1
|
Li S, Ye L, Cen W, Sun D. Electrocatalytic biomass upgrading coupled with hydrogen evolution and CO 2 reduction. NANOSCALE 2025; 17:6308-6328. [PMID: 39937545 DOI: 10.1039/d4nr04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Clean energy production and CO2 utilization have attracted increasing interest. Electrocatalysis represents an effective way to produce green hydrogen from water and reduce CO2 to valuable compounds. However, for either the hydrogen evolution reaction (HER) or the CO2 reduction reaction (CO2RR), the reaction efficiency is significantly limited by the slow kinetics of the oxygen evolution reaction (OER) at the anode, which consumes most of the input energy. Therefore, great efforts have been made to replace the OER with organic oxidation reactions at the anode to decrease the reaction energy barrier. Biomass has an advantage of broad source, and when it is employed as an OER alternative in the anode oxidation reactions, not only can the reduction reaction efficiency at the cathode including the HER and CO2RR be enhanced but high-value chemicals can also be obtained, representing an attractive OER alternative. This review comprehensively summarizes the recent achievements in electrocatalytic biomass upgrading coupled with the HER and CO2RR, cataloged based on the type of biomass. The design of electrocatalysts for such coupled reaction systems is discussed. Finally, the challenges and perspectives in the field of this energy-saving and value-added coupling system are provided to inspire more efforts in pushing forward the development of this field.
Collapse
Affiliation(s)
- Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Ye
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
2
|
Lavate SS, Srivastava R. Exploring Flower-Structured Bifunctional VCu Layered Double Hydroxide and its Nanohybrid with g-C 3N 4 for Electrochemical and Photoelectrochemical Seawater Electrolysis. CHEMSUSCHEM 2024; 17:e202400774. [PMID: 38747265 DOI: 10.1002/cssc.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Indexed: 10/22/2024]
Abstract
Seawater electrolysis holds great promise for sustainable green hydrogen generation, but its implementation is hindered by high energy consumption and electrode degradation. Two dimensional (2D) layered double hydroxide (LDH) exhibits remarkable stability, high catalytic activity, and excellent corrosion resistance in the harsh electrolytic environment. The synergistic effect between LDH and seawater ions enhances the oxygen evolution reaction, enabling efficient and sustainable green hydrogen generation. Here, we report a synthesis of low cost, novel 2D Vanadium Copper (VCu) LDH first time in the series of LDH's as a highly efficient bifunctional electrocatalyst. The electrochemical (EC) and photoelectrochemical (PEC) study of VCu LDH and VCu LDH/Graphite Carbon Nitride (g-C3N4) nanohybrid was performed in 0.5 M H2SO4 (acidic), 1 M KOH (basic), 0.5 M NaCl (artificial seawater), 0.5 M NaCl+1 M KOH (artificial alkaline seawater), real seawater and 1 M KOH+real seawater (alkaline real seawater) electrolyte medium. It was found that VCu LDH shows a remarkable lower overpotential of 72 mV hydrogen evolution reaction (HER) and 254 mV oxygen evolution reaction (OER) at current density of 10 mA/cm2 under alkaline real seawater electrolysis exhibiting bifunctional activity and also showing better stability.
Collapse
Affiliation(s)
- Sneha S Lavate
- Catalysis & Hydrogen Research Lab, Department of Petroleum Engineering School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382007
| | - Rohit Srivastava
- Catalysis & Hydrogen Research Lab, Department of Petroleum Engineering School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382007
| |
Collapse
|
3
|
Wang C, Zhao S, Han G, Bian H, Zhao X, Wang L, Xie G. Hierarchical Porous Nonprecious High-entropy Alloys for Ultralow Overpotential in Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301691. [PMID: 38372003 DOI: 10.1002/smtd.202301691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Water electrolysis is considered the cleanest method for hydrogen production. However, the widespread popularization of water splitting is limited by the high cost and scarce resources of efficient platinum group metals. Hence, it is imperative to develop an economical and high-performance electrocatalyst to improve the efficiency of hydrogen evolution reaction (HER). In this study, a hierarchical porous sandwich structure is fabricated through dealloying FeCoNiCuAl2Mn high-entropy alloy (HEA). This free-standing electrocatalyst shows outstanding HER performance with a very small overpotential of 9.7 mV at 10 mA cm-2 and a low Tafel slope of 56.9 mV dec-1 in 1 M KOH solution, outperforming commercial Pt/C. Furthermore, this electrocatalytic system recorded excellent reaction stability over 100 h with a constant current density of 100 mA cm-2. The enhanced electrochemical activity in high-entropy alloys results from the cocktail effect, which is detected by density functional theory (DFT) calculation. Additionally, micron- and nano-sized pores formed during etching boost mass transfer, ensuring sustained electrocatalyst performance even at high current densities. This work provides a new insight for development in the commercial electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Chunyang Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Shen Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Guoqiang Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Haowei Bian
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Xinrui Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Lina Wang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, China
| | - Guangwen Xie
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| |
Collapse
|
4
|
Yin F, Wang H, Zhao Z, Luo L, Tang Y, Zhang Y, Xue Q. Doping and strain modulation of the electronic, optical and photocatalytic properties of the GaN/C 2N heterostructure. Phys Chem Chem Phys 2024; 26:17223-17231. [PMID: 38855975 DOI: 10.1039/d4cp01836b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The electronic, optical and photocatalytic properties of GaN/C2N van der Waals heterostructures are investigated using the first-principles theory, and effective regulation through element doping or strain is achieved further. The results show that the GaN/C2N heterostructure exhibits a type-II band alignment with an indirect band gap of 2.25 eV, which benefits photocatalytic water splitting. In this study, both type-I and type-II band alignments can be obtained through doping or strain modulation. Doping with P or As atoms reduces the band gap of the GaN/C2N heterostructure and transforms it to a type-I direct bandgap semiconductor, which makes the doped GaN/C2N heterostructure more suitable for optoelectronic devices. In addition, the GaN/C2N heterostructure retains type-II band alignment and has a decreased band gap under tensile strain (0 to +4%), which is more favorable for photocatalytic water splitting. Compressive strain (0 to -4%) converts the type-II band alignment to type-I, resulting in a wider light absorption range, making the GaN/C2N heterostructure more suitable for optoelectronic devices. These theoretical results are helpful for the design of GaN/C2N vdW heterostructures in the fields of optoelectronic devices and photocatalysts.
