1
|
Hu C, Wang Y, Deng Y, Yao J, Min H, Hu J, Fan X, Wang S. Identification and quantification of the antioxidants in Ginkgo biloba leaf. Biomed Chromatogr 2024; 38:e5980. [PMID: 39189506 DOI: 10.1002/bmc.5980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
The antioxidant activity of Ginkgo biloba leaf (GBL) extract is closely related to its efficacy against various diseases; however, the antioxidant activities of the specific constituents of GBL remain unclear. In this study, 194 GBL constituents were identified using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry, including 97 flavonoids, 37 terpenoids, 29 lignans, 19 carboxylic acids, 5 alkylphenolic acids, 5 alkylphenols, and 2 other compounds. The cleavage rules of the main constituents of GBL were dissected in detail. The 36 GBL constituents with high antioxidant activity were subsequently discovered using the oxygen radical absorbance capacity assay, including 30 flavonoids and six carboxylic acids. Finally, an HPLC analysis method was established to determine the content of the nine major antioxidants in the three batches of GBL. Among them, kaempferol 3-O-β-D-(6″-p-coumaroyl) glucopyranosyl-(1-2)-α-L-rhamnopyranoside, kaempferol-3-O-rutinoside, and rutin exhibited high antioxidant activity and were found in significant amounts in GBL, with concentrations greater than 0.7 mg/g. These results provide an important reference for the development of pharmaceuticals and health products containing GBL.
Collapse
Affiliation(s)
- Chenxiu Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yujing Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Deng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Co., Ltd, Hangzhou, China
| | - Hui Min
- Zhejiang Conba Pharmaceutical Co., Ltd, Hangzhou, China
| | - Jiqiang Hu
- Zhejiang Conba Pharmaceutical Co., Ltd, Hangzhou, China
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
2
|
Mohapatra S, Kumar PA, Aggarwal A, Iqubal A, Mirza MA, Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother Res 2024; 38:2728-2763. [PMID: 38522005 DOI: 10.1002/ptr.8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Women face a significant change in their reproductive health as menopause sets in. It is marred with numerous physiological changes that negatively impact their quality of life. This universal, transition phase is associated with menopausal and postmenopausal syndrome, which may spread over 2-10 years. This creates a depletion of female hormones causing physical, mental, sexual and social problems and may, later on, manifest as postmenopausal osteoporosis leading to weak bones, causing fractures and ultimately morbidity and mortality. Menopausal hormone therapy generally encompasses the correction of hormone balance through various pharmacological agents, but the associated side effects often lead to cessation of therapy with poor clinical outcomes. However, it has been noticed that phytotherapeutics is trusted by women for the amelioration of symptoms related to menopause and for improving bone health. This could primarily be due to their reduced side effects and lesser costs. This review attempts to bring forth the suitability of phytotherapeutics/herbals for the management of menopausal, postmenopausal syndrome, and menopausal osteoporosis through several published research. It tries to enlist the available botanicals with their key constituents and mechanism of action for mitigating symptoms associated with menopause as well as osteoporosis. It also includes a list of a few herbal commercial products available for these complications. The article also intends to collate the findings of various clinical trials and patents available in this field and provide a window for newer research avenues in this highly important yet ignored health segment.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P Ayash Kumar
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Akshay Aggarwal
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Dang X, Wang R, Liu Y. Disulfiram-like Reaction With Ginaton: A Case Report and Literature Review. Clin Ther 2023; 45:1151-1154. [PMID: 37722955 DOI: 10.1016/j.clinthera.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Alcohol consumption, even minimal, can exacerbate the disulfiram-like reaction (also referred to as acetaldehyde syndrome) that occurs with the use of medications that impede the breakdown of acetaldehyde. Such medications include Ginaton, a proprietary tablet formulation of Ginkgo biloba extract commonly used in Europe, Asia, and the United States for cardiovascular and nervous system health. This article details such a case from China. Healthcare providers should be proactive in educating patients about the potential adverse reactions related to using Ginaton and the importance of avoiding alcohol consumption while using it. Patients should also be advised to disclose their alcohol-consumption habits and seek medical advice before initiating treatment with any medication or supplement during treatment with Ginaton.
