1
|
Sexton D, Faucette R, Rivera-Hernandez M, Kenniston JA, Papaioannou N, Cosic J, Kopacz K, Salmon G, Beauchemin C, Juethner S, Yeung D. A novel assay of excess plasma kallikrein-kinin system activation in hereditary angioedema. FRONTIERS IN ALLERGY 2024; 5:1436855. [PMID: 39391687 PMCID: PMC11464748 DOI: 10.3389/falgy.2024.1436855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cleaved high-molecular-weight kininogen (HKa) is a disease state biomarker of kallikrein-kinin system (KKS) activation in patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH), the endogenous inhibitor of plasma kallikrein (PKa). Objective Develop an HKa-specific enzyme-linked immunosorbent assay (ELISA) to monitor KKS activation in the plasma of HAE-C1INH patients. Methods A novel HKa-specific antibody was discovered by antibody phage display and used as a capture reagent to develop an HKa-specific ELISA. Results Specific HKa detection following KKS activation was observed in plasma from healthy controls but not in prekallikrein-, high-molecular-weight kininogen-, or coagulation factor XII (FXII)-deficient plasma. HKa levels in plasma collected from HAE-C1INH patients in a disease quiescent state were higher than in plasma from healthy controls and increased further in HAE-C1INH plasma collected during an angioedema attack. The specificity of the assay for PKa-mediated HKa generation in minimally diluted plasma activated with exogenous FXIIa was demonstrated using a specific monoclonal antibody inhibitor (lanadelumab, IC50 = 0.044 µM). Conclusions An ELISA was developed for the specific and quantitative detection of HKa in human plasma to support HAE-C1INH drug development. Improved quantification of the HKa biomarker may facilitate further pathophysiologic insight into HAE-C1INH and other diseases mediated by a dysregulated KKS and may enable the design of highly potent inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Dan Sexton
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Ryan Faucette
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Jon A. Kenniston
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Janja Cosic
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Kris Kopacz
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Gary Salmon
- Charles River Laboratories, Harlow, United Kingdom
| | | | - Salomé Juethner
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, United States
| | - Dave Yeung
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| |
Collapse
|
2
|
The versatile role of the contact system in cardiovascular disease, inflammation, sepsis and cancer. Biomed Pharmacother 2021; 145:112429. [PMID: 34801854 DOI: 10.1016/j.biopha.2021.112429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The human contact system consists of plasma proteins, which - after contact to foreign surfaces - are bound to them, thereby activating the zymogens of the system into enzymes. This activation mechanism gave the system its name - contact system. It is considered as a procoagulant and proinflammatory response mechanism, as activation finally leads to the generation of fibrin and bradykinin. To date, no physiological processes have been described that are mediated by contact activation. However, contact system factors play a pathophysiological role in numerous diseases, such as cardiovascular diseases, arthritis, colitis, sepsis, and cancer. Contact system factors are therefore an interesting target for new therapeutic options in different clinical conditions.
Collapse
|
3
|
Heparin: An essential drug for modern medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:1-19. [PMID: 31030744 DOI: 10.1016/bs.pmbts.2019.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparin is a life-saving drug, which belongs to few clinically used drugs without defined molecular structures in modern medicine. Heparin is the mostly negatively charged biopolymer with a broad distributions in molecular weight, charge density, and biological activities. Heparin is mainly composed of repeating trisulfated disaccharide units, which is made by mast cells that are enriched in the intestines, lungs or livers of animals. Porcine intestines and bovine lungs are two mostly used sources for heparin isolation. Heparin is well known for its anticoagulant and antithrombotic pharmacological effects. The anticoagulant activity of heparin is attributable to a 3-O-sulfate and 6-O-sulfate containing pentasaccharide sequence or a minimum eight-repeating disaccharide units containing the pentasaccharide sequence that catalyzes the suicidal inactivation of factor Xa or thrombin by a serpin or serine protease inhibitor named antithrombin III, respectively. Thus, heparin is responsible for the simultaneous inhibition of both thrombin generation and thrombin activity in the blood circulation. Moreover, heparin has many pharmacological properties such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, and anti-metastatic effects though high affinity interactions with a variety of proteases, protease inhibitors, chemokines, cytokines, growth factors, and their respective receptors. The one drug multiple molecular targeting properties make heparin a very special drug in that various clinical trials are still conducting worldwide even 100 years after its discovery. In this review, we will summarize the structure-function relationship and the molecular mechanisms of heparin. We will also provide an overview of different clinical and potential clinical applications of heparin.
