1
|
Shen J, Wang T, Xie T, Wang R, Zhu D, Li Y, Xue S, Liu Y, Zeng H, Zhao W, Wang S. The excellent performance of oxygen evolution reaction on stainless steel electrodes by halogen oxyacid salts etching. J Colloid Interface Sci 2024; 675:1011-1020. [PMID: 39003814 DOI: 10.1016/j.jcis.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Development of low-cost, efficient, and stable electrocatalysts for oxygen evolution reaction (OER) is the key issue for a large-scale hydrogen production. Recently, in-situ corrosion of stainless steel seems to be a feasible technique to obtain an efficient OER electrode, while a wide variety of corrosive agents often lead to significant difference in catalytic performance. Herein, we synthesized Ni-Fe based nanomaterials with OER activity through a facile one-step hydrothermal etching method of stainless steel mesh, and investigated the influence of three halogen oxyacid salts (KClO3, KBrO3, KIO3) on water oxidation performance. It was found that the reduction product of oxyacid salts has the pitting effect on the stainless steel, which plays an important role in regulating the morphology and composition of the nanomaterials. The KBrO3-derived electrode shows optimal OER performance, giving the small overpotential of 228 and 270 mV at 10 and 100 mA cm-2 respectively, a low Tafel slope of 36.2 mV dec-1, as well as durable stability in the long-time electrolysis. This work builds an internal relationship between the corrosive agents and the OER performance of the as-prepared electrodes, providing promising strategies and research foundations for further improving the OER performance and optimizing the structure of stainless steel electrodes.
Collapse
Affiliation(s)
- Junyu Shen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Tao Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Tailai Xie
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Ruihan Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Dingwei Zhu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Yuxi Li
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Siyi Xue
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Yazi Liu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China.
| | - Hehua Zeng
- School of Chemistry and Chemical Engineering, Changji University, Changji, PR China.
| | - Wei Zhao
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Li Y, Sun B, Liu C, Zhao Z, Ning H, Zhang P, Li F, Sun L, Li F. Promoting Water Oxidation by Proton Acceptable Groups Surrounding Catalyst on Electrode Surface. CHEMSUSCHEM 2024; 17:e202400735. [PMID: 38771427 DOI: 10.1002/cssc.202400735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Large-scale hydrogen production through water splitting represents an optimal approach for storing sustainable but intermittent energy sources. However, water oxidation, a complex and sluggish reaction, poses a significant bottleneck for water splitting efficiency. The impact of outer chemical environments on the reaction kinetics of water oxidation catalytic centers remains unexplored. Herein, chemical environment impacts were integrated by featuring methylpyridinium cation group (Py+) around the classic Ru(bpy)(tpy) (bpy=2,2'-bipyridine, tpy=2,2' : 6',2''-terpyridine) water oxidation catalyst on the electrode surface via electrochemical co-polymerization. The presence of Py+ groups could significantly enhance the turnover frequencies of Ru(bpy)(tpy), surpassing the performance of typical proton acceptors such as pyridine and benzoic acid anchored around the catalyst. Mechanistic investigations reveal that the flexible internal proton acceptor anions induced by Py+ around Ru(bpy)(tpy) are more effective than conventionally anchored proton acceptors, which promoted the rate-determining proton transfer process and enhanced the rate of water nucleophilic attack during O-O bond formation. This study may provide a novel perspective on achieving efficient water oxidation systems by integrating cations into the outer chemical environments of catalytic centers.
Collapse
Affiliation(s)
- Yingzheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Bin Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Hongxia Ning
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024, Hangzhou, Zhejiang, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China
| |
Collapse
|
3
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
4
|
Malik DD, Ryu W, Kim Y, Singh G, Kim JH, Sankaralingam M, Lee YM, Seo MS, Sundararajan M, Ocampo D, Roemelt M, Park K, Kim SH, Baik MH, Shearer J, Ray K, Fukuzumi S, Nam W. Identification, Characterization, and Electronic Structures of Interconvertible Cobalt-Oxygen TAML Intermediates. J Am Chem Soc 2024; 146:13817-13835. [PMID: 38716885 PMCID: PMC11216523 DOI: 10.1021/jacs.3c14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.
Collapse
Affiliation(s)
- Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wooyeol Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Gurjot Singh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Michael Roemelt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Yu K, Wang T, Sun Y, Kang M, Wang X, Zhu D, Xue S, Shen J, Zhang Q, Liu J. Impact of the hybridization form of the coordinated nitrogen atom on the electrocatalytic water oxidation performance of copper complexes with pentadentate amine-pyridine ligands. Dalton Trans 2024; 53:612-618. [PMID: 38063675 DOI: 10.1039/d3dt03185c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The field of molecular catalysts places a strong emphasis on the connection between the ligand structure and its catalytic performance. Herein, we changed the type of coordinated nitrogen atom in pentadentate amine-pyridine ligands to explore the impact of its hybridization form on the water oxidation performance of copper complexes. In the electrochemical tests, the copper complex bearing dipyridine-triamine displayed an apparently higher rate constant of 4.97 s-1, while the copper complex with tripyridine-diamine demonstrated overpotential reduction by 56 mV and better long-term electrolytic stability.
