1
|
Xia S, Fang P, Pan T, Xiao W, Zhang H, Zhu X, Xiao S, Fang L. Porcine deltacoronavirus accessory protein NS7a possesses the functional characteristics of a viroporin. Vet Microbiol 2022; 274:109551. [PMID: 36067658 DOI: 10.1016/j.vetmic.2022.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022]
Abstract
Viroporins are virus-encoded proteins that mediate ion channel (IC) activity, playing critical roles in virus entry, replication, pathogenesis, and immune evasion. Previous studies have shown that some coronavirus accessory proteins have viroporin-like activity. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that encodes three accessory proteins, NS6, NS7, and NS7a. However, whether any of the PDCoV accessory proteins possess viroporin-like activity, and if so which, remains unknown. In this study, we analyzed the biochemical properties of the three PDCoV-encoded accessory proteins and found that NS7a could enhance the membrane permeability of both mammalian cells and Escherichia coli cells. Indirect immunofluorescence assay and co-immunoprecipitation assay results further indicated that NS7a is an integral membrane protein and can form homo-oligomers. A bioinformation analysis revealed that a putative viroporin domain (VPD) is located within amino acids 69-88 (aa69-88) of NS7a. Experiments with truncated mutants and alanine scanning mutagenesis additionally demonstrated that the amino acid residues 69FLR71 of NS7a are essential for its viroporin-like activity. Together, our findings are the first to demonstrate that PDCoV NS7a possesses viroporin-like activity and identify its key amino acid residues associated with viroporin-like activity.
Collapse
Affiliation(s)
- Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ting Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenwen Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xuerui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
2
|
Non-Structural Protein 2B of Human Rhinovirus 16 Activates Both PERK and ATF6 Rather Than IRE1 to Trigger ER Stress. Viruses 2019; 11:v11020133. [PMID: 30717233 PMCID: PMC6409610 DOI: 10.3390/v11020133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
To understand the underlying mechanisms of endoplasmic reticulum (ER) stress caused by human rhinovirus (HRV) 16 and non-structural transmembrane protein 2B, the expressions of ER chaperone glucose-regulated protein 78 (GRP78) and three signal transduction pathways, including protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1), were evaluated after HRV16 infection and 2B gene transfection. Our results showed that both HRV16 infection and 2B gene transfection increased the expression of ER chaperone GRP78, and induced phosphorylation of PERK and cleavage of ATF6 in a time-dependent manner. Our data also revealed that the HRV16 2B protein was localized to the ER membrane. However, both HRV16 infection and HRV16 2B gene transfection did not induce ER stress through the IRE1 pathway. Moreover, our results showed that apoptosis occurred in H1-HeLa cells infected with HRV16 or transfected with 2B gene accompanied with increased expression of CHOP and cleaved caspase-3. Taken together, non-structural protein 2B of HRV16 induced an ER stress response through the PERK and ATF6 pathways rather than the IRE1 pathway.
Collapse
|
3
|
Lee GY, You DG, Lee HR, Hwang SW, Lee CJ, Yoo YD. Romo1 is a mitochondrial nonselective cation channel with viroporin-like characteristics. J Cell Biol 2018; 217:2059-2071. [PMID: 29545371 PMCID: PMC5987721 DOI: 10.1083/jcb.201709001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Romo1 regulates mitochondrial reactive oxygen species production and acts as an essential redox sensor in mitochondrial dynamics. Lee et al. demonstrate that Romo1 is a unique mitochondrial ion channel with viroporin-like characteristics that distinguish Romo1 from other known eukaryotic ion channels. Reactive oxygen species (ROS) modulator 1 (Romo1) is a nuclear-encoded mitochondrial inner membrane protein known to regulate mitochondrial ROS production and to act as an essential redox sensor in mitochondrial dynamics. Although its physiological roles have been studied for a decade, the biophysical mechanisms that explain these activities of Romo1 are unclear. In this study, we report that Romo1 is a unique mitochondrial ion channel that differs from currently identified eukaryotic ion channels. Romo1 is a highly conserved protein with structural features of class II viroporins, which are virus-encoded nonselective cation channels. Indeed, Romo1 forms a nonselective cation channel with its amphipathic helical transmembrane domain necessary for pore-forming activity. Notably, channel activity was specifically inhibited by Fe2+ ions, an essential transition metal ion in ROS metabolism. Using structural bioinformatics, we designed an experimental data–guided structural model of Romo1 with a rational hexameric structure. We propose that Romo1 establishes a new category of viroporin-like nonselective cation channel in eukaryotes.