Collapse
Affiliation(s)
- Xiangji Dang
- Department of Pharmaceuticals, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Rui Wang
- Department of Pharmaceuticals, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China.
| |
Collapse
|
4
|
Hersant H, He S, Maliha P, Grossberg G. Over the Counter Supplements for Memory: A Review of Available Evidence. CNS Drugs 2023; 37:797-817. [PMID: 37603263 DOI: 10.1007/s40263-023-01031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
In 2021, the Global Brain Health Supplement Industry Market size was valued at US$7.6 billion. It is predicted to increase to US$15.59 billion by 2030. Memory and its enhancement are a segment of the market that comprised the highest global revenue share in 2021. In the USA alone, dietary supplement sales reached US$18 billion in 2018. The US Food and Drug Administration (FDA) does not have the authority to approve dietary supplements' safety, effectiveness, or labeling before products go on the market. The FDA often does not even review supplements before they go to market. Supplement manufacturers are thus responsible for ensuring their products are safe and that their claims are truthful. An extensive review of current supplements on the market was performed by surveying memory products for sale at local and national pharmacies and grocery stores. A list of 103 supplements was compiled and the ingredients in these memory supplements were reviewed. The 18 most common ingredients in these supplements were identified. Each of the supplements included at least one of the 18 most common ingredients. Scientific data relative to these ingredients and their effect on memory was searched using PubMed and Cochrane library databases. Currently, there is no compelling evidence for use of apoaequorin, coenzyme Q10, coffee extracts, L-theanine, omega-3 fatty acids, vitamin B6, vitamin B9, or vitamin B12 supplementation for memory. On the other hand, there is some current evidence for memory benefit from supplementation with ashwagandha, choline, curcumin, ginger, Lion's Mane, polyphenols, phosphatidylserine, and turmeric. There are current studies with mixed results regarding the benefit of carnitine, gingko biloba, Huperzine A, vitamin D, and vitamin E supplementation for memory. Dietary supplements geared toward improving cognition are a billion-dollar industry that continues to grow despite lacking a solid scientific foundation for their marketing claims. More rigorous studies are needed relative to the long-term use of these supplements in homogenous populations with standardized measurements of cognition. Health care providers need to be aware of any and all supplements their older adult patients may be consuming and be educated about their side effects and interactions with prescription medications. Lastly, the FDA needs to take an active position relative to monitoring marketed supplements regarding safety, purity and claims of efficacy.
Collapse
Affiliation(s)
- Haley Hersant
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA.
| | - Sean He
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| | - Peter Maliha
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| | - George Grossberg
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| |
Collapse
|
5
|
Šamec D, Karalija E, Dahija S, Hassan STS. Biflavonoids: Important Contributions to the Health Benefits of Ginkgo ( Ginkgo biloba L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1381. [PMID: 35631806 PMCID: PMC9143338 DOI: 10.3390/plants11101381] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/03/2023]
Abstract
Ginkgo (Ginkgo biloba L.) is one of the most distinctive plants, characterized by excellent resistance to various environmental conditions. It is used as an ornamental plant and is recognized as a medicinal plant in both traditional and Western medicine. Its bioactive potential is associated with the presence of flavonoids and terpene trilactones, but many other compounds may also have synergistic effects. Flavonoid dimers-biflavonoids-are important constituents of ginkgophytopharmaceuticals. Currently, the presence of 13 biflavonoids has been reported in ginkgo, of which amentoflavone, bilobetin, sciadopitysin, ginkgetin and isoginkgetin are the most common. Their role in plants remains unknown, but their bioactivity and potential role in the management of human health are better investigated. In this review, we have provided an overview of the chemistry, diversity and biological factors that influence the presence of biflavonoids in ginkgo, as well as their bioactive and health-related properties. We have focused on their antioxidant, anticancer, antiviral, antibacterial, antifungal and anti-inflammatory activities as well as their potential role in the treatment of cardiovascular, metabolic and neurodegenerative diseases. We also highlighted their potential toxicity and pointed out further research directions.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University North, Trga Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Erna Karalija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sabina Dahija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
6
|
A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants? J Mol Med (Berl) 2022; 100:411-425. [PMID: 34993581 DOI: 10.1007/s00109-021-02170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014-2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.