Collapse
Affiliation(s)
- Kaishan Yu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, P. R. China.
| | - Tao Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Yue Sun
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Mei Kang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Xinxin Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Dingwei Zhu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Siyi Xue
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Junyu Shen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Qijian Zhang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Jinxuan Liu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, P. R. China.
| |
Collapse
|
6
|
Minadakis MP, Canton-Vitoria R, Stangel C, Klontzas E, Arenal R, Hernández-Ferrer J, Benito AM, Maser WK, Tagmatarchis N. Tungsten Disulfide-Interfacing Nickel-Porphyrin For Photo-Enhanced Electrocatalytic Water Oxidation. CHEMSUSCHEM 2023; 16:e202202322. [PMID: 36629277 DOI: 10.1002/cssc.202202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Covalent functionalization of tungsten disulfide (WS2 ) with photo- and electro-active nickel-porphyrin (NiP) is reported. Exfoliated WS2 interfacing NiP moieties with 1,2-dithiolane linkages is assayed in the oxygen evolution reaction under both dark and illuminated conditions. The hybrid material presented, WS2 -NiP, is fully characterized with complementary spectroscopic, microscopic, and thermal techniques. Standard yet advanced electrochemical techniques, such as linear sweep voltammetry, electrochemical impedance spectroscopy, and calculation of the electrochemically active surface area, are used to delineate the catalytic profile of WS2 -NiP. In-depth study of thin films with transient photocurrent and photovoltage response assays uncovers photo-enhanced electrocatalytic behavior. The observed photo-enhanced electrocatalytic activity of WS2 -NiP is attributed to the presence of Ni centers coordinated and stabilized by the N4 motifs of tetrapyrrole rings at the tethered porphyrin derivative chains, which work as photoreceptors. This pioneering work opens wide routes for water oxidation, further contributing to the development of non-noble metal electrocatalysts.
Collapse
Affiliation(s)
- Michail P Minadakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Ruben Canton-Vitoria
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Emmanuel Klontzas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U. de Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain
- ARAID Foundation, 50018, Zaragoza, Spain
| | | | - Ana M Benito
- Instituto de Carboquímica (ICB-CSIC), C/Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - Wolfgang K Maser
- Instituto de Carboquímica (ICB-CSIC), C/Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| |
Collapse
|
7
|
den Boer D, Konovalov AI, Siegler MA, Hetterscheid DGH. Unusual Water Oxidation Mechanism via a Redox-Active Copper Polypyridyl Complex. Inorg Chem 2023; 62:5303-5314. [PMID: 36989161 PMCID: PMC10091478 DOI: 10.1021/acs.inorgchem.3c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 03/30/2023]
Abstract
To improve Cu-based water oxidation (WO) catalysts, a proper mechanistic understanding of these systems is required. In contrast to other metals, high-oxidation-state metal-oxo species are unlikely intermediates in Cu-catalyzed WO because π donation from the oxo ligand to the Cu center is difficult due to the high number of d electrons of CuII and CuIII. As a consequence, an alternative WO mechanism must take place instead of the typical water nucleophilic attack and the inter- or intramolecular radical-oxo coupling pathways, which were previously proposed for Ru-based catalysts. [CuII(HL)(OTf)2] [HL = Hbbpya = N,N-bis(2,2'-bipyrid-6-yl)amine)] was investigated as a WO catalyst bearing the redox-active HL ligand. The Cu catalyst was found to be active as a WO catalyst at pH 11.5, at which the deprotonated complex [CuII(L-)(H2O)]+ is the predominant species in solution. The overall WO mechanism was found to be initiated by two proton-coupled electron-transfer steps. Kinetically, a first-order dependence in the catalyst, a zeroth-order dependence in the phosphate buffer, a kinetic isotope effect of 1.0, a ΔH⧧ value of 4.49 kcal·mol-1, a ΔS⧧ value of -42.6 cal·mol-1·K-1, and a ΔG⧧ value of 17.2 kcal·mol-1 were found. A computational study supported the formation of a Cu-oxyl intermediate, [CuII(L•)(O•)(H2O)]+. From this intermediate onward, formation of the O-O bond proceeds via a single-electron transfer from an approaching hydroxide ion to the ligand. Throughout the mechanism, the CuII center is proposed to be redox-inactive.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Andrey I. Konovalov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
8
|
Li YY, Wang XY, Li HJ, Chen JY, Kou YH, Li X, Wang Y. Theoretical study on the mechanism of water oxidation catalyzed by a mononuclear copper complex: important roles of a redox non-innocent ligand and HPO 4 2- anion. RSC Adv 2023; 13:8352-8359. [PMID: 36926005 PMCID: PMC10011972 DOI: 10.1039/d3ra00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
The water oxidation reaction is the bottleneck problem of the artificial photosynthetic system. In this work, the mechanism of water oxidation catalyzed by a mononuclear copper complex in alkaline conditions was studied by density functional calculations. Firstly, a water molecule coordinating with the copper center of the complex (Cuii, 1) generates Cuii-H2O (2). 2 undergoes two proton-coupled electron transfer processes to produce intermediate (4). The oxidation process occurs mainly on the ligand moiety, and 4 (˙L-Cuii-O˙) can be described as a Cuii center interacting with a ligand radical antiferromagnetically and an oxyl radical ferromagnetically. 4 is the active species that can trigger O-O bond formation via the water nucleophilic attack mechanism. This process occurs in a step-wise manner. The attacking water transfers one of the protons to the HPO4 2- coupled with an electron transfer to the ligand radical, which generates a transient OH˙ interacting with the oxyl radical and H2PO4 -. Then the O-O bond is formed through the direct coupling of the oxo radical and the OH radical. The triplet di-oxygen could be released after two oxidation processes. According to the Gibbs free energy diagram, the O-O bond formation was suggested to be the rate-limiting step with a calculated total barrier of 19.5 kcal mol-1. More importantly, the copper complex catalyzing water oxidation with the help of a redox non-innocent ligand and HPO4 2- was emphasized.