Collapse
Affiliation(s)
- Gi Young Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Deok-Gyun You
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye-Ra Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Korea University-Korea Institute of Science and Technology Graduate School of Convergence Technology, Korea University, Seoul, Republic of Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ramsey J, Mukhopadhyay S. Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins. Viruses 2017; 9:v9080228. [PMID: 28820485 PMCID: PMC5580485 DOI: 10.3390/v9080228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023] Open
Abstract
For 30 years it was thought the alphavirus 6K gene encoded a single 6 kDa protein. However, through a bioinformatics search 10 years ago, it was discovered that there is a frameshifting event and two proteins, 6K and transframe (TF), are translated from the 6K gene. Thus, many functions attributed to the 6K protein needed reevaluation to determine if they properly belong to 6K, TF, or both proteins. In this mini-review, we reevaluate the past research on 6K and put those results in context where there are two proteins, 6K and TF, instead of one. Additionally, we discuss the most cogent outstanding questions for 6K and TF research, including their collective importance in alphavirus budding and their potential importance in disease based on the latest virulence data.
Collapse
Affiliation(s)
- Jolene Ramsey
- Department of Biology at Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
5
|
Membrane protein assembly: two cytoplasmic phosphorylated serine sites of Vpu from HIV-1 affect oligomerization. Sci Rep 2016; 6:28866. [PMID: 27353136 PMCID: PMC4926278 DOI: 10.1038/srep28866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/06/2016] [Indexed: 11/08/2022] Open
Abstract
Viral protein U (Vpu) encoded by human immunodeficiency virus type 1 (HIV-1) is a short integral membrane protein which is known to self-assemble within the lipid membrane and associate with host factors during the HIV-1 infectivity cycle. In this study, full-length Vpu (M group) from clone NL4-3 was over-expressed in human cells and purified in an oligomeric state. Various single and double mutations were constructed on its phosphorylation sites to mimic different degrees of phosphorylation. Size exclusion chromatography of wild-type Vpu and mutants indicated that the smallest assembly unit of Vpu was a dimer and over time Vpu formed higher oligomers. The rate of oligomerization increased when (i) the degree of phosphorylation at serines 52 and 56 was decreased and (ii) when the ionic strength was increased indicating that the cytoplasmic domain of Vpu affects oligomerization. Coarse-grained molecular dynamic simulations with models of wild-type and mutant Vpu in a hydrated lipid bilayer supported the experimental data in demonstrating that, in addition to a previously known role in downregulation of host factors, the phosphorylation sites of Vpu also modulate oligomerization.
Collapse
|
6
|
Laasch N, Kalita MM, Griffin S, Fischer WB. Small molecule ligand docking to genotype specific bundle structures of hepatitis C virus (HCV) p7 protein. Comput Biol Chem 2016; 64:56-63. [PMID: 27258799 DOI: 10.1016/j.compbiolchem.2016.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
The genome of hepatitis C virus encodes for an essential 63 amino acid polytopic protein p7 of most likely two transmembrane domains (TMDs). The protein is identified to self-assemble thereby rendering lipid membranes permeable to ions. A series of small molecules such as adamantanes, imino sugars and guanidinium compounds are known to interact with p7. A set of 9 of these small molecules is docked against hexameric bundles of genotypes 5a (bundle-5a) and 1b (bundle-1b) using LeadIT. Putative sites for bundle-5a are identified within the pore and at pockets on the outside of the bundle. For bundle-1b preferred sites are found at the site of the loops. Binding energies are in favour of the guanidinium compounds. Rescoring of the identified poses with HYDE reveals a dehydration penalty for the guanidinium compounds, leaving the adamantanes and imino sugar in a better position. Binding energies calculated by HYDE and those by LeadIT indicate that all compounds are moderate binders.