Collapse
|
7
|
Gong X, Shao J, Guo S, Pan J, Fan X. Determination of inhibitory activity of Salvia miltiorrhiza extracts on xanthine oxidase with a paper-based analytical device. J Pharm Anal 2021; 11:603-610. [PMID: 34765273 PMCID: PMC8572718 DOI: 10.1016/j.jpha.2020.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 11/04/2022] Open
Abstract
A novel paper-based analytical device (PAD) was prepared and applied to determine the xanthine oxidase (XOD) inhibitory activity of Salvia miltiorrhiza extracts (SME). First, polycaprolactone was 3D printed on filter paper and heated to form hydrophobic barriers. Then the modified paper was cut according to the specific design. Necessary reagents including XOD for the colorimetric assay were immobilized on two separate pieces of paper. By simply adding phosphate buffer, the reaction was performed on the double-layer PAD. Quantitative results were obtained by analyzing the color intensity with the specialized device system (consisting of a smartphone, a detection box and sandwich plates). The 3D-printed detection box was small, with a size of 9.0 cm × 7.0 cm × 11.5 cm. Color component G performed well in terms of linearity and detection limits and thus was identified as the index. The reaction conditions were optimized using a definitive screening design. Moreover, a 10% glycerol solution was found to be a suitable stabilizer. When the stabilizer was added, the activity of XOD could be maintained for at least 15 days under 4 °C or −20 °C storage conditions. The inhibitory activity of SME was investigated and compared to that of allopurinol. The results obtained with the PAD showed agreement with those obtained with the microplate method. In conclusion, the proposed PAD method is simple, accurate and has a potential for point-of-care testing. It also holds promise for use in rapid quality testing of medicinal herbs, intermediate products, and preparations of traditional Chinese medicines. The inhibitory activity of Salvia miltiorrhiza extracts on xanthine oxidase was determined with PADs. A double-layer structure of PAD was designed to avoid enzyme-substrate reactions during storage. A reaction device and a detection system were suitable for point-of-care test.
Collapse
Affiliation(s)
- Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingyuan Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangxin Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Nowak A, Kojder K, Zielonka-Brzezicka J, Wróbel J, Bosiacki M, Fabiańska M, Wróbel M, Sołek-Pastuszka J, Klimowicz A. The Use of Ginkgo Biloba L. as a Neuroprotective Agent in the Alzheimer's Disease. Front Pharmacol 2021; 12:775034. [PMID: 34803717 PMCID: PMC8599153 DOI: 10.3389/fphar.2021.775034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease, a neurodegenerative disease, is one of the most common causes of dementia if elderly people worldwide. Alzheimer's disease leads to the alienation of individuals and their exclusion from social and professional life. It is characterized mainly by the degradation of memory and disorientation, which occurs as a result of the loss of neuronal structure and function in different brain areas. In recent years, more and more attention has been paid to use in the treatment of natural bioactive compounds that will be effective in neurodegenerative diseases, including Alzheimer's disease. G. biloba L. and its most frequently used standardized extract (EGb 761), have been used for many years in supportive therapy and in the prevention of cognitive disorders. The paper presents an overview of reports on the pathogenesis of Alzheimer's disease, as well as a summary of the properties of G. biloba extract and its effects on the possible pathogenesis of the disease. By exploring more about the pathogenesis of the disease and the benefits of G. biloba extract for patients with Alzheimer's disease, it will be possible to create an individualized therapeutic protocol to optimize the treatment.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Zielonka-Brzezicka
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Szczecin, Poland
| | - Mariola Wróbel
- Department of Landscape Architecture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
9
|
Lodato F, Larocca A, D’Errico A, Cennamo V. An unusual case of acute cholestatic hepatitis after m-RNABNT162b2 (Comirnaty) SARS-CoV-2 vaccine: Coincidence, autoimmunity or drug-related liver injury. J Hepatol 2021; 75:1254-1256. [PMID: 34256064 PMCID: PMC8272621 DOI: 10.1016/j.jhep.2021.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Francesca Lodato
- Gastroenterology and Interventional Endoscopy Unit, Azienda Unità Sanitaria Locale di Bologna Bellaria-Maggiore Hospital, Bologna, Italy.
| | - Anna Larocca
- Gastroenterology and Interventional Endoscopy Unit, Azienda Unità Sanitaria Locale di Bologna Bellaria-Maggiore Hospital, Bologna, Italy
| | | | - Vincenzo Cennamo
- Gastroenterology and Interventional Endoscopy Unit, Azienda Unità Sanitaria Locale di Bologna Bellaria-Maggiore Hospital, Bologna, Italy
| |
Collapse
|
10
|
He X, Yang F, Huang X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021; 26:molecules26196088. [PMID: 34641631 PMCID: PMC8512048 DOI: 10.3390/molecules26196088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023] Open
Abstract
Biflavonoids, composed of two monoflavonoid residues, occur naturally in angiosperms, bryophytes, ferns, and gymnosperms. More than 592 biflavonoids have been structurally elucidated, and they can be classified into two groups of C-C and C-linear fragments-C, based on whether the linker between the two residues contains an atom. As the linker can be established on two arbitrary rings from different residues, the C-C type contains various subtypes, as does the C-linear fragment-C type. Biflavonoids have a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, antidiabetic, antitumor, and cytotoxic properties, and they can be applied in Alzheimer's disease and Parkinson's disease. This review mainly summarizes the distribution and chemistry of biflavonoids; additionally, their bioactivities, pharmacokinetics, and synthesis are discussed.
