1
|
García-Beltrán A, Lozano Melero A, Martínez Martínez R, Porres Foulquie JM, López Jurado Romero de la Cruz M, Kapravelou G. A Systematic Review of the Beneficial Effects of Berry Extracts on Non-Alcoholic Fatty Liver Disease in Animal Models. Nutr Rev 2025; 83:819-841. [PMID: 39365946 PMCID: PMC11986334 DOI: 10.1093/nutrit/nuae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries and is strongly associated with several metabolic disorders. Plant-derived bioactive extracts, such as berry extracts, with high antioxidant capacity have been used for the treatment and prevention of this pathology. Moreover, they promote circular economy and sustainability. OBJECTIVE To study the beneficial effects of extracts from different parts of berry plants in animal models of NAFLD. DATA SOURCES A systematic research of the MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2011. In vivo animal studies of NAFLD were included in which berry extracts of different parts of the plant were administered and significantly improved altered biomarkers related to the pathology, such as lipid metabolism and hepatic steatosis, glucose and glycogen metabolism, and antioxidant and anti-inflammatory biomarkers. DATA EXTRACTION Of a total of 203 articles identified, 31 studies were included after implementation of the inclusion and exclusion criteria. DATA ANALYSIS Most of the studies showed a decrease in steatosis and a stimulation of genes related to β-oxidation and downregulation of lipogenic genes, with administration of berry extracts. Berry extracts also attenuated inflammation and oxidative stress. CONCLUSIONS Administration of berry extracts seems to have promising potential in the design of enriched foodstuffs or nutraceuticals for the treatment of NAFLD.
Collapse
Affiliation(s)
- Alejandro García-Beltrán
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Aida Lozano Melero
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | | | | | - Garyfallia Kapravelou
- Department of Physiology, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52005 Granada, Spain
| |
Collapse
|
2
|
Xiong S, Li X, Chu H, Deng Z, Sun L, Liu J, Mu Y, Yao Q. Comparative pharmacokinetics of four major compounds after oral administration of Mori Cortex total flavonoid extract in normal and diabetic rats. Front Pharmacol 2023; 14:1148332. [PMID: 36937873 PMCID: PMC10014546 DOI: 10.3389/fphar.2023.1148332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Introduction: Mori Cortex has been used in traditional Chinese Medicine as an antidiabetic agent. The aim of this study was to establish a UPLC-MS/MS method for simultaneous determination of morin, morusin, umbelliferone and mulberroside A in rat plasma and investigate the pharmacokinetics differences between normal and diabetic rats following oral administration of Mori Cortex total flavonoid extract. Methods: Samples were pre-treated by protein precipitation and genkwanin was used as internal standard. Chromatographic separation was performed using a Hypersil GOLD C18 column (50 mm × 2.1 mm, 3 μm). The mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) in gradient mode at a flow rate of 0.5 ml/min. The transitions of m/z 300.9→107.1, m/z 419.3→297.1, m/z 160.9→77.0, m/z 567.1→243.2 and m/z 283.1→268.2 were selected for morin, morusin, umbelliferone, mulberroside A and internal standard, respectively. Results: The intra- and inter-day precision for analytes were less than 12.5% and the accuracy ranged from -8.1% to 3.5%. The extraction recovery was >88.5% and no obvious matrix effect was observed. The AUC (0-t) and C max of morin were 501.3 ± 115.5 ng/mL*h and 127.8 ± 56.0 ng/mL in normal rats and 717.3 ± 117.4 ng/ml*h and 218.6 ± 33.5 ng/ml in diabetic rats. Meanwhile, the AUC (0-t) and C max of morusin were 116.4 ± 38.2 ng/ml*h and 16.8 ± 10.1 ng/mL in normal rats and 325.0 ± 87.6 ng/mL*h and 39.2 ± 5.9 ng/ml in diabetic rats. For umbelliferone and mulberroside A, the AUC (0-t) and C max also increased significantly in diabetic rats (p < 0.05). Discussion: The validated method was successfully applied to the pharmacokinetic study in normal and diabetic rats.
Collapse
Affiliation(s)
- Shan Xiong
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, China
- *Correspondence: Shan Xiong, ; Jia Liu, ; Qingqiang Yao,
| | - Xiaofan Li
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Haiping Chu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, China
| | - Zhipeng Deng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linying Sun
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Jia Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, China
- *Correspondence: Shan Xiong, ; Jia Liu, ; Qingqiang Yao,
| | - Yanling Mu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, China
- *Correspondence: Shan Xiong, ; Jia Liu, ; Qingqiang Yao,
| |
Collapse
|
3
|
Li Y, Nie JJ, Yang Y, Li J, Li J, Wu X, Liu X, Chen DF, Yang Z, Xu FJ, Yang Y. Redox-Unlockable Nanoparticle-Based MST1 Delivery System to Attenuate Hepatic Steatosis via the AMPK/SREBP-1c Signaling Axis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34328-34341. [PMID: 35858286 PMCID: PMC9353777 DOI: 10.1021/acsami.2c05889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
To date, few effective treatments have been licensed for nonalcoholic fatty liver disease (NAFLD), which a kind of chronic liver disease. Mammalian sterile 20-like kinase 1 (MST1) is reported to be involved in the development of NAFLD. Thus, we evaluated the suitability of a redox-unlockable polymeric nanoparticle Hep@PGEA vector to deliver MST1 or siMST1 (HCP/MST1 or HCP/siMST1) for NAFLD therapy. The Hep@PGEA vector can efficiently deliver the condensed functional nucleic acids MST1 or siMST1 into NAFLD-affected mouse liver to upregulate or downregulate MST1 expression. The HCP/MST1 complexes significantly improved liver insulin resistance sensitivity and reduced liver damage and lipid accumulation by the AMPK/SREBP-1c pathway without significant adverse events. Instead, HCP/siMST1 delivery exacerbates the NAFLD. The analysis of NAFLD patient samples further clarified the role of MST1 in the development of hepatic steatosis in patients with NAFLD. The MST1-based gene intervention is of considerable potential for clinical NAFLD therapy, and the Hep@PGEA vector provides a promising option for NAFLD gene therapy.