Collapse
Affiliation(s)
- Niklas Laasch
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Monoj Mon Kalita
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Stephen Griffin
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
7
|
Hsu HJ, Lin MH, Schindler C, Fischer WB. Structure based computational assessment of channel properties of assembled ORF-8a from SARS-CoV. Proteins 2014; 83:300-8. [PMID: 25394339 PMCID: PMC7167713 DOI: 10.1002/prot.24721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 01/21/2023]
Abstract
ORF 8a is a short 39 amino acid bitopic membrane protein encoded by severe acute respiratory syndrome causing corona virus (SARS‐CoV). It has been identified to increase permeability of the lipid membrane for cations. Permeability is suggested to occur due to the assembly of helical bundles. Computational models of a pentameric assembly of 8a peptides are generated using the first 22 amino acids, which include the transmembrane domain. Low energy structures reveal a hydrophilic pore mantled by residues Thr‐8, and −18, Ser‐11, Cys‐13, and Arg‐22. Potential of mean force (PMF) profiles for mono (Na+, K+, Cl−) and divalent (Ca2+) ions along the pore are calculated. The data support experimental findings of a weak cation selectivity of the channel. Calculations on 8a are compared to data derived for a pentameric bundle consisting of the M2 helices of the bacterial pentameric ligand gated ion channel GLIC (3EHZ). PMF curves of both, bundles 8a and M2, show sigmoidal shaped profiles. In comparison to the data for the M2‐GLIC model, data of the 8a bundle show lower amplitude of the PMF values between maximum and minimum and less discrimination amongst ions. Proteins 2015; 83:300–308. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hao-Jen Hsu
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, 112, Taiwan; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, 112, Taiwan
| | | | | | | |
Collapse
|
8
|
Li LH, Fischer WB. Correlation of biological activity with computationally derived structural features from transmembrane hetero-dimers of HIV-1 Vpu with host factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1104-12. [PMID: 24036078 DOI: 10.1016/j.bbamem.2013.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 01/29/2023]
Abstract
Vpu is an 81 amino acid type I integral membrane protein encoded by human immunodeficiency virus type 1 (HIV-1). It is identified to support viral release by potentially forming ion and substrate conducting channels and by modulating the function of host factors. The focus is on the interaction of the transmembrane domains of Vpu with those of host factors using a combination of molecular dynamics simulations and docking approach. Binding poses and adopted tilt angles of the dimers are analyzed and correlated with experimentally derived activity data from literature. Vpu activity is driven by dimerization with the host protein via its alanine rim Ala-8/11/15/19. Tight binding is shown by an almost parallel alignment of the helices in the dimers. Less parallel alignment is proposed to correlate with lower activity. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Li-Hua Li
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
9
|
Zhang R, Wang K, Lv W, Yu W, Xie S, Xu K, Schwarz W, Xiong S, Sun B. The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1088-95. [PMID: 23906728 PMCID: PMC7094429 DOI: 10.1016/j.bbamem.2013.07.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022]
Abstract
In addition to a set of canonical genes, coronaviruses encode additional accessory proteins. A locus located between the spike and envelope genes is conserved in all coronaviruses and contains a complete or truncated open reading frame (ORF). Previously, we demonstrated that this locus, which contains the gene for accessory protein 3a from severe acute respiratory syndrome coronavirus (SARS-CoV), encodes a protein that forms ion channels and regulates virus release. In the current study, we explored whether the ORF4a protein of HCoV-229E has similar functions. Our findings revealed that the ORF4a proteins were expressed in infected cells and localized at the endoplasmic reticulum/Golgi intermediate compartment (ERGIC). The ORF4a proteins formed homo-oligomers through disulfide bridges and possessed ion channel activity in both Xenopus oocytes and yeast. Based on the measurement of conductance to different monovalent cations, the ORF4a was suggested to form a non-selective channel for monovalent cations, although Li(+) partially reduced the inward current. Furthermore, viral production decreased when the ORF4a protein expression was suppressed by siRNA in infected cells. Collectively, this evidence indicates that the HCoV-229E ORF4a protein is functionally analogous to the SARS-CoV 3a protein, which also acts as a viroporin that regulates virus production. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Ronghua Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Kai Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wei Lv
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wenjing Yu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Shiqi Xie
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Ke Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wolfgang Schwarz