Collapse
Affiliation(s)
- Ying-Ying Li
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Xiao-Yan Wang
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Hui-Ji Li
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yao-Hua Kou
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Yaping Wang
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| |
Collapse
|
9
|
Bidirectional O2 reduction/H2O oxidation boosted by a pentadentate pyridylalkylamine copper(II) complex. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Zhao X, Li J, Jian H, Lu M, Wang M. Two Novel Schiff Base Manganese Complexes as Bifunctional Electrocatalysts for CO 2 Reduction and Water Oxidation. Molecules 2023; 28:1074. [PMID: 36770742 PMCID: PMC9920694 DOI: 10.3390/molecules28031074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
One mononuclear Mn(III) complex [MnIIIL(H2O)(MeCN)](ClO4) (1) and one hetero-binuclear complex [(CuIILMnII(H2O)3)(CuIIL)2](ClO4)2·CH3OH (2) have been synthesized with the Schiff base ligand (H2L = N,N'-bis(3-methoxysalicylidene)-1,2-phenylenediamine). Single crystal X-ray structural analysis manifests that the Mn(III) ion in 1 has an octahedral coordination structure, whereas the Mn(II) ion in 2 possesses a trigonal bipyramidal configuration and the Cu(II) ion in 2 is four-coordinated with a square-planar geometry. Electrochimerical catalytic investigation demonstrates that the two complexes can electrochemically catalyze water oxidation and CO2 reduction simultaneously. The coordination environments of the Mn(III), Mn(II), and Cu(II) ions in 1 and 2 were provided by the Schiff base ligand (L) and labile solvent molecules. The coordinately unsaturated environment of the Cu(II) center in 2 can perfectly facilitate the catalytic performance of 2. Complexes 1 and 2 display that the over potentials for water oxidation are 728 mV and 216 mV, faradaic efficiencies (FEs) are 88% and 92%, respectively, as well as the turnover frequency (TOF) values for the catalytic reduction of CO2 to CO are 0.38 s-1 at -1.65 V and 15.97 s-1 at -1.60 V, respectively. Complex 2 shows much better catalytic performance for both water oxidation and CO2 reduction than that of complex 1, which could be owing to a structural reason which is attributed to the synergistic catalytic action of the neighboring Mn(III) and Cu(II) active sites in 2. Complexes 1 and 2 are the first two compounds coordinated with Schiff base ligand for both water oxidation and CO2 reduction. The finding in this work can offer significant inspiration for the future development of electrocatalysis in this area.
Collapse
Affiliation(s)
- Xin Zhao
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Jingjing Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hengxin Jian
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Mengyu Lu
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Mei Wang
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
11
|
Wang L, Wang L. Ligands modification strategies for mononuclear water splitting catalysts. Front Chem 2022; 10:996383. [PMID: 36238101 PMCID: PMC9551221 DOI: 10.3389/fchem.2022.996383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Artificial photosynthesis (AP) has been proved to be a promising way of alleviating global climate change and energy crisis. Among various materials for AP, molecular complexes play an important role due to their favorable efficiency, stability, and activity. As a result of its importance, the topic has been extensively reviewed, however, most of them paid attention to the designs and preparations of complexes and their water splitting mechanisms. In fact, ligands design and preparation also play an important role in metal complexes’ properties and catalysis performance. In this review, we focus on the ligands that are suitable for designing mononuclear catalysts for water splitting, providing a coherent discussion at the strategic level because of the availability of various activity studies for the selected complexes. Two main designing strategies for ligands in molecular catalysts, substituents modification and backbone construction, are discussed in detail in terms of their potentials for water splitting catalysts.