Collapse
Affiliation(s)
- Fu Yin
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Hui Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhengqin Zhao
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - LiJia Luo
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yongliang Tang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yanbo Zhang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Qiang Xue
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
5
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
6
|
Fu Q, Wang H, Nie K, Wang X, Ren J, Wang R. Phosphorus/sulfur co-doped heterogeneous NiCoP xS y nanoarrays boosting overall water splitting. J Colloid Interface Sci 2024; 653:443-453. [PMID: 37725874 DOI: 10.1016/j.jcis.2023.09.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
In the large-scale implementation of renewable energy devices, the availability of stable and highly catalytic non-precious metal catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial. Meanwhile, integrating bifunctional electrocatalysts simultaneously on both the anode and cathode still faces challenges. To address this, a stepped preparation strategy was adopted on a nickel foam (NF) substrate to synthesize P, S co-doped NiCoPxSy nanowire array catalysts. The prepared NiCoPxSy catalysts demonstrated a small Tafel slope of 72.5 mV dec-1 for HER and 72.3 mV dec-1 for OER by requiring only 37 mV (326 mV) overpotential to achieve a current density of 10 mA cm-2 (50 mA cm-2). Moreover, when assembled into an electrolytic cell in 1 M KOH, the NiCoPxSy catalysts achieved a low voltage of 1.55 V at 10 mA cm-2 current density and exhibited long-term stability. The outstanding electrocatalytic performance can be attributed to the influence of doped anions on the electronic states and distribution among different atoms, which thereby positively affected the electrocatalytic activity. This research provides an effective method for designing innovative catalysts and paving the way to produce clean energy.
Collapse
Affiliation(s)
- Qianqian Fu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kunlun Nie
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuyun Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park 2092, Johannesburg, South Africa.
| | - Rongfang Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Changshu Institute for Hydrogen Energy, Changshu 215505, China
| |
Collapse
|
7
|
Rajesh JA, Kim JY, Kang SH, Ahn KS. Facile Synthesis of Microsphere-like Co 0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction. MICROMACHINES 2023; 14:1905. [PMID: 37893342 PMCID: PMC10608889 DOI: 10.3390/mi14101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Microsphere-shaped cobalt selenide (Co0.85Se) structures were efficiently synthesized via a two-step hydrothermal process. Initially, cobalt hydroxide fluoride (Co(OH)F) microcrystals were prepared using a hydrothermal method. Subsequently, Co0.85Se microsphere-like structures were obtained through selenization. Compared to Co(OH)F, the microsphere-like Co0.85Se structure exhibited outstanding catalytic activity for the hydrogen evolution reaction (HER) in a 1.0 M KOH solution. Electrocatalytic experiments demonstrated an exceptional HER performance by the Co0.85Se microspheres, characterized by a low overpotential of 148 mV and a Tafel slope of 55.7 mV dec-1. Furthermore, the Co0.85Se electrocatalyst displayed remarkable long-term stability, maintaining its activity for over 24 h. This remarkable performance is attributed to the excellent electrical conductivity of selenides and the highly electroactive sites present in the Co0.85Se structure compared to Co(OH)F, emphasizing its promise for advanced electrocatalytic applications.
Collapse
Affiliation(s)
- John Anthuvan Rajesh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; (J.A.R.); (J.-Y.K.)
| | - Jae-Young Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; (J.A.R.); (J.-Y.K.)
| | - Soon-Hyung Kang
- Department of Chemistry Education, Chonnam National University, Gwangju 500-757, Republic of Korea;
| | - Kwang-Soon Ahn
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; (J.A.R.); (J.-Y.K.)
| |
Collapse
|
8
|
Yoon SJ, Lee SJ, Kim MH, Park HA, Kang HS, Bae SY, Jeon IY. Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2613. [PMID: 37764642 PMCID: PMC10535723 DOI: 10.3390/nano13182613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Hydrogen energy is regarded as an auspicious future substitute to replace fossil fuels, due to its environmentally friendly characteristics and high energy density. In the pursuit of clean hydrogen production, there has been a significant focus on the advancement of effective electrocatalysts for the process of water splitting. Although noble metals like Pt, Ru, Pd and Ir are superb electrocatalysts for the hydrogen evolution reaction (HER), they have limitations for large-scale applications, mainly high cost and low abundance. As a result, non-precious transition metals have emerged as promising candidates to replace their more expensive counterparts in various applications. This review focuses on recently developed transition metal phosphides (TMPs) electrocatalysts for the HER in alkaline media due to the cooperative effect between the phosphorus and transition metals. Finally, we discuss the challenges of TMPs for HER.
