regiment in cardiovascular patients, when given to cancer-bearing mice injected orthotopically with 4T1 breast cancer cells, promoted progression of the disease and reduced mice survival in association with induction of vascular mimicry (VM) in primary tumour. In contrast, treatment with ASA+Cl or platelet depletion did reduce pulmonary metastasis in mice, if 4T1 cells were injected intravenously. In conclusion, distinct platelet-dependent mechanisms inhibited by ASA+Cl treatment promoted cancer malignancy and VM in the presence of primary tumour and afforded protection against pulmonary metastasis in the absence of primary tumour. In view of our data, long-term inhibition of platelet function by dual anti-platelet therapy (ASA+Cl) might pose a hazard when applied to a patient with undiagnosed and untreated malignant cancer prone to undergo VM.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Anna Kieronska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Anna Selmi
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Krystyna Wandzel
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Tomasz Wojcik
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Katarzyna Derszniak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Dawid Kaczor
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Kosciuszki 4, Lodz 90-419, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Rudolfa Weigla 4, Wroclaw 53-114, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
- Chair of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, Krakow 31-531, Poland
| |
Collapse
|
7
|
Bekő K, Koványi B, Gölöncsér F, Horváth G, Dénes Á, Környei Z, Botz B, Helyes Z, Müller CE, Sperlágh B. Contribution of platelet P2Y 12 receptors to chronic Complete Freund's adjuvant-induced inflammatory pain. J Thromb Haemost 2017; 15:1223-1235. [PMID: 28345287 DOI: 10.1111/jth.13684] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/30/2022]
Abstract
Essentials The role of platelet P2Y12 receptors in the regulation of chronic inflammatory pain is unknown. Complete Freund's Adjuvant (CFA)-induced chronic inflammatory pain model was used in mice. Gene deficiency and antagonists of P2Y12 receptors attenuate hyperalgesia and local inflammation. Platelet P2Y12 receptors contribute to these effects in the chronic phase of inflammation. SUMMARY Background P2Y12 receptor antagonists are widely used in clinical practice to inhibit platelet aggregation. P2Y12 receptors are also known to regulate different forms of pain as well as local and systemic inflammation. However, it is not known whether platelet P2Y12 receptors contribute to these effects. Objectives To explore the contribution of platelet P2Y12 receptors to chronic inflammatory pain in mice. Methods Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain was induced in wild-type and P2ry12 gene-deficient (P2ry12-/- ) mice, and the potent, direct-acting and reversible P2Y12 receptor antagonists PSB-0739 and cangrelor were used. Results CFA-induced mechanical hyperalgesia was significantly decreased in P2ry12-/- mice for up to 14 days, and increased neutrophil myeloperoxidase activity and tumor necrosis factor (TNF)-α and CXCL1 (KC) levels in the hind paws were also attenuated in the acute inflammation phase. At day 14, increased interleukin (IL)-1β, IL-6, TNF-α and KC levels were attenuated in P2ry12-/- mice. PSB-0739 and cangrelor reversed hyperalgesia in wild-type mice but had no effect in P2ry12-/- mice, and PSB-0739 was also effective when applied locally. The effects of both local and systemic PSB-0739 were prevented by A-803467, a selective NaV1.8 channel antagonist, suggesting the involvement of NaV1.8 channels in the antihyperalgesic effect. Platelet depletion by anti-mouse CD41 antibody decreased hyperalgesia and attenuated the proinflammatory cytokine response in wild-type but not in P2ry12-/- mice on day 14. Conclusions In conclusion, P2Y12 receptors regulate CFA-induced hyperalgesia and the local inflammatory response, and platelet P2Y12 receptors contribute to these effects in the chronic inflammation phase.
Collapse
Affiliation(s)
- K Bekő
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - B Koványi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - F Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - G Horváth
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Á Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Z Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - B Botz
- Department of Pharmacology and Pharmacotherapy, Center for Neuroscience, and Molecular Pharmacology, Research Team, János Szentágothai Research Center, University of Pécs, University of Pécs Medical School, Pécs, Hungary
| | - Z Helyes
- Department of Pharmacology and Pharmacotherapy, Center for Neuroscience, and Molecular Pharmacology, Research Team, János Szentágothai Research Center, University of Pécs, University of Pécs Medical School, Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - C E Müller
- Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - B Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Luzak B, Kassassir H, Rój E, Stanczyk L, Watala C, Golanski J. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. Arch Physiol Biochem 2017; 123:54-60. [PMID: 27855519 DOI: 10.1080/13813455.2016.1247284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hop cones (Humulus lupulus L.), very rich source of phenolic compounds, possessing anticancer, antioxidant and anti-inflammatory activities, are considered as beneficial diet ingredients improving human health. In this study, the antiplatelet action of xanthohumol (XN), the principal flavonoid in hop cones, was investigated. XN significantly attenuated ADP-induced blood platelet aggregation (97.2 ± 35.7 AU for 6 μg/ml of XN vs. 120.4 ± 30.1 AU for 0.17% dimethyl sulfoxide (DMSO), p < 0.001) and significantly reduced the expression of fibrinogen receptor (activated form of GPIIbIIIa) on platelets' surface (47.6 ± 15.8 for 1.5 μg/ml XN, 44.6 ± 17.3% for 3 μg/ml XN vs. 54.5 ± 19.2% for control or 43.3 ± 18.4% for 6 μg/ml XN vs. 49.7 ± 19.4% for 0.17% DMSO, p < 0.05 or less). These findings suggest that the phenolic compounds originating from hops (XN) have a novel role as antiplatelet agents and can likely be used as dietary supplements in prophylactic approaches.