Collapse
Affiliation(s)
- Yuhan Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Jing-Jun Nie
- Key
Lab of Biomedical Materials of Natural Macromolecules (Ministry of
Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yuhui Yang
- Capital
Medical University, Beijing 100035, China
| | - Jianning Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| | - Jiarui Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| | - Xianxian Wu
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xing Liu
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Da-Fu Chen
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Zhiwei Yang
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Fu-Jian Xu
- Key
Lab of Biomedical Materials of Natural Macromolecules (Ministry of
Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Yang
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| |
Collapse
|
4
|
Gan WJ, Gao CL, Zhang WQ, Gu JL, Zhao TT, Guo HL, Zhou H, Xu Y, Yu LL, Li LF, Gui DK, Xu YH. Kuwanon G protects HT22 cells from advanced glycation end product-induced damage. Exp Ther Med 2021; 21:425. [PMID: 33747164 PMCID: PMC7967837 DOI: 10.3892/etm.2021.9869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/11/2020] [Indexed: 12/25/2022] Open
Abstract
The incidence of diabetic encephalopathy is increasing as the population ages. Evidence suggests that formation and accumulation of advanced glycation end products (AGEs) plays a pivotal role in disease progression, but limited research has been carried out in this area. A previous study demonstrated that Kuwanon G (KWG) had significant anti-oxidative stress and anti-inflammatory properties. As AGEs are oxidative products and inflammation is involved in their generation it is hypothesized that KWG may have effects against AGE-induced neuronal damage. In the present study, mouse hippocampal neuronal cell line HT22 was used. KWG was shown to significantly inhibit AGE-induced cell apoptosis in comparison with a control treatment, as determined by both MTT and flow cytometry. Compared with the AGEs group, expression of pro-apoptotic protein Bax was reduced and expression of anti-apoptotic protein Bcl-2 was increased in the AGEs + KWG group. Both intracellular and extracellular levels of acetylcholine and choline acetyltransferase were significantly elevated after KWG administration in comparison with controls whilethe level of acetylcholinesterase decreased. These changes in protein expression were accompanied by increased levels of superoxide dismutase and glutathione peroxidase synthesis and reduced production of malondialdehyde and reactive oxygen species. Intracellular signaling pathway protein levels were determined by western blot and immunocytochemistry. KWG administration was found to prevent AGE-induced changes to the phosphorylation levels of Akt, IκB-α, glycogen synthase kinase 3 (GSK3)-α and β, p38 MAPK and NF-κB p65 suggesting a potential neuroprotective effect of KWG against AGE-induced damage was via the PI3K/Akt/GSK3αβ signaling pathway. The findings of the present study suggest that KWG may be a potential treatment for diabetic encephalopathy.
Collapse
Affiliation(s)
- Wen-Jun Gan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Chen-Lin Gao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China.,Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 510500, P.R. China
| | - Wen-Qian Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Jun-Ling Gu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Ting-Ting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Heng-Li Guo
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Hua Zhou
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Yong Xu
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 510500, P.R. China
| | - Li-Li Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Li-Fang Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Ding-Kun Gui
- Department of Nephrology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - You-Hua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| |
Collapse
|
5
|
Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10010081. [PMID: 33435282 PMCID: PMC7827314 DOI: 10.3390/antiox10010081] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the largest public health problems worldwide. Insulin resistance-related metabolic dysfunction and chronic hyperglycemia result in devastating complications and poor prognosis. Even though there are many conventional drugs such as metformin (MET), Thiazolidinediones (TZDs), sulfonylureas (SUF), dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon like peptide 1 (GLP-1) and sodium-glucose cotransporter-2 (SGLT-2) inhibitors, side effects still exist. As numerous plant extracts with antidiabetic effects have been widely reported, they have the potential to be a great therapeutic agent for type 2 diabetes with less side effects. In this study, sixty-five recent studies regarding plant extracts that alleviate type 2 diabetes were reviewed. Plant extracts regulated blood glucose through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. The anti-inflammatory and antioxidant properties of plant extracts suppressed c-Jun amino terminal kinase (JNK) and nuclear factor kappa B (NF-κB) pathways, which induce insulin resistance. Lipogenesis and fatty acid oxidation, which are also associated with insulin resistance, are regulated by AMP-activated protein kinase (AMPK) activation. This review focuses on discovering plant extracts that alleviate type 2 diabetes and exploring its therapeutic mechanisms.