Collapse
Affiliation(s)
| | | | | | | | | | - Seo-Yoon Bae
- Department of Chemical Engineering, Nanoscale Environmental Sciences and Technology Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.J.Y.); (S.J.L.); (M.H.K.); (H.A.P.); (H.S.K.)
| | - In-Yup Jeon
- Department of Chemical Engineering, Nanoscale Environmental Sciences and Technology Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.J.Y.); (S.J.L.); (M.H.K.); (H.A.P.); (H.S.K.)
| |
Collapse
|
9
|
Xu X, Mo Q, Zheng K, Xu Z, Cai H. Multifunctional Ni 3S 2@NF-based electrocatalysts for efficient and durable electrocatalytic water splitting. Dalton Trans 2023; 52:12378-12389. [PMID: 37593924 DOI: 10.1039/d3dt02035e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Transition-metal sulfides (TMSs) have indeed drawn dramatic interest as a potential species of electrocatalysts by virtue of their unique structural features. However, their poor stability and inherent activity have impeded their use in electrocatalytic water splitting. Here, we provide a rational design of a hierarchical nanostructured electrocatalyst containing CeOx-decorated NiCo-layered double hydroxide (LDH) coupled with Ni3S2 protrusions formed on a Ni foam (NF). Specifically, the as-prepared electrocatalyst, denoted as Ni2Co1 LDH-CeOx/Ni3S2@NF, presents only 250 and 300 mV overpotential at ±100 mA cm-2, respectively, along with the Tafel slope values of 92 and 52 mV dec-1, as well remarkable long-term life for water splitting in an alkaline electrolyte. Based on systematic experiments and theoretical analysis, the superior electrocatalytic property in terms of Ni2Co1 LDH-CeOx/Ni3S2@NF can be imputed to the following reasons: the porous framework of Ni3S2@NF provides a largely surface area and high conductivity; the NiCo LDH nanosheets provide enriched active sites and favorable adsorption ability; the oxygen-vacancy-rich CeOx optimizes the electronic configuration. Overall, these factors work synergistically to expedite the catalytic kinetics of splitting water. Our work concentrates on a rational interface to devise efficient, multifunctional, and serviceable electrocatalysts for future applications.
Collapse
Affiliation(s)
- Xiaomei Xu
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Qiaoling Mo
- Center of analysis and testing, Nanchang University, 235 Nanjing east road, Nanchang 330029, China.
| | - Kuangqi Zheng
- School of Future Technology, Nanchang University, 999 Xue fu Avenue, Nanchang 330031, China
| | - Zhaodi Xu
- Center of analysis and testing, Nanchang University, 235 Nanjing east road, Nanchang 330029, China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| |
Collapse
|
10
|
Hao X, Zhang X, Xu Y, Zhou Y, Wei T, Hu Z, Wu L, Feng X, Zhang J, Liu Y, Yin D, Ma S, Xu B. Atomic-scale insights into the interfacial charge transfer in a NiO/CeO 2 heterostructure for electrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 643:282-291. [PMID: 37068362 DOI: 10.1016/j.jcis.2023.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
To understand the underlying mechanism of the interfacial charge transfer and local chemical state variation in the nonprecious-based hydrogen evolution reaction (HER) electrocatalysts, a model system of the NiO/CeO2 heterostructure was chosen for investigation using a combination of the advanced electron microscopic characterization and first-principles calculations. The results directly proved that interfacial charge transfer occurs from Ni to Ce, leading to reduction in the valence state of Ce and increased formation of VO. This would optimize ΔGH* and facilitate the hydrogen evolution process, resulting in outstanding HER performance in 1 M KOH with a low overpotential of 99 mV at the current density of 10 mA•cm-2 and a modest Tafel slope of 78.4 mV•dec-1 for the NiO/CeO2 heterostructure sample. Therefore, the improved HER performance could be attributed to the synergistic coupling interactions and electron redistribution at the interface of NiO and CeO2. These results concretely demonstrate the direct determination of the interfacial structure of the heterostructure and provide atomistic insights to unravel the underlying mechanism of interfacial charge transfer induced HER performance improvement.
Collapse
Affiliation(s)
- Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China.
| | - Xishuo Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yang Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuhao Zhou
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Tingting Wei
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhuangzhuang Hu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lei Wu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xinyi Feng
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jin Zhang
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yi Liu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Deqiang Yin
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| |
Collapse
|
11
|
Zhang D, Yao J, Yin J, Wang G, Zhu K, Yan J, Cao D, Zhu M. Hierarchical CoNiO 2 Microflowers Assembled by Mesoporous Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2204. [PMID: 36984082 PMCID: PMC10058268 DOI: 10.3390/ma16062204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
In order to alleviate the energy crisis and propel a low-carbon economy, hydrogen (H2) plays an important role as a renewable cleaning resource. To break the hydrogen evolution reaction (HER) bottleneck, we need high-efficiency electrocatalysts. Based on the synergistic effect between bimetallic oxides, hierarchical mesoporous CoNiO2 nanosheets can be fabricated. Combining physical representations with electrochemical measurements, the resultant CoNiO2 catalysts present the hierarchical microflowers morphology assembled by mesoporous nanosheets. The ultrathin two-dimensional nanosheets and porous surface characteristics provide the vast channels for electrolyte injection, thus endowing CoNiO2 the outstanding HER performance. The excellent performance with a fewer onset potential of 94 mV, a smaller overpotential at 10 mA cm-2, a lower Tafel slope of 109 mV dec-1 and better stability after 1000 cycles makes CoNiO2 better than that of metallic Co and metallic Ni.