Collapse
|
4
|
Dou H, Song A, Jia S, Zhang L. Heparinoids Danaparoid and Sulodexide as clinically used drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:55-74. [DOI: 10.1016/bs.pmbts.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Yamamoto-Imoto H, Zamolodchikov D, Chen ZL, Bourne SL, Rizvi S, Singh P, Norris EH, Weis-Garcia F, Strickland S. A novel detection method of cleaved plasma high-molecular-weight kininogen reveals its correlation with Alzheimer's pathology and cognitive impairment. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:480-489. [PMID: 30310850 PMCID: PMC6178129 DOI: 10.1016/j.dadm.2018.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Accumulation of β-amyloid is a pathological hallmark of Alzheimer's disease (AD). β-Amyloid activates the plasma contact system leading to kallikrein-mediated cleavage of intact high-molecular-weight kininogen (HKi) to cleaved high-molecular-weight kininogen (HKc). Increased HKi cleavage is observed in plasma of AD patients and mouse models by Western blot. For potential diagnostic purposes, a more quantitative method that can measure HKc levels in plasma with high sensitivity and specificity is needed. Methods HKi/c, HKi, and HKc monoclonal antibodies were screened from hybridomas using direct ELISA with a fluorescent substrate. Results We generated monoclonal antibodies recognizing HKi or HKc specifically and developed sandwich ELISAs that can quantitatively detect HKi and HKc levels in human. These new assays show that decreased HKi and increased HKc levels in AD plasma correlate with dementia and neuritic plaque scores. Discussion High levels of plasma HKc could be used as an innovative biomarker for AD. Assay discriminates between intact and cleaved high molecular weight kininogen (HKi vs. HKc). New enzyme-linked immunosorbent assay (ELISA) detects more HKc in Alzheimer's disease plasma. Plasma HKc correlates with dementia and neuritic plaque scores in Alzheimer's disease. Plasma HKc levels could be used as an innovative biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Hitomi Yamamoto-Imoto
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA.,Research fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Daria Zamolodchikov
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - S Lloyd Bourne
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Syeda Rizvi
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pradeep Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Frances Weis-Garcia
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
6
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
7
|
Activation of the factor XII-driven contact system in Alzheimer's disease patient and mouse model plasma. Proc Natl Acad Sci U S A 2015; 112:4068-73. [PMID: 25775543 DOI: 10.1073/pnas.1423764112] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of the β-amyloid peptide (Aβ), which likely contributes to disease via multiple mechanisms. Increasing evidence implicates inflammation in AD, the origins of which are not completely understood. We investigated whether circulating Aβ could initiate inflammation in AD via the plasma contact activation system. This proteolytic cascade is triggered by the activation of the plasma protein factor XII (FXII) and leads to kallikrein-mediated cleavage of high molecular-weight kininogen (HK) and release of proinflammatory bradykinin. Aβ has been shown to promote FXII-dependent cleavage of HK in vitro. In addition, increased cleavage of HK has been found in the cerebrospinal fluid of patients with AD. Here, we show increased activation of FXII, kallikrein activity, and HK cleavage in AD patient plasma. Increased contact system activation is also observed in AD mouse model plasma and in plasma from wild-type mice i.v. injected with Aβ42. Our results demonstrate that Aβ42-mediated contact system activation can occur in the AD circulation and suggest new pathogenic mechanisms, diagnostic tests, and therapies for AD.