- Goethe-University Frankfurt, Institute for Biophysics, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany; Shanghai Research Center for Acupuncture and Meridian, 199 Guoshoujing Road, Shanghai 201023, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Bing Sun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China; State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Wang YT, Hsu HJ, Fischer WB. Computational modeling of the p7 monomer from HCV and its interaction with small molecule drugs. SPRINGERPLUS 2013; 2:324. [PMID: 23961398 PMCID: PMC3724979 DOI: 10.1186/2193-1801-2-324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/11/2013] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus p7 protein is a 63 amino acid polytopic protein with two transmembrane domains (TMDs) and one of the prime targets for anti HCV drug development. A bio-inspired modeling pathway is used to generate plausible computational models of the two TMDs forming the monomeric protein model. A flexible region between Leu-13 and Gly-15 is identified for TMD11-32 and a region around Gly-46 to Trp-48 for TMD236-58. Mutations of the tyrosine residues in TMD236-58 into phenylalanine and serine are simulated to identify their role in shaping TMD2. Lowest energy structures of the two TMDs connected with the loop residues are used for a posing study in which small molecule drugs BIT225, amantadine, rimantadine and NN-DNJ, are identified to bind to the loop region. BIT225 is identified to interact with the backbone of the functionally important residues Arg-35 and Trp-36.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Life Science, Tzu Chi University, Hualien, 970 Taiwan
| | | | | |
Collapse
|
11
|
Chandler DE, Penin F, Schulten K, Chipot C. The p7 protein of hepatitis C virus forms structurally plastic, minimalist ion channels. PLoS Comput Biol 2012; 8:e1002702. [PMID: 23028296 PMCID: PMC3447957 DOI: 10.1371/journal.pcbi.1002702] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/27/2012] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) p7 is a membrane-associated oligomeric protein harboring ion channel activity. It is essential for effective assembly and release of infectious HCV particles and an attractive target for antiviral intervention. Yet, the self-assembly and molecular mechanism of p7 ion channelling are currently only partially understood. Using molecular dynamics simulations (aggregate time 1.2 µs), we show that p7 can form stable oligomers of four to seven subunits, with a bias towards six or seven subunits, and suggest that p7 self-assembles in a sequential manner, with tetrameric and pentameric complexes forming as intermediate states leading to the final hexameric or heptameric assembly. We describe a model of a hexameric p7 complex, which forms a transiently-open channel capable of conducting ions in simulation. We investigate the ability of the hexameric model to flexibly rearrange to adapt to the local lipid environment, and demonstrate how this model can be reconciled with low-resolution electron microscopy data. In the light of these results, a view of p7 oligomerization is proposed, wherein hexameric and heptameric complexes may coexist, forming minimalist, yet robust functional ion channels. In the absence of a high-resolution p7 structure, the models presented in this paper can prove valuable as a substitute structure in future studies of p7 function, or in the search for p7-inhibiting drugs.
Collapse
Affiliation(s)
- Danielle E. Chandler
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - François Penin
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, Univ Lyon, France; CNRS, UMR 5086, Lyon, France
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christophe Chipot
- Beckman Institute, University of Illinois at Urbana-Champaign Urbana, Illinois, United States of America
- Équipe de Dynamique des Assemblages Membranaires UMR 7565, Université de Lorraine, Vanduvre-lès-Nancy, France
| |
Collapse
|
12
|
Abstract
Viroporins are small virally encoded hydrophobic proteins that oligomerize in the membrane of host cells, leading to the formation of hydrophilic pores. This activity modifies several cellular functions, including membrane permeability, Ca2+ homeostasis, membrane remodelling and glycoprotein trafficking. A classification scheme for viroporins is proposed on the basis of their structure and membrane topology. Thus, class I and class II viroporins are defined according to the number of transmembrane domains in the protein (one and two, respectively), and subclasses are defined according to their orientation in the membrane. The main function of viroporins during viral replication is to participate in virion morphogenesis and release from host cells. In addition, some viroporins are involved in viral entry and genome replication. The structure and activity of several viroporins, such as picornavirus protein 2B (P2B), influenza A virus matrix protein 2 (M2), hepatitis C virus p7 and HIV-1 viral protein U (Vpu), have been analysed in detail. New members of this expanding family of viral proteins have been described, from both RNA and DNA viruses. In addition to having a common general structure, all of these new viroporins have the ability to increase membrane permeability. Viroporins represent ideal targets to block viral replication and the spread of infection. Although a number of selective inhibitors of viroporin ion channels have been analysed in detail, optimized screening systems promise to provide new and more potent antiviral compounds in the near future.