Collapse
Affiliation(s)
- Dingfu Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiaxin Yao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jinling Yin
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Min Zhu
- Technology Innovation Center of Industrial Hemp for State Market Regulation, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
12
|
Sun Y, Yu Y, Xu W, Wu D, Wei Y, Lai J, Wang L. ·H effectively enhance electrocatalytic nitrogen fixation. J Colloid Interface Sci 2023; 640:619-625. [PMID: 36889059 DOI: 10.1016/j.jcis.2023.02.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 03/06/2023]
Abstract
Nowadays, most reported ammonia (NH3) yields and Faradaic efficiency (FE) of electrocatalysts are very low in the field of electrocatalytic nitrogen reduction reactions (NRR). Here, we are reported ·H for the first time in the field of electrocatalytic NRR, which are generated by sulfite (SO32-) and H2O in electrolyte solutions upon exposure to UV light. The high NH3 yields can achieve 100.7 μg h-1 mgcat-1, while stability can achieve 64 h and the FE can achieve 27.1% at -0.3 V (vs. RHE) with UV irradiation. In situ Fourier transform infrared spectroscopy (FTIR), electron spin resonance (ESR), density functional theory (DFT) and 1H nuclear magnetic resonance (NMR) tests showed that the ∙H effectively lowered the reaction energy barrier at each step of the NRR process and inhibits the occurrence of competitive hydrogen evolution reaction (HER). This explores the path and provides ideas for the field of electrocatalysis involving water.
Collapse
Affiliation(s)
- Yuyao Sun
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yaodong Yu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wenxia Xu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Di Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yingying Wei
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
13
|
Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Catalysts 2022. [DOI: 10.3390/catal12111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of bifunctional electrocatalysts with high catalytic activity and cyclic stability is an effective method for electrocatalytic water splitting. Herein, a promising hydroxide/oxide Co(OH)2/α-NiMoO4 NWs/CC heterostructure with nanoflowers decorating the nanowires was fabricated on a carbon cloth (CC) substrate via hydrothermal and calcination methods. In contrast to one-dimensional nanomaterials, the interfaces of Co(OH)2 nanoflowers and α-NiMoO4 nanowires on CC provide more active sites for electrocatalytic reactions; therefore, they exhibit obviously enhanced electrocatalytic activities in overall water splitting. Specifically, the Co(OH)2/α-NiMoO4 NWs/CC electrodes exhibit an overpotential of 183.01 mV for hydrogen evolution reaction (HER) and of 170.26 mV for oxygen evolution reactions (OER) at the current density of 10 mA cm−2 in 1.0 M KOH. Moreover, the electrocatalytic oxygen evolution reaction (OER) activity of the Co(OH)2/α-NiMoO4 NWs/CC electrocatalyst was enhanced after long-term stability tests.
Collapse
|
14
|
Cheng Z, Gao M, Sun L, Zheng D, Xu H, Kong L, Gao C, Yu H, Lin J. FeSe/FeSe
2
Heterostructure as a Low‐Cost and High‐Performance Electrocatalyst for Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaoyang Cheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Mengyou Gao
- College of Automation and Electronic Engineering Qingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Lei Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Dehua Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Huizhong Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Chang Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Haizhou Yu
- Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University (Nanjing Tech) Nanjing 211816 China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| |
Collapse
|
15
|
The contribution of water molecules to the hydrogen evolution reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Shen P, Yang T, Li Q, Chen Z, Wang Y, Fu Y, Wan J, Wu Z, Wang L. Hollow-structured amorphous Cu(OH) x nanowires doped with Ru for wide pH electrocatalytic hydrogen production. J Colloid Interface Sci 2022; 628:1061-1069. [PMID: 36049282 DOI: 10.1016/j.jcis.2022.08.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
Developing efficient and stable catalysts for electrocatalytic hydrogen evolution reaction (HER) with low overpotential is the key point to realizing large-scale hydrogen commercialization. Herein, Ru doped amorphous hollow copper hydroxide nanowires on copper foam (Ru-Cu(OH)x/CF) is prepared by surface chemical oxidization and following solvothermal process. The hollow 3D nanowire structure can provide abundant accessibility active sites, promote electrolyte in filtration and facilitate gas diffusion in the process of the electrochemical reaction. Then, the as-synthesized Ru-Cu(OH)x/CF electrocatalyst exhibits impressive electrocatalytic performance for HER with 45, 80 and 50 mV to drive 10 mA cm-2 in 1.0 M KOH, 1.0 M phosphate-buffered saline (PBS) and 0.5 M H2SO4, respectively, with remarkable long-term stability. Moreover, sustainable energies can power the two-electrode setup with amounts of hydrogen generation. The strategy may be particularly beneficial to explore simple synthesis and high-performance catalysts for HER.