Collapse
|
12
|
Zhang X, Chen QF, Deng J, Xu X, Zhan J, Du HY, Yu Z, Li M, Zhang MT, Shao Y. Identifying Metal-Oxo/Peroxo Intermediates in Catalytic Water Oxidation by In Situ Electrochemical Mass Spectrometry. J Am Chem Soc 2022; 144:17748-17752. [PMID: 36149317 DOI: 10.1021/jacs.2c07026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular catalysis of water oxidation has been intensively investigated, but its mechanism is still not yet fully understood. This study aims at capturing and identifying key short-lived intermediates directly during the water oxidation catalyzed by a cobalt-tetraamido macrocyclic ligand complex using a newly developed an in situ electrochemical mass spectrometry (EC-MS) method. Two key ligand-centered-oxidation intermediates, [(L2-)CoIIIOH] and [(L2-)CoIIIOOH], were directly observed for the first time, and further confirmed by 18O-labeling and collision-induced dissociation studies. These experimental results further confirmed the rationality of the water nucleophilic attack mechanism for the single-site water oxidation catalysis. This work also demonstrated that such an in situ EC-MS method is a promising analytical tool for redox catalytic processes, not only limited to water oxidation.
Collapse
Affiliation(s)
- Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jintao Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyu Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jirui Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao-Yi Du
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63939-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Wu P, Yan S, Fang W, Wang B. Molecular Mechanism of the Mononuclear Copper Complex-Catalyzed Water Oxidation from Cluster-Continuum Model Calculations. CHEMSUSCHEM 2022; 15:e202102508. [PMID: 35080143 DOI: 10.1002/cssc.202102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cluster-continuum model calculations were conducted to decipher the mechanism of water oxidation catalyzed by a mononuclear copper complex. Among various O-O bond formation mechanisms investigated in this study, the most favorable pathway involved the nucleophilic attack of OH- onto the .+ L-CuII -OH- intermediate. During such process, the initial binding of OH- to the proximity of .+ L-CuII -OH- would result in the spontaneous oxidation of OH- , leading to OH⋅ radical and CuII -OH- species. The further O-O coupling between OH⋅ radical and CuII -OH- was associated with a barrier of 14.8 kcal mol-1 , leading to the formation of H2 O2 intermediate. Notably, the formation of "CuIII -O.- " species, a widely proposed active species for O-O bond formation, was found to be thermodynamically unfavorable and could be bypassed during the catalytic reactions. On the basis the present calculations, a catalytic cycle of the mononuclear copper complex-catalyzed water oxidation was proposed.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| |
Collapse
|
15
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Yu K, Sun Y, Zhu D, Xu Z, Wang J, Shen J, Zhang Q, Zhao W. A low-cost commercial Cu( ii)–EDTA complex for electrocatalytic water oxidation in neutral aqueous solution. Chem Commun (Camb) 2022; 58:12835-12838. [DOI: 10.1039/d2cc04846a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A low-cost commercial Cu complex [Cu(EDTA)(H2O)] is developed as a molecular catalyst for OER with high efficiency and durable stability.
Collapse
Affiliation(s)
- Kaishan Yu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yue Sun
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dingwei Zhu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Ziyi Xu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Jiayi Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Junyu Shen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qijian Zhang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Wei Zhao
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
17
|
Li YY, Liao RZ. Mechanism of water oxidation catalyzed by vitamin B12: Redox non-innocent nature of corrin ligand and crucial role of phosphate. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Younus HA, Yildiz I, Ahmad N, Mohamed HS, Khabiri G, Zhang S, Verpoort F, Liu P, Zhang Y. Half‐sandwich ruthenium complex with a very low overpotential and excellent activity for water oxidation under acidic conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hussein A. Younus
- College of Materials Science and Engineering Hunan University Changsha China
- Chemistry Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Ibrahim Yildiz
- College of Arts and Sciences Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| | - Nazir Ahmad
- Department of Chemistry Government College University Lahore Pakistan
| | - Hemdan S. Mohamed
- Physics Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Gomaa Khabiri
- Physics Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Shiguo Zhang
- College of Materials Science and Engineering Hunan University Changsha China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Piao Liu
- Hunan LEED Electronic Ink Co., Ltd. Zhuzhou China
| | - Yan Zhang
- College of Materials Science and Engineering Hunan University Changsha China
| |
Collapse
|
19
|
Spinel ferrite MFe2O4 (M = Ni, Co, or Cu) nanoparticles prepared by a proteic sol-gel route for oxygen evolution reaction. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Li Y, Meijer EJ, Liao R. Elucidating the Role of Aqueous Solvent in an Iron‐Based Water Oxidation System by DFT‐based Molecular Simulation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying‐Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 P. R. China
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam (The Netherlands
| | - Evert Jan Meijer
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam (The Netherlands
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 P. R. China
| |
Collapse
|
21
|
Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63647-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Chen Q, Du H, Zhang M. Buffer anion effects on water oxidation catalysis: The case of Cu(III) complex. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63729-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhang XP, Wang HY, Zheng H, Zhang W, Cao R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63681-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Xu Z, Zheng Z, Chen Q, Wang J, Yu K, Xia X, Shen J, Zhang Q. Electrocatalytic water oxidation by a water-soluble copper complex with a pentadentate amine-pyridine ligand. Dalton Trans 2021; 50:10888-10895. [PMID: 34308951 DOI: 10.1039/d1dt01821c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-soluble copper complex with a diamine-tripyridine ligand was synthesized successfully and well characterized. It was found to be catalytically active for the water oxidation reaction under basic conditions. Based on the electrochemical test result, this copper complex displayed an apparent rate constant (kcat) of 0.81 s-1 for the oxygen evolution reaction in 0.1 M phosphate buffer solution at pH 11.0. More importantly, the copper complex remained stable over 3 h of a bulk electrolysis experiment at 1.60 V with a Faradaic efficiency of 90.7% for O2 evolution, and the decrement of current density was only 1.9%. These results suggest that the pentadentate copper complex is an efficient and durable homogeneous Earth-abundant electrocatalyst for water oxidation.