Viroporins belong to a growing family of virally encoded proteins that form aqueous channels in the membranes of host cells. Here, Carrasco and colleagues review the structure and diverse biological functions of these proteins during the viral life cycle, as well as their potential as antiviral therapeutic targets. Viroporins are small, hydrophobic proteins that are encoded by a wide range of clinically relevant animal viruses. When these proteins oligomerize in host cell membranes, they form hydrophilic pores that disrupt a number of physiological properties of the cell. Viroporins are crucial for viral pathogenicity owing to their involvement in several diverse steps of the viral life cycle. Thus, these viral proteins, which include influenza A virus matrix protein 2 (M2), HIV-1 viral protein U (Vpu) and hepatitis C virus p7, represent ideal targets for therapeutic intervention, and several compounds that block their pore-forming activity have been identified. Here, we review recent studies in the field that have advanced our knowledge of the structure and function of this expanding family of viral proteins.
Collapse
|
13
|
Huang DTN, Chi N, Chen SC, Lee TY, Hsu K. Background K(2P) channels KCNK3/9/15 limit the budding of cell membrane-derived vesicles. Cell Biochem Biophys 2012; 61:585-94. [PMID: 21761257 PMCID: PMC7090673 DOI: 10.1007/s12013-011-9241-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The main function of background two-pore potassium (K2P) channels KCNK3/9/15 is to stabilize the cell membrane potential. We previously observed that membrane potential depolarization enhances the release of HIV-1 viruses. Because membrane polarization affects the biomembrane directly, here we examined the effects of KCNK3/9/15 on the budding of nonviral vesicles. We found that depolarization by knocking down endogenous KCNK3/9/15 promoted secretion of cell-derived vesicles. We further used Vpu (an antagonist of KCNK3) as a model for the in vivo study of depolarization-stimulated secretion. Vpu is a HIV-1-encoded, ion channel-like protein (viroporin) capable of enhancing virus release and depolarizing the cell membrane potential. We found that Vpu could also promote nonviral vesicle release, perhaps through a similar mechanism that Vpu utilizes to promote viral particle release. Notably, T cells expressing Vpu alone became pathologically low in intracellular K+ and insensitive to extracellular K+ or membrane potential stimulation. In contrast, heterologous expression of KCNK3 in T cells stabilized the cell potentials by maintaining intracellular K+. We thus concluded that KCNK3/9/15 expression limits membrane depolarization and depolarization-induced secretion at least in part by maintaining intracellular K+.
Collapse
Affiliation(s)
| | - Naiwen Chi
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
- Present Address: Bertec Enterprise Co., Ltd, Taipei, Taiwan
| | - Shiou-Ching Chen
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| | - Ting-Ying Lee
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| | - Kate Hsu
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| |
Collapse
|
14
|
Hong GS, Chen CP, Lin MH, Krüger J, Becker CFW, Fink RHA, Fischer WB. Molecular dynamics simulations and conductance studies of the interaction of VP1 N-terminus from Polio virus and gp41 fusion peptide from HIV-1 with lipid membranes. Mol Membr Biol 2012; 29:9-25. [PMID: 22276694 DOI: 10.3109/09687688.2011.644589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The icosahedral Polio virus capsid consists of 60 copies of each of the coat proteins VP1, VP2, VP3 and myristolyated VP4 (myrVP4). Catalyzed by the host cell receptor the Polio virus enters the host cell via externalization of myrVP4 and the N terminal part of VP1. There are several assumptions about the individual role of both of the proteins in the mechanism of membrane attachment and genome injection. We use the first 32 N terminal amino acids of VP1 and applied molecular dynamics simulations to assess its mechanism of function when attached and inserted into hydrated lipid membranes (POPC). Helical models are placed in various positions in regard to the lipid membrane to start with. As a comparison, the first 33 amino acids of the fusion peptide of gp41 of HIV-1 are simulated under identical conditions. Computational data support the idea that VP1 is not penetrating into the membrane to form a pore; it rather lays on the membrane surface and only perturbs the membrane. Furthermore, this idea is strengthened by channel recordings of both peptides showing irregular openings.
Collapse
Affiliation(s)
- Guo-Sheng Hong
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, 155 Li-Non Street, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Fischer WB, Wang YT, Schindler C, Chen CP. Mechanism of function of viral channel proteins and implications for drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:259-321. [PMID: 22364876 PMCID: PMC7149447 DOI: 10.1016/b978-0-12-394305-7.00006-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral channel-forming proteins comprise a class of viral proteins which, similar to their host companions, are made to alter electrochemical or substrate gradients across lipid membranes. These proteins are active during all stages of the cellular life cycle of viruses. An increasing number of proteins are identified as channel proteins, but the precise role in the viral life cycle is yet unknown for the majority of them. This review presents an overview about these proteins with an emphasis on those with available structural information. A concept is introduced which aligns the transmembrane domains of viral channel proteins with those of host channels and toxins to give insights into the mechanism of function of the viral proteins from potential sequence identities. A summary of to date investigations on drugs targeting these proteins is given and discussed in respect of their mode of action in vivo.