Collapse
Affiliation(s)
- Pei Shen
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Tiansheng Yang
- Cardiff University Business School (CARBS), United Kingdom
| | - Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhi Chen
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yonglong Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yunlei Fu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jun Wan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
17
|
Koudakan PA, Wei C, Mosallanezhad A, Liu B, Fang Y, Hao X, Qian Y, Wang G. Constructing Reactive Micro-Environment in Basal Plane of MoS 2 for pH-Universal Hydrogen Evolution Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107974. [PMID: 35665596 DOI: 10.1002/smll.202107974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
MoS2 represents a promising catalyst for the hydrogen evolution reaction (HER) in water splitting, but the inefficient catalytic activity in a pH-universal environment is an obstacle to developing practical applications. Boosting and balancing the water dissociation and hydrogen desorption kinetics is crucial in designing high-performance catalysts for the overall pH range. Herein, it is experimentally demonstrated that cobalt single-atom doping can effectively construct a reactive CoMoS micro-environment on the basal plane of MoS2 and thus alter the uniformity of surface electron density, which is further confirmed by the theoretical results. The reactive micro-environment consisting of single-atom Co with the surrounding Mo and S atoms possesses excellent water dissociation and hydrogen desorption kinetics, exhibiting a superior performance of 36 mV at 10 mA cm-2 with a Tafel slope of 33 mV dec-1 in the alkaline condition. Meanwhile, it also shows worthy activity in the acidic (97 mV) and neutral (117 mV) environments. This work provides a facile strategy to improve the HER catalysis of MoS2 in pH-universal environments.
Collapse
Affiliation(s)
- Payam Ahmadian Koudakan
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Cong Wei
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Amirabbas Mosallanezhad
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bo Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanyan Fang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaobin Hao
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, Anhui, 239000, P. R. China
| | - Yitai Qian
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
18
|
Cheng J, Wang D. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63987-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Ding Y, Cao KW, He JW, Li FM, Huang H, Chen P, Chen Y. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63977-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Lu L, Zhang Y, Chen Z, Feng F, Teng K, Zhang S, Zhuang J, An Q. Synergistic promotion of HER and OER by alloying ternary Zn-Co-Ni nanoparticles in N-doped carbon interfacial structures. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63938-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Fan K, Zou H, Ding Y, Dharanipragada NVRA, Fan L, Inge AK, Duan L, Zhang B, Sun L. Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107249. [PMID: 35119186 DOI: 10.1002/smll.202107249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Water oxidation is an important reaction for multiple renewable energy conversion and storage-related devices and technologies. High-performance and stable electrocatalysts for the oxygen evolution reaction (OER) are urgently required. Bimetallic (oxy)hydroxides have been widely used in alkaline OER as electrocatalysts, but their activity is still not satisfactory due to insufficient active sites. In this research, A unique and efficient approach of sacrificial W to prepare CoFe (oxy)hydroxides with abundant active species for OER is presented. Multiple ex situ and operando/in situ characterizations have validated the self-reconstruction of the as-prepared CoFeW sulfides to CoFe (oxy)hydroxides in alkaline OER with synchronous W etching. Experiments and theoretical calculations show that the sacrificial W in this process induces metal cation vacancies, which facilitates the in situ transformation of the intermediate metal hydroxide to CoFe-OOH with more high-valence Co(III), thus creating abundant active species for OER. The Co(III)-rich environment endows the in situ formed CoFe oxyhydroxide with high catalytic activity for OER on a simple flat glassy carbon electrode, outperforming those not treated by the sacrificial W procedure. This research demonstrates the influence of etching W on the electrocatalytic performance, and provides a low-cost means to improve the active sites of the in situ self-reconstructed bimetallic oxyhydroxides for OER.
Collapse
Affiliation(s)
- Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Haiyuan Zou
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China
| | | | - Lizhou Fan
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Biaobiao Zhang
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, Dalian, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| |
Collapse
|
22
|
Liu J, Wang Z, Zhang D, Qin Y, Xiong J, Lai J, Wang L. Systematic Engineering on Ni-Based Nanocatalysts Effectively Promote Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108072. [PMID: 35128776 DOI: 10.1002/smll.202108072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Designing a synthesis of ultra-small Ni-based nanomaterials with high intrinsic activity and stability in alkaline hydrogen evolution reaction (HER) is a major challenge. Herein, a series of noble metal doped ultra-small size (4 nm) M-Ni/NiO nanoparticles supported on CNT are rationally designed by a solvent-free microwave reduction method that is fast (60 s), simple, includes no surfactants, extensive (>1 g), and has high yield (82.7%). The Ir-Ni/NiO@CNT has superior performance with a low overpotential of 24.6 mV at 10 mA cm-2 . In addition, the turnover frequency (TOF) value up to 2.51 s-1 and the exchange current density reaches 4.34 mA cm-2 , indicating that the catalyst has better intrinsic catalytic activity. It is further proved by density functional theory (DFT) that the NiO surface is conducive to the adsorption of OH* in the Volmer step while the Ni is inclined to adsorb H*, which synergistically promotes the water-splitting reaction, thereby increasing the catalytic rate of HER. It is believed that this work will provide valuable contributions and inspirations toward the large-scale production of high-performance Ni-based electrocatalysts for HER.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zuochao Wang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Zhang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingnan Qin