Collapse
|
8
|
Pal Z, Tóthfalusi L, Lörincz Z, György B, Molnar MJ, Falus A, Buzás EI. Immunosuppressants increase the levels of natural autoantibodies reactive with glycosaminoglycans in myasthenia gravis. J Neuroimmunol 2014; 276:224-8. [PMID: 25139014 DOI: 10.1016/j.jneuroim.2014.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Increasing number of evidences support the role of glycosylation in the evolution of autoimmunity. We examined carbohydrate-reactive natural autoantibodies systematically for the first time in patients with autoimmune myasthenia gravis. Antibodies reactive to glycosaminoglycans were measured with CovaLink ELISA in the sera of 59 myasthenia patients as well as in 54 healthy controls. We used the GlycoChip carbohydrate array to characterize individual carbohydrate recognition patterns. Chondroitin-sulphate C and anti-α-mannose-specific IgG levels were significantly elevated in myasthenia patients. Unexpectedly, we found that immunosuppressants increased the levels of the protective IgM glycosaminoglycan-reactive natural antibodies demonstrating a new role for these agents in immunoregulation.
Collapse
Affiliation(s)
- Zsuzsanna Pal
- Department of Neurology, Semmelweis University, 1083 Balassa u.6, Budapest, Hungary; Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., Budapest, Hungary
| | - László Tóthfalusi
- Department of Pharmacodynamics, Semmelweis University, 1089 Nagyvárad tér 4., Budapest, Hungary
| | - Zsolt Lörincz
- Institute of Enzymology Biological Research Center, Hungarian Academy of Sciences, Karolina u 29, Budapest H-1518, Hungary
| | - Bence György
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., Budapest, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 1083 Tömő u.18, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., Budapest, Hungary.
| |
Collapse
|
9
|
Kenniston JA, Faucette RR, Martik D, Comeau SR, Lindberg AP, Kopacz KJ, Conley GP, Chen J, Viswanathan M, Kastrapeli N, Cosic J, Mason S, DiLeo M, Abendroth J, Kuzmic P, Ladner RC, Edwards TE, TenHoor C, Adelman BA, Nixon AE, Sexton DJ. Inhibition of plasma kallikrein by a highly specific active site blocking antibody. J Biol Chem 2014; 289:23596-608. [PMID: 24970892 PMCID: PMC4156074 DOI: 10.1074/jbc.m114.569061] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma kallikrein (pKal) proteolytically cleaves high molecular weight kininogen to generate the potent vasodilator and the pro-inflammatory peptide, bradykinin. pKal activity is tightly regulated in healthy individuals by the serpin C1-inhibitor, but individuals with hereditary angioedema (HAE) are deficient in C1-inhibitor and consequently exhibit excessive bradykinin generation that in turn causes debilitating and potentially fatal swelling attacks. To develop a potential therapeutic agent for HAE and other pKal-mediated disorders, we used phage display to discover a fully human IgG1 monoclonal antibody (DX-2930) against pKal. In vitro experiments demonstrated that DX-2930 potently inhibits active pKal (Ki = 0.120 ± 0.005 nm) but does not target either the zymogen (prekallikrein) or any other serine protease tested. These findings are supported by a 2.1-Å resolution crystal structure of pKal complexed to a DX-2930 Fab construct, which establishes that the pKal active site is fully occluded by the antibody. DX-2930 injected subcutaneously into cynomolgus monkeys exhibited a long half-life (t½ ∼12.5 days) and blocked high molecular weight kininogen proteolysis in activated plasma in a dose- and time-dependent manner. Furthermore, subcutaneous DX-2930 reduced carrageenan-induced paw edema in rats. A potent and long acting inhibitor of pKal activity could be an effective treatment option for pKal-mediated diseases, such as HAE.