Collapse
Affiliation(s)
- Wolfgang B. Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Ting Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Christina Schindler
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Chin-Pei Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
16
|
DIDS blocks a chloride-dependent current that is mediated by the 2B protein of enterovirus 71. Cell Res 2011; 21:1271-5. [PMID: 21747413 DOI: 10.1038/cr.2011.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
17
|
Lv M, Wang J, Wang X, Zuo T, Zhu Y, Kong W, Yu X. Polarity changes in the transmembrane domain core of HIV-1 Vpu inhibits its anti-tetherin activity. PLoS One 2011; 6:e20890. [PMID: 21674066 PMCID: PMC3107245 DOI: 10.1371/journal.pone.0020890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/12/2011] [Indexed: 11/18/2022] Open
Abstract
Tetherin (BST-2/CD317) is an interferon-inducible antiviral protein that restricts the release of enveloped viruses from infected cells. The HIV-1 accessory protein Vpu can efficiently antagonize this restriction. In this study, we analyzed mutations of the transmembrane (TM) domain of Vpu, including deletions and substitutions, to delineate amino acids important for HIV-1 viral particle release and in interactions with tetherin. The mutants had similar subcellular localization patterns with that of wild-type Vpu and were functional with respect to CD4 downregulation. We showed that the hydrophobic binding surface for tetherin lies in the core of the Vpu TM domain. Three consecutive hydrophobic isoleucine residues in the middle region of the Vpu TM domain, I15, I16 and I17, were important for stabilizing the tetherin binding interface and determining its sensitivity to tetherin. Changing the polarity of the amino acids at these positions resulted in severe impairment of Vpu-induced tetherin targeting and antagonism. Taken together, these data reveal a model of specific hydrophobic interactions between Vpu and tetherin, which can be potentially targeted in the development of novel anti-HIV-1 drugs.
Collapse
Affiliation(s)
- Mingyu Lv
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiawen Wang
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xiaodan Wang
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tao Zuo
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yingzi Zhu
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Wei Kong
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin Province, People's Republic of China
- * E-mail: (WK); (XY)
| | - Xianghui Yu
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin Province, People's Republic of China
- * E-mail: (WK); (XY)
| |
Collapse
|
18
|
In silico investigations of possible routes of assembly of ORF 3a from SARS-CoV. J Mol Model 2011; 18:501-14. [PMID: 21541740 PMCID: PMC7087964 DOI: 10.1007/s00894-011-1092-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 04/12/2011] [Indexed: 12/30/2022]
Abstract
ORF 3a of human severe acute respiratory syndrome corona virus (SARS-CoV) has been identified as a 274 amino acid membrane protein. When expressed in Xenopus oocytes the protein forms channels. Based on bioinformatics approaches the topology has been identified to include three transmembrane domains (TMDs). Since structural models from experiments are still lacking, computational methods can be challenged to generate such models. In this study, a ‘sequential approach’ for the assembly is proposed in which the individual TMDs are assembled one by one. This protocol is compared with a concerted protocol in which all TMDs are assembled simultaneously. The role of the loops between the TMDs during assembly of the monomers into a bundle is investigated. Molecular dynamics simulations for 20 ns are performed as a short equilibration to assess the bundle stability in a lipid environment. The results suggest that bundles are likely with the second TMD facing the putative pore. All the putative bundles show water molecules trapped within the lumen of the pore with only occasional events of complete crossing.
Collapse
|
19
|
Fischer WB, Hsu HJ. Viral channel forming proteins - modeling the target. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:561-71. [PMID: 20546700 PMCID: PMC7094444 DOI: 10.1016/j.bbamem.2010.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/02/2023]
Abstract
The cellular and subcellular membranes encounter an important playground for the activity of membrane proteins encoded by viruses. Viral membrane proteins, similar to their host companions, can be integral or attached to the membrane. They are involved in directing the cellular and viral reproduction, the fusion and budding processes. This review focuses especially on those integral viral membrane proteins which form channels or pores, the classification to be so, modeling by in silico methods and potential drug candidates. The sequence of an isolate of Vpu from HIV-1 is aligned with host ion channels and a toxin. The focus is on the alignment of the transmembrane domains. The results of the alignment are mapped onto the 3D structures of the respective channels and toxin. The results of the mapping support the idea of a 'channel-pore dualism' for Vpu.