Collapse
Affiliation(s)
- Ziyi Xu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Zilin Zheng
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Qi Chen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Jiayi Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Kaishan Yu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Xin Xia
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Junyu Shen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China. and Changshu Research Institute, Dalian University of Technology, Changshu 215500, P. R. China
| | - Qijian Zhang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| |
Collapse
|
25
|
Kondo M, Tatewaki H, Masaoka S. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chem Soc Rev 2021; 50:6790-6831. [PMID: 33977932 DOI: 10.1039/d0cs01442g] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four-electron oxidation of water (2H2O → O2 + 4H+ + 4e-) is considered the main bottleneck in artificial photosynthesis. In nature, this reaction is catalysed by a Mn4CaO5 cluster embedded in the oxygen-evolving complex of photosystem II. Ruthenium-based complexes have been successful artificial molecular catalysts for mimicking this reaction. However, for practical and large-scale applications in the future, molecular catalysts that contain earth-abundant first-row transition metal ions are preferred owing to their high natural abundance, low risk of depletion, and low costs. In this review, the frontier of water oxidation reactions mediated by first-row transition metal complexes is described. Special attention is paid towards the design of molecular structures of the catalysts and their reaction mechanisms, and these factors are expected to serve as guiding principles for creating efficient and robust molecular catalysts for water oxidation using ubiquitous elements.
Collapse
Affiliation(s)
- Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan
| | - Hayato Tatewaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Mn-corrolazine-based 2D-nanocatalytic material with single Mn atoms for catalytic oxidation of alkane to alcohol. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63707-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Tuning the O–O bond formation pathways of molecular water oxidation catalysts on electrode surfaces via second coordination sphere engineering. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63671-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Wang Z, Wang J, Sun Z, Xiang W, Shen C, Rui N, Ding M, Yuan Y, Cui H, Liu CJ. Electron-induced rapid crosslinking in supramolecular metal-peptide assembly and chemically responsive disaggregation for catalytic application. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63655-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Zhang L, Mathew S, Hessels J, Reek JNH, Yu F. Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:234-250. [PMID: 32991076 PMCID: PMC7820963 DOI: 10.1002/cssc.202001876] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Indexed: 05/06/2023]
Abstract
Strategies that enable the renewable production of storable fuels (i. e. hydrogen or hydrocarbons) through electrocatalysis continue to generate interest in the scientific community. Of central importance to this pursuit is obtaining the requisite chemical (H+ ) and electronic (e- ) inputs for fuel-forming reduction reactions, which can be met sustainably by water oxidation catalysis. Further possibility exists to couple these redox transformations to renewable energy sources (i. e. solar), thus creating a carbon neutral solution for long-term energy storage. Nature uses a Mn-Ca cluster for water oxidation catalysis via multiple proton-coupled electron-transfers (PCETs) with a photogenerated bias to perform this process with TOF 100∼300 s-1 . Synthetic molecular catalysts that efficiently perform this conversion commonly utilize rare metals (e. g., Ru, Ir), whose low abundance are associated to higher costs and scalability limitations. Inspired by nature's use of 1st row transition metal (TM) complexes for water oxidation catalysts (WOCs), attempts to use these abundant metals have been intensively explored but met with limited success. The smaller atomic size of 1st row TM ions lowers its ability to accommodate the oxidative equivalents required in the 4e- /4H+ water oxidation catalysis process, unlike noble metal catalysts that perform single-site electrocatalysis at lower overpotentials (η). Overcoming the limitations of 1st row TMs requires developing molecular catalysts that exploit biomimetic phenomena - multiple-metal redox-cooperativity, PCET and second-sphere interactions - to lower the overpotential, preorganize substrates and maintain stability. Thus, the ultimate goal of developing efficient, robust and scalable WOCs remains a challenge. This Review provides a summary of previous research works highlighting 1st row TM-based homogeneous WOCs, catalytic mechanisms, followed by strategies for catalytic activity improvements, before closing with a future outlook for this field.
Collapse
Affiliation(s)
- Lu‐Hua Zhang
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Simon Mathew
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joeri Hessels
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Fengshou Yu
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| |
Collapse
|
30
|
Benkó T, Lukács D, Frey K, Németh M, Móricz MM, Liu D, Kováts É, May NV, Vayssieres L, Li M, Pap JS. Redox-inactive metal single-site molecular complexes: a new generation of electrocatalysts for oxygen evolution? Catal Sci Technol 2021. [DOI: 10.1039/d1cy01087e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bypassing the metal-based oxidation in a Cu-containing water oxidation catalytic system.