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Juan Xiong
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
23
|
Zhao Y, Zhang X, Gao Y, Chen Z, Li Z, Ma T, Wu Z, Wang L, Feng S. Heterostructure of RuO 2 -RuP 2 /Ru Derived from HMT-based Coordination Polymers as Superior pH-Universal Electrocatalyst for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105168. [PMID: 35038219 DOI: 10.1002/smll.202105168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Searching for Pt-like activity, stable and economic electrocatalysts that can function at various pH values for the hydrogen evolution reaction (HER) is under increasing interest for the scientific community as H2 is a very promising energy carrier with great potential development value for renewable energy conversion. Herein, a unique self-supported heterostructure of RuO2 -RuP2 /Ru on the N, P co-doped carbon matrix (Ru-HMT-MP-7) is demonstrated, which is derived from HMT-based coordination polymers as superior pH-universal electrocatalysts. In the strategy, pyrolysis and phosphating processes are simultaneously proceeded that can produce the unique heterostructure containing three phases of RuO2 , RuP2, and Ru, at the same time the generated RuO2 -RuP2 /Ru can be highly dispersed on the self-assembly N, P co-doped carbon substrates. The resulting heterostructure Ru-HMT-MP-7 exhibits excellent activity superior to that of benchmark Pt/C with low overpotentials at 10 mA cm-2 (33 mV for 1.0 M KOH, 29 mV for 0.5 M H2 SO4 and 86 mV for 1.0 M PBS) and long-term electrocatalysis durability toward HER at various pH values. The rational construction strategy paves a novel avenue for obtaining superior pH-universal catalysts for electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Xiaoyin Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, 266042, P. R. China
| | - Yuxiao Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Zhi Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, College of Electromechanical Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266061, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC, 3122, Australia
| | - Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Shouhua Feng
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| |
Collapse
|
24
|
Surface engineering on segmented copper-iron nanowires arrays. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Zhang XY, Li FT, Shi ZN, Dong B, Dong YW, Wu ZX, Wang L, Liu CG, Chai YM. Vanadium doped FeP nanoflower with optimized electronic structure for efficient hydrogen evolution. J Colloid Interface Sci 2022; 615:445-455. [PMID: 35149356 DOI: 10.1016/j.jcis.2022.01.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
Reasonable design of hydrogen evolution reaction (HER) electrocatalyst from the perspective of electronic structure is a vital way to optimize the catalytic activity. Mono-metallic iron-based phosphates have been shown to be active toward HER, but their performance remains unsatisfactory despite their abundant reserves and low preparation cost. Here, guided by the d-band center and band structure theories, V-doped FeP nanoflower grown directly on iron foam are constructed. Combining the density functional theory (DFT) simulations with physical characterizations reveal that the enhanced HER activity is mainly attributed to the lowed d-band central position, increased water dissociation capacity, decreased hydrogen formation energy barrier and reduced charge transfer impedance. As a HER catalyst in 1 M KOH, the obtained V-FeP shows low overpotentials of ∼149, ∼246 and ∼290 mV to deliver the current densities of 100, 500 and 1000 mA cm-2 with at least 24 h. When coupled with other highly active oxygen evolution reaction (OER) catalyst (NiFe-LDH/IF), the NiFe-LDH/IF(+) || V-FeP/IF(-) pair also performs a low cell voltage and over 100-h stability at high current density of 1000 mA cm-2, which endows it a large potential in the practical electrolytic water industry. Our work may provide a reference for the enhancement of inert and low-cost HER-active iron phosphide.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Feng-Ting Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Zhuo-Ning Shi
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ze-Xing Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao, University of Science and Technology, Qingdao 266042, PR China
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao, University of Science and Technology, Qingdao 266042, PR China
| | - Chen-Guang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
26
|
Gao Y, Zhao Y, Liu H, Shao M, Chen Z, Ma T, Wu Z, Wang L. N, P-doped carbon supported ruthenium doped Rhenium phosphide with porous nanostructure for hydrogen evolution reaction using sustainable energies. J Colloid Interface Sci 2022; 606:1874-1881. [PMID: 34530184 DOI: 10.1016/j.jcis.2021.08.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022]
Abstract
Developing efficient and cost-effective catalysts for hydrogen evolution reaction (HER) is vital to hydrogen energy's commercial applications. In this study, N,P-doped carbon supported ruthenium (Ru) doped triruthenium tetraphosphide (Re3P4) (Ru-Re3P4/NPC) with porous nanostructure is prepared using the low-toxic melamine phosphate as the carbon and phosphorous source. The in-situ generated N,P-doped carbon layers play a pivotal role in regulating the electrocatalytic activity by avoiding the aggregation of the nanoparticles and increasing the specific surface area. Moreover, Ru doping contributes to the remarkable electrocatalytic performance of the prepared nanomaterials. Impressively, the as-synthesized Ru-Re3P4/NPC presents remarkable electrocatalytic performances toward HER with small overpotentials of 39 mV, 115 mV, and 88 mV to deliver 10 mA cm-2 in alkaline, neutral, and acidic media. Moreover, the prepared electrocatalyst can drive water-splitting with a small potential of 1.45 V@10 mA cm-2 and use sustainable energies, including solar, wind, and thermal, as electric resources. This work paves a novel and valuable way to enhance the electrocatalytic performances of metal phosphides.