Collapse
Affiliation(s)
- Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Fan Yang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Xin’an Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Correspondence: ; Tel.: +86-020-36585450
| |
Collapse
|
11
|
Hartini Y, Saputra B, Wahono B, Auw Z, Indayani F, Adelya L, Namba G, Hariono M. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. RESULTS IN CHEMISTRY 2021; 3:100087. [PMID: 33520632 PMCID: PMC7832947 DOI: 10.1016/j.rechem.2020.100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
3CL protease is one of the key proteins expressed by SARS-Coronavirus-2 cell, the potential to be targeted in the discovery of antivirus during this COVID-19 pandemic. This protein regulates the proteolysis of viral polypeptide essential in forming RNA virus. 3CL protease (3CLpro) was commonly targeted in the previous SARS-Coronavirus including bat and MERS, hence, by blocking this protein activity, the coronavirus should be eradicated. This study aims to review the potency of biflavonoid as the SARS-Coronavirus-2 3CLpro inhibitor. The review was initiated by describing the chemical structure of biflavonoid and followed by listing its natural source. Instead, the synthetic pathway of biflavonoid was also elaborated. The 3CLpro structure and its function were also illustrated followed by the list of its 3D-crystal structure available in a protein data bank. Lastly, the pharmacophores of biflavonoid have been identified as a protease inhibitor, was also discussed. This review hopefully will help researchers to obtain packed information about biflavonoid which could lead to the study in designing and discovering a novel SARS-Coronavirus-2 drug by targetting the 3CLpro enzyme.
Collapse
Affiliation(s)
- Yustina Hartini
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Bakti Saputra
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Bryan Wahono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Zerlinda Auw
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Friska Indayani
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Lintang Adelya
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Gabriel Namba
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Maywan Hariono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Wang Z, Zhang P, Wang Q, Sheng X, Zhang J, Lu X, Fan X. Protective effects of Ginkgo Biloba Dropping Pills against liver ischemia/reperfusion injury in mice. Chin Med 2020; 15:122. [PMID: 33292377 PMCID: PMC7678318 DOI: 10.1186/s13020-020-00404-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Liver ischemia/reperfusion (I/R) injury is an inevitable pathological phenomenon in various clinical conditions, such as liver transplantation, resection surgery, or shock, which is the major cause of morbidity and mortality after operation. Ginkgo Biloba Dropping Pill (GBDP) is a unique Chinese Ginkgo Biloba leaf extract preparation that exhibits a variety of beneficial biological activities. The aim of this study is to investigate the protective effects of GBDP on the liver I/R injury both in the in vitro and in vivo. METHODS Hypoxia/reoxygenation (H/R) experiments were performed in alpha mouse liver 12 (AML-12) cells and primary hepatocytes, which were pretreated with GBDP (60 or 120 µg/mL) followed by incubation in a hypoxia chamber. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay. Annexin V staining as well as western blot analysis of apoptosis-related proteins was performed to detect the protective effect of GBDP on cell apoptosis induced by H/R injury. C57BL/6 mice were used to establish the liver I/R injury model, and were pretreated with GBDP (100 or 200 mg/kg/day, i.g.) for two weeks. The liver damage was evaluated by detection of plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST), as well as histopathological examinations. Liver inflammation was determined by detecting the secretion of pro-inflammatory cytokines and neutrophil infiltration through enzyme-linked immunosorbent assay (ELISA) and myeloperoxidase (MPO) immunohistochemistry staining. Finally, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick and labeling (TUNEL) staining and western blot analysis of apoptosis-related proteins were used to investigate the anti-apoptotic effect of GBDP in mice. RESULTS In the in vitro study, GBDP pretreatment improved the cell viability of AML-12 cells in the H/R injury model. Similarly, the same result was found in the primary hepatocytes isolated from C57BL/6 mice. Moreover, GBDP decreased the number of apoptotic cells and reduced the expression of apoptosis-related proteins induced by H/R injury. In the in vivo study, oral administration of GBDP ameliorated liver injury evidenced by a significant decline in the levels of ALT and AST. Furthermore, the result of hematoxylin and eosin (H&E) staining showed that GBDP reduced the size of necrosis area in the liver tissue. In addition, the decreased infiltration of neutrophils and secretion of pro-inflammatory cytokines indicated that GBDP may play an anti-inflammatory effect. More importantly, GBDP reduced TUNEL-positive cells and the expression of apoptosis-related proteins in the liver indicating GBDP has anti-apoptotic effects. CONCLUSIONS Our findings elucidated that GBDP has potential effects for protecting against liver I/R injury characterized by its anti-apoptotic, anti-necrotic, and anti-inflammatory properties, which would promisingly make contributions to the exploration of therapeutic strategies in the liver I/R injury.