Collapse
Affiliation(s)
- Tímea Benkó
- Centre for Energy Research, Institute for Energy Security and Environmental Safety, Surface Chemistry and Catalysis Department, Konkoly-Thege street 29-33, 1121 Budapest, Hungary
| | - Dávid Lukács
- Centre for Energy Research, Institute for Energy Security and Environmental Safety, Surface Chemistry and Catalysis Department, Konkoly-Thege street 29-33, 1121 Budapest, Hungary
| | - Krisztina Frey
- Centre for Energy Research, Institute for Energy Security and Environmental Safety, Surface Chemistry and Catalysis Department, Konkoly-Thege street 29-33, 1121 Budapest, Hungary
| | - Miklós Németh
- Centre for Energy Research, Institute for Energy Security and Environmental Safety, Surface Chemistry and Catalysis Department, Konkoly-Thege street 29-33, 1121 Budapest, Hungary
| | - Márta M. Móricz
- Centre for Energy Research, Institute for Energy Security and Environmental Safety, Surface Chemistry and Catalysis Department, Konkoly-Thege street 29-33, 1121 Budapest, Hungary
| | - Dongyu Liu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Éva Kováts
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Lionel Vayssieres
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - József S. Pap
- Centre for Energy Research, Institute for Energy Security and Environmental Safety, Surface Chemistry and Catalysis Department, Konkoly-Thege street 29-33, 1121 Budapest, Hungary
| |
Collapse
|
31
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
32
|
Hessels J, Masferrer‐Rius E, Yu F, Detz RJ, Klein Gebbink RJM, Reek JNH. Nickel is a Different Pickle: Trends in Water Oxidation Catalysis for Molecular Nickel Complexes. CHEMSUSCHEM 2020; 13:6629-6634. [PMID: 33090703 PMCID: PMC7756549 DOI: 10.1002/cssc.202002164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The development of novel water oxidation catalysts is important in the context of renewable fuels production. Ligand design is one of the key tools to improve the activity and stability of molecular catalysts. The establishment of ligand design rules can facilitate the development of improved molecular catalysts. In this paper it is shown that chemical oxidants can be used to probe oxygen evolution activity for nickel-based systems, and trends are reported that can improve future ligand design. Interestingly, different ligand effects were observed in comparison to other first-row transition metal complexes. For example, nickel complexes with secondary amine donors were more active than with tertiary amine donors, which is the opposite for iron complexes. The incorporation of imine donor groups in a cyclam ligand resulted in the fastest and most durable nickel catalyst of our series, achieving oxygen evolution turnover numbers up to 380 and turnover frequencies up to 68 min-1 in a pH 5.0 acetate buffer using Oxone as oxidant. Initial kinetic experiments with this catalyst revealed a first order in chemical oxidant and a half order in catalyst. This implies a rate-determining oxidation step from a dimeric species that needs to break up to generate the active catalyst. These findings lay the foundation for the rational design of molecular nickel catalysts for water oxidation and highlight that catalyst design rules are not generally applicable for different metals.
Collapse
Affiliation(s)
- Joeri Hessels
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Eduard Masferrer‐Rius
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Fengshou Yu
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Remko J. Detz
- Current address: TNO Energy Transition, Energy Transition StudiesRadarweg 601043 NTAmsterdamThe Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
33
|
Lei H, Wang Y, Zhang Q, Cao R. First-row transition metal porphyrins for electrocatalytic hydrogen evolution — a SPP/JPP Young Investigator Award paper. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of first-row transition metal complexes of tetrakis(pentafluorophenyl)porphyrin (1), denoted as 1-M (M [Formula: see text] Mn, Fe, Co, Ni, Cu, and Zn), were synthesized and examined as electrocatalysts for the hydrogen evolution reaction (HER). All these transition metal porphyrins were shown to be active for HER in acetonitrile using trifluoroacetic acid (TFA) as the proton source. The molecular nature and the stability of these metal porphyrins when functioning as HER catalysts were confirmed, and all catalysts gave Faradaic efficiency of >97% for H2 generation during bulk electrolysis. Importantly, by using 1-Cu, a remarkably high turnover frequency (TOF) of 48500 s[Formula: see text] 1-Cu the most efficient among this series of metal porphyrin catalysts. This TOF value also represents one of the highest values reported in the literature. In addition, electrochemical analysis demonstrated that catalytic HER mechanisms with these 1-M complexes are different. These results show that with the same porphyrin ligand, the change of metal ions will have significant impact on both catalytic efficiency and mechanism. This work for the first time provides direct comparison of electrocatalytic HER features of transition metal complexes of tetrakis(pentafluorophenyl)porphyrin under identical conditions, and will be valuable for future design and development of more efficient HER electrocatalysts of this series.