Collapse
Affiliation(s)
| | | | - Diana Martik
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | - Kris J Kopacz
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | - Jie Chen
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | - Janja Cosic
- From the Dyax Corp., Burlington, Massachusetts 01803
| | - Shauna Mason
- From the Dyax Corp., Burlington, Massachusetts 01803
| | - Mike DiLeo
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Del Carpio JC, Nesburn AB, Boyer DS, Kuppermann BD, Vawter MP, Jazwinski SM, Miceli MV, Wallace DC, Udar N. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:208-19. [PMID: 24200652 PMCID: PMC4326177 DOI: 10.1016/j.bbadis.2013.10.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/18/2013] [Accepted: 10/29/2013] [Indexed: 02/08/2023]
Abstract
The geographic origins of populations can be identified by their maternally inherited mitochondrial DNA (mtDNA) haplogroups. This study compared human cybrids (cytoplasmic hybrids), which are cell lines with identical nuclei but mitochondria from different individuals with mtDNA from either the H haplogroup or L haplogroup backgrounds. The most common European haplogroup is H while individuals of maternal African origin are of the L haplogroup. Despite lower mtDNA copy numbers, L cybrids had higher expression levels for nine mtDNA-encoded respiratory complex genes, decreased ATP (adenosine triphosphate) turnover rates and lower levels of reactive oxygen species production, parameters which are consistent with more efficient oxidative phosphorylation. Surprisingly, GeneChip arrays showed that the L and H cybrids had major differences in expression of genes of the canonical complement system (5 genes), dermatan/chondroitin sulfate biosynthesis (5 genes) and CCR3 (chemokine, CC motif, receptor 3) signaling (9 genes). Quantitative nuclear gene expression studies confirmed that L cybrids had (a) lower expression levels of complement pathway and innate immunity genes and (b) increased levels of inflammation-related signaling genes, which are critical in human diseases. Our data support the hypothesis that mtDNA haplogroups representing populations from different geographic origins may play a role in differential susceptibilities to diseases.
Collapse
Affiliation(s)
- M Cristina Kenney
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, Univ. of California Irvine, Irvine, CA, USA.
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | - Shari R Atilano
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | | | - Claudio Ramirez
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | - Deepika Malik
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | - Mohamed Tarek
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | | | - Anthony B Nesburn
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | | | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, Univ. of California Irvine, Irvine, CA, USA
| | | | - Michael V Miceli
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| | | | - Nitin Udar
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| |
Collapse
|
11
|
Dai J, Zhu X, Yoder MC, Wu Y, Colman RW. Cleaved high-molecular-weight kininogen accelerates the onset of endothelial progenitor cell senescence by induction of reactive oxygen species. Arterioscler Thromb Vasc Biol 2011; 31:883-9. [PMID: 21252071 PMCID: PMC3089907 DOI: 10.1161/atvbaha.110.222430] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/03/2011] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Cleaved high-molecular-weight kininogen (HKa), an activation product of the plasma kallikrein-kinin system, inhibits endothelial cell functions. We questioned whether HKa affects the function of endothelial progenitor cells (EPCs) and accelerates their senescence. METHODS AND RESULTS Treatment with HKa for 2 weeks markedly inhibited the formation of large colonies and proliferation of EPCs on collagen surfaces, whereas HKa did not affect collagen-mediated EPC adhesion and survival. Concomitantly, treated EPCs displayed flattened and giant cell morphological changes and formation of intracellular vacuoles. As determined by acidic β-galactosidase staining, HKa increased senescent EPCs by 2- and >3-fold after culture for 1 and 2 weeks, respectively. In addition, HKa suppressed the telomerase activity of EPCs. HKa concentration-dependently increased the generation of intracellular reactive oxygen species (ROS) and markedly upregulated p38 kinase phosphorylation and prosenescence molecule p16(INK4a) expression. SB203580, a p38 inhibitor, attenuated the level of HKa-enhanced p16(INK4a) expression. Either quenching of ROS or inhibition of p38 kinase prevented HKa-induced EPC senescence. CONCLUSIONS HKa accelerates the onset of EPC senescence by activating the ROS-p38 kinase-p16(INK4a) signaling cascade. This novel activity of HKa points out the likelihood of HKa serving as an endogenous inducer of EPC senescence.
Collapse
Affiliation(s)
- Jihong Dai
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | | | | | | | | |
Collapse
|