Collapse
Affiliation(s)
- Zheng Wang
- Pharmaceutical informatics institute, College of Pharmaceutical Science, Zhejiang University, 310058, Hangzhou, China
| | - Ping Zhang
- Pharmaceutical informatics institute, College of Pharmaceutical Science, Zhejiang University, 310058, Hangzhou, China
| | - Qingqing Wang
- Zhejiang University - Wanbangde pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Zhejiang, Hangzhou, China
| | - Xueping Sheng
- Zhejiang University - Wanbangde pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Zhejiang, Hangzhou, China
| | - Jianbing Zhang
- Zhejiang University - Wanbangde pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Zhejiang, Hangzhou, China
| | - Xiaoyan Lu
- Pharmaceutical informatics institute, College of Pharmaceutical Science, Zhejiang University, 310058, Hangzhou, China.
| | - Xiaohui Fan
- Pharmaceutical informatics institute, College of Pharmaceutical Science, Zhejiang University, 310058, Hangzhou, China. .,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
| |
Collapse
|
13
|
Feng X, Zhang X, Chen Y, Li L, Sun Q, Zhang L. Identification of bilobetin metabolites, in vivo and in vitro, based on an efficient ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry strategy. J Sep Sci 2020; 43:3408-3420. [PMID: 32573953 DOI: 10.1002/jssc.202000313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 11/06/2022]
Abstract
Bilobetin, a natural compound extracted from Ginkgo biloba, has various pharmacological activities such as antioxidation, anticancer, antibacterial, antifungal, anti-inflammatory, antiviral, and promoting osteoblast differentiation. However, few studies have been conducted and there are no reports on its metabolites owing to its low content in nature. In addition, it has been reported to have potential liver and kidney toxicity. Therefore, this study aimed to identify the metabolites of bilobetin in vitro and in vivo. Bilobetin was incubated with liver microsomes to determine metabolites in vitro, and faeces and urine were collected after oral administration to rats to determine metabolites in vivo. After the samples were processed, they were measured using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. As a result, a total of 21 and 9 metabolites were detected in vivo and in vitro, respectively. Demethylation, demethylation and loss of water, demethylation and hydrogenation, demethylation and glycine conjugation, oxidation, methylation, oxidation and methylation, and hydrogenation were the main metabolic pathways. This study is the first to identify the metabolites of bilobetin and provides a theoretical foundation for the safe use of bilobetin in clinical application and the development of new drugs.
Collapse
Affiliation(s)
- Xue Feng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Xiaowei Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Yuting Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Luya Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Qian Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| |
Collapse
|
14
|
Son H, Kang W. Quantitative determination of bilobetin in rat plasma by HPLC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2019; 34:e4784. [PMID: 31853982 DOI: 10.1002/bmc.4784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
Abstract
Although bilobetin, a biflavone isolated from the leaves of Ginkgo biloba, represents a variety of pharmacological activities, to date there have been no validated determination methods for bilobetin in biological samples. Thus, we developed a liquid chromatographic method using a tandem mass spectrometry for the determination of bilobetin in rat plasma. After protein precipitation with acetonitrile including diclofenac (internal standard), the analytes were chromatographed on a reversed-phased column with a mobile phase of purified water and acetonitrile (3:7, v/v, including 0.1% formic acid). The ion transitions of the precursor to the product ion were principally deprotonated ions [M - H]- at m/z 551.2 → 519.2 for bilobetin and 296.1 → 251.7 for the IS. The accuracy and precision of the assay were in accordance with US Food and Drug Administration regulations for the validation of bioanalytical methods. This analytical method was successfully applied to monitor plasma concentrations of bilobetin over time following intravenous administration in rats.
Collapse
Affiliation(s)
- Heebin Son
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| |
Collapse
|