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
34
|
Liu MR, Lin YP, Wang K, Chen S, Wang F, Zhou T. Hierarchical cobalt phenylphosphonate nanothorn flowers for enhanced electrocatalytic water oxidation at neutral pH. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63513-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Younus HA, Zhang Y, Vandichel M, Ahmad N, Laasonen K, Verpoort F, Zhang C, Zhang S. Water Oxidation at Neutral pH using a Highly Active Copper-Based Electrocatalyst. CHEMSUSCHEM 2020; 13:5088-5099. [PMID: 32667741 DOI: 10.1002/cssc.202001444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The sluggish kinetics of the oxygen evolution reaction (OER) at the anode severely limit hydrogen production at the cathode in water splitting systems. Although electrocatalytic systems based on cheap and earth-abundant copper catalysts have shown promise for water oxidation under basic conditions, only very few examples with high overpotential can be operated under acidic or neutral conditions, even though hydrogen evolution in the latter case is much easier. This work presents an efficient and robust Cu-based molecular catalyst, which self-assembles as a periodic film from its precursors under aqueous conditions on the surface of a glassy carbon electrode. This film catalyzes the OER under neutral conditions with impressively low overpotential. In controlled potential electrolysis, a stable catalytic current of 1.0 mA cm-2 can be achieved at only 2.0 V (vs. RHE) and no significant decrease in the catalytic current is observed even after prolonged bulk electrolysis. The catalyst displays first-order kinetics and a single site mechanism for water oxidation with a TOF (kcat ) of 0.6 s-1 . DFT calculations on of the periodic Cu(TCA)2 (HTCA=1-mesityl-1H-1,2,3-triazole-4-carboxylic acid) film reveal that TCA defects within the film create CuI active sites that provide a low overpotential route for OER, which involves CuI , CuII -OH, CuIII =O and CuII -OOH intermediates and is enabled at a potential of 1.54 V (vs. RHE), requiring an overpotential of 0.31 V. This corresponds well with an overpotential of approximately 0.29 V obtained experimentally for the grown catalytic film after 100 CV cycles at pH 6. However, to reach a higher current density of 1 mA cm-2 , an overpotential of 0.72 V is required.
Collapse
Affiliation(s)
- Hussein A Younus
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China
| | - Matthias Vandichel
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
- School of Chemical Engineering, Aalto University, 02150, Espoo, Finland
| | - Nazir Ahmad
- Department of Chemistry, GC University, Lahore, 54000, Pakistan
| | - Kari Laasonen
- School of Chemical Engineering, Aalto University, 02150, Espoo, Finland
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ce Zhang
- Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, P. R. China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
36
|
Li Q, Ren Y, Xie Q, Wu M, Feng H, Zheng L, Zhang H, Long J, Wang T. Nickel (II) tetrapyridyl complexes as electrocatalysts and precatalysts for water oxidation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qi‐Jun Li
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Ya‐Jie Ren
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Qin Xie
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Min Wu
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Hua‐Xing Feng
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Li‐Mei Zheng
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Hua‐Xin Zhang
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Jin‐Qiao Long
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
- College of Chemistry and Environment Engineering Baise University Baise Guangxi 533000 China
| | - Tian‐Shun Wang
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
- Research Institute of agro‐products quality safety and testing technology Guangxi Academy of Agriculture Sciences Nanning Guangxi 530007 China
| |
Collapse
|
37
|
Zhang H, Tian W, Duan X, Sun H, Liu S, Wang S. Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904037. [PMID: 31793723 DOI: 10.1002/adma.201904037] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Low-cost, nonprecious transition metal (TM) catalysts toward efficient water oxidation are of critical importance to future sustainable energy technologies. The advances in structure engineering of water oxidation catalysts (WOCs) with single TM centers as active sites, for example, single metallic molecular complexes (SMMCs), supported SMMCs, and single-atom catalysts (SACs) in recent reports are examined. The efforts made on these configurations in terms of design principle, advanced characterization, performances and theoretical studies, are critically reviewed. A clear roadmap with the correlations between the single-TM-site-based structures (coordination and geometric structure, TM species, support), and the catalytic performances in water oxidation is provided. The insights bridging SMMCs with SACs are also given. Finally, the challenges and opportunities in the single-TM-site catalysis are proposed.
Collapse
Affiliation(s)
- Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
38
|
Zhang X, Li YY, Jiang J, Zhang R, Liao RZ, Wang M. A Dinuclear Copper Complex Featuring a Flexible Linker as Water Oxidation Catalyst with an Activity Far Superior to Its Mononuclear Counterpart. Inorg Chem 2020; 59:5424-5432. [DOI: 10.1021/acs.inorgchem.9b03783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiongfei Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jian Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
39
|
Lee H, Wu X, Sun L. Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation. NANOSCALE 2020; 12:4187-4218. [PMID: 32022815 DOI: 10.1039/c9nr10437b] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water oxidation is currently believed to be the bottleneck in the field of electrochemical water splitting and artificial photosynthesis. Enormous efforts have been devoted toward the exploration of water oxidation catalysts (WOCs), including homogeneous and heterogeneous catalysts. Recently, Cu-based WOCs have been widely developed because of their high abundance, low cost, and biological relevance. However, to the best of our knowledge, no review has been made so far on such types of catalysts. Thus, we have summarized the recent progress made in the development of homogeneous and heterogeneous Cu-based WOCs for electrochemical catalysis. Furthermore, the evaluations of catalytic activity, stability, and mechanism of these catalysts are carefully concluded and highlighted. We believe that this review can summarize the current progress in the field of Cu-based electrochemical WOCs and help in the design of more efficient and stable WOCs.