Collapse
Affiliation(s)
- Boguslawa Luzak
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| | - Hassan Kassassir
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| | - Edward Rój
- b New Chemical Syntheses Institute , Pulawy , Poland
| | - Lidia Stanczyk
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| | - Cezary Watala
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| | - Jacek Golanski
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| |
Collapse
|
9
|
Przyborowski K, Kassassir H, Wojewoda M, Kmiecik K, Sitek B, Siewiera K, Zakrzewska A, Rudolf AM, Kostogrys R, Watala C, Zoladz JA, Chlopicki S. Effects of a single bout of strenuous exercise on platelet activation in female ApoE/LDLR -/- mice. Platelets 2017; 28:657-667. [PMID: 28067100 DOI: 10.1080/09537104.2016.1254764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Strenuous physical exercise leads to platelet activation that is normally counterbalanced by the production of endothelium-derived anti-platelet mediators, including prostacyclin (PGI2) and nitric oxide (NO). However, in the case of endothelial dysfunction, e.g. in atherosclerosis, there exists an increased risk for intravascular thrombosis during exercise that might be due to an impairment in endothelial anti-platelet mechanisms. In the present work, we evaluated platelet activation at rest and following a single bout of strenuous treadmill exercise in female ApoE/LDLR-/- mice with early (3-month-old) and advanced (7-month-old) atherosclerosis compared to female age-matched WT mice. In sedentary and post-exercise groups of animals, we analyzed TXB2 generation and the expression of platelet activation markers in the whole blood ex vivo assay. We also measured pre- and post-exercise plasma concentration of 6-keto-PGF1α, nitrite/nitrate, lipid profile, and blood cell count. Sedentary 3- and 7-month-old ApoE/LDLR-/- mice displayed significantly higher activation of platelets compared to age-matched wild-type (WT) mice, as evidenced by increased TXB2 production, expression of P-selectin, and activation of GPIIb/IIIa receptors, as well as increased fibrinogen and von Willebrand factor (vWf) binding. Interestingly, in ApoE/LDLR-/- but not in WT mice, strenuous exercise partially inhibited TXB2 production, the expression of activated GPIIb/IIIa receptors, and fibrinogen binding, with no effect on the P-selectin expression and vWf binding. Post-exercise down-regulation of the activated GPIIb/IIIa receptor expression and fibrinogen binding was not significantly different between 3- and 7-month-old ApoE/LDLR-/- mice; however, only 7-month-old ApoE/LDLR-/- mice showed lower TXB2 production after exercise. In female 4-6-month-old ApoE/LDLR-/- but not in WT mice, an elevated pre- and post-exercise plasma concentration of 6-keto-PGF1α was observed. In turn, the pre- and post-exercise plasma concentrations of nitrite (NO2-) and nitrate (NO3-) were decreased in ApoE/LDLR-/- as compared to that in age-matched WT mice. In conclusion, we demonstrated overactivation of platelets in ApoE/LDLR-/- as compared to WT mice. However, platelet activation in ApoE/LDLR-/- mice was not further increased by strenuous exercise, but was instead attenuated, a phenomenon not observed in WT mice. This phenomenon could be linked to compensatory up-regulation of PGI2-dependent anti-platelet mechanisms in ApoE/LDLR-/- mice.
Collapse
Affiliation(s)
- K Przyborowski
- a Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Krakow , Poland
| | - H Kassassir
- b Department of Haemostasis and Haemostatic Disorders , Chair of Biomedical Sciences, Medical University of Lodz , Lodz , Poland
| | - M Wojewoda
- a Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Krakow , Poland
| | - K Kmiecik
- a Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Krakow , Poland
| | - B Sitek
- a Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Krakow , Poland
| | - K Siewiera
- b Department of Haemostasis and Haemostatic Disorders , Chair of Biomedical Sciences, Medical University of Lodz , Lodz , Poland
| | - A Zakrzewska
- a Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Krakow , Poland
| | - A M Rudolf
- a Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Krakow , Poland
| | - R Kostogrys
- c Department of Human Nutrition, Faculty of Food Technology , Agricultural University of Krakow , Krakow , Poland
| | - C Watala
- b Department of Haemostasis and Haemostatic Disorders , Chair of Biomedical Sciences, Medical University of Lodz , Lodz , Poland
| | - J A Zoladz
- d Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation , University School of Physical Education , Krakow , Poland
| | - S Chlopicki
- a Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Krakow , Poland.,e Chair of Pharmacology , Jagiellonian University Medical College , Krakow , Poland
| |
Collapse
|
10
|
Rozalski M, Kassassir H, Siewiera K, Klepacka A, Sychowski R, Watala C. Platelet activation patterns are different in mouse models of diabetes and chronic inhibition of nitric oxide synthesis. Thromb Res 2014; 133:1097-104. [DOI: 10.1016/j.thromres.2014.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/26/2014] [Accepted: 03/26/2014] [Indexed: 01/05/2023]
|