Collapse
Affiliation(s)
- Yuxiao Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Ying Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Hongru Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Mingyu Shao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Zhi Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | - Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| |
Collapse
|
27
|
Yang W, Zhang W, Liu R, Lv F, Chao Y, Wang Z, Guo S. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63921-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Li P, Liu M, Li J, Guo J, Zhou Q, Zhao X, Wang S, Wang L, Wang J, Chen Y, Zhang J, Shen Q, Qu P, Sun H. Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn 2S 4 nanosheet composites. J Colloid Interface Sci 2021; 604:500-507. [PMID: 34274713 DOI: 10.1016/j.jcis.2021.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Design of highly efficient heterojunctions for photocatalytic hydrogen evolution is of significant importance to address the energy shortage and environmental crisis. Nevertheless, the smart design of semiconductor-based heterojunctions at the atomic scale still remains a significant challenge hitherto. Herein, we report novel atomic CdS/ZnIn2S4 heterojunctions by in-situ epitaxially growing 2D ZnIn2S4 nanosheets onto the surface of 1D defective CdS nanorods. The strong electronic coupling between defective CdS and ZnIn2S4 is confirmed by transient photocurrent response measurements, •O2- and •OH radicals experiments, and PL results, leading to accelerated interfacial charge separation and transfer. Additionally, the elevated charge transfer and electronic coupling are further confirmed by theoretical calculations. Consequently, CdS/ZnIn2S4 hybrids exhibit superior photocatalytic hydrogen generation activity to pristine CdS. Our findings offer a new paradigm for designing atomic 1D/2D heterojunctions for efficient solar-driven energy conversion.
Collapse
Affiliation(s)
- Pan Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China; Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Manli Liu
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China; Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jieqiong Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Junling Guo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qingfeng Zhou
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Xiaoli Zhao
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lijing Wang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Junmei Wang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Ya Chen
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Jinqiang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Qi Shen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Qu
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| |
Collapse
|
29
|
Chen Z, Zhao Y, Gao Y, Wu Z, Wang L. Facile Synthesis of MoP-RuP2 with Abundant Interfaces to Boost Hydrogen Evolution Reactions in Alkaline Media. NANOMATERIALS 2021; 11:nano11092347. [PMID: 34578662 PMCID: PMC8466548 DOI: 10.3390/nano11092347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
Exploiting efficient electrocatalysts for hydrogen evolution reactions (HERs) is important for boosting the large-scale applications of hydrogen energy. Herein, MoP-RuP2 encapsulated in N,P-codoped carbon (MoP-RuP2@NPC) with abundant interfaces were prepared via a facile avenue with the low-toxic melamine phosphate as the phosphorous resource. Moreover, the obtained electrocatalyst possessed a porous nanostructure, had abundant exposed active sites and improved the mass transport during the electrocatalytic process. Due to the above merits, the prepared MoP-RuP2@NPC delivered a greater electrocatalytic performance for HERs (50 mV@10 mA cm−2) relative to RuP2@NPC (120 mV) and MoP@NPC (195 mV) in 1 M KOH. Moreover, an ultralow potential of 1.6 V was required to deliver a current density of 10 mA cm−2 in the two-electrode configuration for overall water splitting. For practical applications, intermittent solar energy, wind energy and thermal energy were utilized to drive the electrolyzer to generate hydrogen gas. This work provides a novel and facile strategy for designing highly efficient and stable nanomaterials toward hydrogen production.
Collapse
|
30
|
Anantharaj S, Noda S, Jothi VR, Yi S, Driess M, Menezes PW. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew Chem Int Ed Engl 2021; 60:18981-19006. [PMID: 33411383 PMCID: PMC8451938 DOI: 10.1002/anie.202015738] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 01/14/2023]
Abstract
Transition metal hydroxides (M-OH) and their heterostructures (X|M-OH, where X can be a metal, metal oxide, metal chalcogenide, metal phosphide, etc.) have recently emerged as highly active electrocatalysts for hydrogen evolution reaction (HER) of alkaline water electrolysis. Lattice hydroxide anions in metal hydroxides are primarily responsible for observing such an enhanced HER activity in alkali that facilitate water dissociation and assist the first step, the hydrogen adsorption. Unfortunately, their poor electronic conductivity had been an issue of concern that significantly lowered its activity. Interesting advancements were made when heterostructured hydroxide materials with a metallic and or a semiconducting phase were found to overcome this pitfall. However, in the midst of recently evolving metal chalcogenide and phosphide based HER catalysts, significant developments made in the field of metal hydroxides and their heterostructures catalysed alkaline HER and their superiority have unfortunately been given negligible attention. This review, unlike others, begins with the question of why alkaline HER is difficult and will take the reader through evaluation perspectives, trends in metals hydroxides and their heterostructures catalysed HER, an understanding of how alkaline HER works on different interfaces, what must be the research directions of this field in near future, and eventually summarizes why metal hydroxides and their heterostructures are inevitable for energy-efficient alkaline HER.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Vasanth Rajendiran Jothi
- Department of Chemical EngineeringHanyang University222 Wangsimni-ro, Seongdong-guSeoul04763Republic of Korea
| | - SungChul Yi
- Department of Chemical EngineeringHanyang University222 Wangsimni-ro, Seongdong-guSeoul04763Republic of Korea
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| |
Collapse
|
31
|
Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. NANOSCALE 2021; 13:12788-12817. [PMID: 34477767 DOI: 10.1039/d1nr02592a] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a clean energy carrier, hydrogen has priority in decarbonization to build sustainable and carbon-neutral economies due to its high energy density and no pollutant emission upon combustion. Electrochemical water splitting driven by renewable electricity to produce green hydrogen with high-purity has been considered to be a promising technology. Unfortunately, the reaction of water electrolysis always requires a large excess potential, let alone the large-scale application (e.g., >500 mA cm-2 needs a cell voltage range of 1.8-2.4 V). Thus, developing cost-effective and robust transition metal electrocatalysts working at high current density is imperative and urgent for industrial electrocatalytic water splitting. In this review, the strategies and requirements for the design of self-supported electrocatalysts are summarized and discussed. Subsequently, the fundamental mechanisms of water electrolysis (OER or HER) are analyzed, and the required important evaluation parameters, relevant testing conditions and potential conversion in exploring electrocatalysts working at high current density are also introduced. Specifically, recent progress in the engineering of self-supported transition metal-based electrocatalysts for either HER or OER, as well as overall water splitting (OWS), including oxides, hydroxides, phosphides, sulfides, nitrides and alloys applied in the alkaline electrolyte at large current density condition is highlighted in detail, focusing on current advances in the nanostructure design, controllable fabrication and mechanistic understanding for enhancing the electrocatalytic performance. Finally, remaining challenges and outlooks for constructing self-supported transition metal electrocatalysts working at large current density are proposed. It is expected to give guidance and inspiration to rationally design and prepare these electrocatalysts for practical applications, and thus further promote the practical production of hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
32
|
Zhang H, Yang X, Zhang H, Ma J, Huang Z, Li J, Wang Y. Transition-Metal Carbides as Hydrogen Evolution Reduction Electrocatalysts: Synthetic Methods and Optimization Strategies. Chemistry 2021; 27:5074-5090. [PMID: 33188550 DOI: 10.1002/chem.202003979] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Indexed: 02/03/2023]
Abstract
With the strengths of zero carbon emission and high gravimetric energy density, hydrogen energy is recognized as a primary choice for future energy supply. Electrochemical water splitting provides a promising strategy for effective and sustainable hydrogen production through renewable electricity, and one of the immediate challenges toward its large-scale application is the availability of low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER). Given the enormous efforts in the exploration of potential transition-metal carbide (TMC) electrocatalysts, this review aims to summarize the recent advances in synthetic methods and optimization strategies of TMC electrocatalysts. Additionally, the perspectives for the development of novel efficient TMC-based catalysts are also proposed.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Xiaohui Yang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Huijuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Jinling Ma
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Zhengyong Huang
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Jian Li
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Yu Wang
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| |
Collapse
|
33
|
Anantharaj S, Noda S, Jothi VR, Yi S, Driess M, Menezes PW. Strategies and Perspectives to Catch the Missing Pieces in Energy‐Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Vasanth Rajendiran Jothi
- Department of Chemical Engineering Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - SungChul Yi
- Department of Chemical Engineering Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
34
|
Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method. J Colloid Interface Sci 2021; 584:760-769. [DOI: 10.1016/j.jcis.2020.09.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
|
35
|
Du Y, Zhao H, Wang W, Yang Y, Wang M, Li S, Liu Y, Wang L. (Ni,Co)Se@Ni(OH) 2 heterojunction nanosheets as an efficient electrocatalyst for the hydrogen evolution reaction. Dalton Trans 2021; 50:391-397. [PMID: 33320141 DOI: 10.1039/d0dt03654d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A heterogeneous structure formed by coupling two or more phases can reinforce the activity of active sites and expedite electron transfer, which is conducive to boosting its electrocatalytic activity. Herein, we designed nickel foam supported (NiCo2)Se@Ni(OH)2 (NCS@NH) heterojunction nanosheets by a two-step method. First of all, the NiCo2S4@Ni(OH)2 (NiCo2S4@NH) nanosheets coated on nickel foam were acquired via a hydrothermal method. In the selenization treatment that followed, NiCo2S4@NH was converted into NCS@NH heterogeneous nanosheets in which the selenide nanoparticles decorated on the surface of the Ni(OH)2 nanosheets formed heterojunction interfaces, and the heterogeneous structure could accelerate electron transfer, thus improving the catalytic activity. The Ni(OH)2 nanosheets can adequately contact the electrolyte and promote the decomposition of water. Meanwhile, the thickness of the Ni(OH)2 nanosheets gradually decreases with the increase of Co doping (1.5-2.5 mmol), consequently affecting the HER properties. Notably, when the amount of Co salt added is 2 mmol, NCS@NH exhibited superior HER properties (with a voltage of 253 mV at 100 mA cm-2) and excellent stability for 24 h.
Collapse
Affiliation(s)
- Yunmei Du
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu Y, Sun R, Cen J. Facile Synthesis of Cobalt Oxide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Front Chem 2020; 8:386. [PMID: 32457876 PMCID: PMC7221197 DOI: 10.3389/fchem.2020.00386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogen evolution reaction (HER) is receiving a lot of attention because it produces clean energy hydrogen. Catalyst is the key to the promotion and application of HER. However, the precious metal catalysts with good catalytic performance are expensive, and the preparation process of non-precious metal catalysts is extremely complicated. The simple preparation process is the most important problem to be solved in HER catalyst development. We synthetized cobalt oxide (CoOx) catalyst for HER through a simple hydrothermal process. The CoOx catalyst shows excellent HER catalytic activity. Characterization results reveal that there are a great deal of surface hydroxyl groups or oxygen vacancy on the surface of CoOx catalyst. In alkaline media the CoOx catalyst shows an over-potential of 112 mV at 20 mA cm-2 and a small Tafel slope of 94 mV dec-1. This paper provides a simple and easy method for HER catalyst preparation.
Collapse
Affiliation(s)
- Yinbo Wu
- Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ruirui Sun
- Safety and Environmental Protection Division of Jilin Petrochemical Company, PetroChina, Jilin, China
| | - Jian Cen
- Guangdong Polytechnic Normal University, Guangzhou, China
- The Key Laboratory for Smart Building Equipment Integration of Guangzhou, Guangzhou, China
| |
Collapse
|