Collapse
Affiliation(s)
- Husileng Lee
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China.
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China.
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China. and Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden and Institute for Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, China
| |
Collapse
|
40
|
Shen J, Zhang X, Cheng M, Jiang J, Wang M. Electrochemical Water Oxidation Catalyzed by N
4
‐Coordinate Copper Complexes with Different Backbones: Insight into the Structure‐Activity Relationship of Copper Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.201902035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junyu Shen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 P. R. China
- School of Chemistry and Material EngineeringChangshu Institute of Technology Changshu 215500 P. R. China
| | - Xiongfei Zhang
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 P. R. China
| | - Minglun Cheng
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 P. R. China
| | - Jian Jiang
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 P. R. China
| | - Mei Wang
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
41
|
Xiong N, Zhang G, Sun X, Zeng R. Metal‐Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900371] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ni Xiong
- Department of ChemistrySchool of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Guoxiang Zhang
- Department of ChemistrySchool of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Rong Zeng
- Department of ChemistrySchool of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
42
|
He X, Chen F, Zhang D, Li Y, Yang HL, Zhang XQ. Synthesis, Crystal Structure, Thermal Stability, Magnetic Property, and Biological Activity of a New Copper(II) Complex Based on 1,2,4-Benzenetricarboxylic Acid and 2,2′-Bipyridine. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiong He
- College of Chemistry and Bioengineering; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials; Guilin University of Technology; 541004 Guilin P. R. China
| | - Fang Chen
- College of Chemistry and Bioengineering; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials; Guilin University of Technology; 541004 Guilin P. R. China
| | - Dan Zhang
- College of Chemistry and Bioengineering; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials; Guilin University of Technology; 541004 Guilin P. R. China
| | - Yan Li
- College of Chemistry and Bioengineering; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials; Guilin University of Technology; 541004 Guilin P. R. China
| | - Hong-Li Yang
- College of Chemistry and Bioengineering; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials; Guilin University of Technology; 541004 Guilin P. R. China
| | - Xiu-Qing Zhang
- College of Chemistry and Bioengineering; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials; Guilin University of Technology; 541004 Guilin P. R. China
| |
Collapse
|
43
|
Electronic structure regulation on layered double hydroxides for oxygen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63284-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Huang J, Yue P, Wang L, She H, Wang Q. A review on tungsten-trioxide-based photoanodes for water oxidation. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63399-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Zhou L, Wu Y, Wang L, Yang Y, Na Y. Excellent performance of water oxidation at low bias potential achieved by transparent WO3/BiVO4 photoanode integrated with molecular nickel porphyrin. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Zhang Q, Guan J. Mono-/Multinuclear Water Oxidation Catalysts. CHEMSUSCHEM 2019; 12:3209-3235. [PMID: 31077565 DOI: 10.1002/cssc.201900704] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Water splitting, in which water molecules can be transformed into hydrogen and oxygen, is an appealing energy conversion and transformation strategy to address the environmental and energy crisis. The oxygen evolution reaction (OER) is dynamically slow, which limits energy conversion efficiency during the water-splitting process and requires high-efficiency water oxidation catalysts (WOCs) to overcome the OER energy barrier. It is generally accepted that multinuclear WOCs possess superior OER performances, as demonstrated by the CaMn4 O5 cluster in photosystem II (PSII), which can catalyze the OER efficiently with a very low overpotential. Inspired by the CaMn4 O5 cluster in PSII, some multinuclear WOCs were synthesized that could catalyze water oxidation. In addition, some mononuclear molecular WOCs also show high water oxidation activity. However, it cannot be excluded that the high activity arises from the formation of dimeric species. Recently, some mononuclear heterogeneous WOCs showed a high water oxidation activity, which testified that mononuclear active sites with suitable coordination surroundings could also catalyze water oxidation efficiently. This Review focuses on recent progress in the development of mono-/multinuclear homo- and heterogeneous catalysts for water oxidation. The active sites and possible catalytic mechanisms for water oxidation on the mono-/multinuclear WOCs are provided.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jingqi Guan
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| |
Collapse
|
47
|
Lei H, Li X, Meng J, Zheng H, Zhang W, Cao R. Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00310] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jia Meng
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
48
|
Garrido-Barros P, Grau S, Drouet S, Benet-Buchholz J, Gimbert-Suriñach C, Llobet A. Can Ni Complexes Behave as Molecular Water Oxidation Catalysts? ACS Catal 2019. [DOI: 10.1021/acscatal.8b03953] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo Garrido-Barros
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Campus
Sescelades, C/Marcel·lí Domingo, s/n, 43007 Tarragona, Spain
| | - Sergi Grau
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Samuel Drouet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
49
|
Szyrwiel Ł, Lukács D, Ishikawa T, Brasun J, Szczukowski Ł, Szewczuk Z, Setner B, Pap JS. Electrocatalytic water oxidation influenced by the ratio between Cu2+ and a multiply branched peptide ligand. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
50
|
Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem Rev 2019; 119:3962-4179. [DOI: 10.1021/acs.chemrev.8b00400] [Citation(s) in RCA: 1094] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|