Collapse
|
6
|
Sun J, Wang H, Yu J, Li T, Han Y. Protective effect of celastrol on type 2 diabetes mellitus with nonalcoholic fatty liver disease in mice. Food Sci Nutr 2020; 8:6207-6216. [PMID: 33282271 PMCID: PMC7684594 DOI: 10.1002/fsn3.1917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
To investigate the protective effects of celastrol on mice with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD), and to explore its underlying mechanism. The levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglyceride (TG) in serum were tested. Malondialdehyde (MDA) and superoxide dismutase (SOD), GOT, and GPT in serum were also detected. The histopathological changes of liver tissues were observed by HE staining. The apoptosis cell number of liver tissues was measured by TUNEL staining. Nrf-2 and HO-1 protein and mRNA expression were evaluated by IHC, WB, and RT-PCR assay. Celastrol had effects to depress TG, TC, LDL-C, GPT, GOT, and MDA concentration and increase HDL-C and SOD concentration (p < .05, respectively) with dose-dependent. Compared with model group, apoptosis cell number was significantly depressed in Cel-treated groups with dose-dependent (p < .05, respectively). Nrf-2 and HO-1 mRNA and protein expressions were significantly improved in Cel-treated groups with dose-dependent (p < .05, respectively). Celastrol can inhibit the oxidative stress reaction and liver cell apoptosis via regulation Nrf2/HO-1 pathway in T2DM mice with NAFLD.
Collapse
Affiliation(s)
- JuanJuan Sun
- The Second District of HepatopathyQingdao No. 6 People's HospitalQingdaoChina
| | - Hui‐juan Wang
- The Second District of HepatopathyQingdao No. 6 People's HospitalQingdaoChina
| | - Jun Yu
- The Second District of HepatopathyQingdao No. 6 People's HospitalQingdaoChina
| | - TingTing Li
- The Second District of HepatopathyQingdao No. 6 People's HospitalQingdaoChina
| | - YiDi Han
- The Second District of HepatopathyQingdao No. 6 People's HospitalQingdaoChina
| |
Collapse
|
7
|
Wei X, Yang B, Chen G, Wang D, Shi Y, Chen Q, Kan J. Zanthoxylum alkylamides improve amino acid metabolism in type 2 diabetes mellitus rats. J Food Biochem 2020; 44:e13441. [PMID: 32808307 DOI: 10.1111/jfbc.13441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022]
Abstract
To investigate the effect of Zanthoxylum alkylamides (ZA) on amino acid metabolism of type 2 diabetes mellitus (T2DM), the present study was performed with T2DM rats model induced with high fat and sugar fodder combined with low-dose of streptozotocin. ZA were fed to rats at three different doses of 2, 4, and 8 mg/kg for 28 days and metformin was fed to rats at 135 mg/kg as positive control. The results showed that compared with the normal control, the amino acid levels and the expression of related carrier genes were disordered in T2DM rats. Compared with the model, different doses of ZA could significantly resist (p < .05) the decrease in body weight of T2DM rats and improve hyperglycemia, with the best result observed with the high dose (8 mg/kg). Different doses of ZA could ameliorate the levels of 19 kinds of amino acid in the plasma, jejunum, liver, and skeletal muscle of T2DM rats by regulating the expression of related amino acid transporters including LAT1, SNAT2, CAT1, et al. to thereby ameliorating amino acid metabolism disorder in T2DM rats. PRACTICAL APPLICATIONS: Previous studies showed that Zanthoxylum alkylamides (ZA) could promote the amino acid metabolism in the jejunum of healthy SD rats, improve protein metabolism disorder of type 1 diabetic rats, and also reduce the risk of metabolic syndrome in fat rats model. Herein, we investigated the effect of ZA on amino acid metabolism in type 2 diabetes mellitus (T2DM) rats. The results indicated that ZA could remarkably improve the abnormal expression of amino acid carriers in the jejunum, liver, and skeletal muscle, thereby ameliorating the disorder of amino acid metabolism in the plasma, jejunum, liver, and skeletal muscle of T2DM rats. Therefore, ZA are potential antidiabetic food/medicine product for the T2DM treatment.
Collapse
Affiliation(s)
- Xunyu Wei
- College of Food Science, Southwest University, Beibei, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Bing Yang
- College of Food Science, Southwest University, Beibei, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Guangjing Chen
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, PR China
| | - Di Wang
- College of Food Science, Southwest University, Beibei, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Yue Shi
- College of Food Science, Southwest University, Beibei, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Qiaoli Chen
- College of Food Science, Southwest University, Beibei, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, Beibei, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| |
Collapse
|
8
|
Liu Y, Li Y, Zhang W, Sun M, Zhang Z. Hypoglycemic effect of inulin combined with ganoderma lucidum polysaccharides in T2DM rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.036] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|