Collapse
Affiliation(s)
- Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| | | |
Collapse
|
20
|
Chen CC, Krüger J, Sramala I, Hsu HJ, Henklein P, Chen YMA, Fischer WB. ORF8a of SARS-CoV forms an ion channel: experiments and molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:572-9. [PMID: 20708597 PMCID: PMC7094593 DOI: 10.1016/j.bbamem.2010.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 12/12/2022]
Abstract
ORF8a protein is 39 residues long and contains a single transmembrane domain. The protein is synthesized using solid phase peptide synthesis and reconstituted into artificial lipid bilayers that forms cation-selective ion channels with a main conductance level of 8.9±0.8pS at elevated temperature (38.5°C). Computational modeling studies including multi nanosecond molecular dynamics simulations in a hydrated POPC lipid bilayer are done with a 22 amino acid transmembrane helix to predict a putative homooligomeric helical bundle model. A structural model of a pentameric bundle is proposed with cysteines, serines and threonines facing the pore.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Nong St., Sec. 2, Taipei, 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Liang X, Li ZY. Ion channels as antivirus targets. Virol Sin 2010; 25:267-80. [PMID: 20960300 DOI: 10.1007/s12250-010-3136-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022] Open
Abstract
Ion channels are membrane proteins that are found in a number of viruses and which are of crucial physiological importance in the viral life cycle. They have one common feature in that their action mode involves a change of electrochemical or proton gradient across the bilayer lipid membrane which modulates viral or cellular activity. We will discuss a group of viral channel proteins that belong to the viroproin family, and which participate in a number of viral functions including promoting the release of viral particles from cells. Blocking these channel-forming proteins may be "lethal", which can be a suitable and potential therapeutic strategy. In this review we discuss seven ion channels of viruses which can lead serious infections in human beings: M2 of influenza A, NB and BM2 of influenza B, CM2 of influenza C, Vpu of HIV-1, p7 of HCV and 2B of picornaviruses.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | |
Collapse
|
22
|
Patargias G, Ewart G, Luscombe C, Fischer WB. Ligand-protein docking studies of potential HIV-1 drug compounds using the algorithm FlexX. Anal Bioanal Chem 2010; 396:2559-63. [PMID: 20165836 DOI: 10.1007/s00216-010-3498-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
Four compounds are docked to a pentameric bundle representing the transmembrane part of the Vpu protein from HIV-1. Employing the docking algorithm FlexX, their free energy of binding is estimated leading to the conclusion that potential drug candidates need to form H-bonds either with neighbouring or with n + 2 helices at the site of the serines within the bundle.
Collapse
Affiliation(s)
- George Patargias
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
23
|
Patargias G, Barke T, Watts A, Fischer WB. Model generation of viral channel forming 2B protein bundles from polio and coxsackie viruses. Mol Membr Biol 2009; 26:309-20. [PMID: 19707940 DOI: 10.1080/09687680903164101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2B is a 99 amino acid membrane protein encoded by enteroviruses such as polio and coxsackie viruses with two transmembrane domains. The protein is found to make membranes of infected cells permeable. Using a computational approach which positions the models and assesses stability by molecular dynamics (MD) simulations a putative tetrameric bundle model of 2B is generated. The bundles show a pore lining motif of three lysines followed by a serine. The bundle is discussed in terms of different possible orientations of the helices in the membrane and the consequences this has on the in vivo activity of 2B.
Collapse
Affiliation(s)
- George Patargias
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford, UK
| | | | | | | |
Collapse
|
24
|
Modulating the activity of the channel-forming segment of Vpr protein from HIV-1. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1089-95. [PMID: 19629466 DOI: 10.1007/s00249-009-0518-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/27/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Viral protein of regulation (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) is a short auxiliary protein that is 96 amino acids in length. During the viral life cycle, Vpr is released into the blood serum and is able to enter cellular membranes of noninfected cells. In this study a short peptide, Vpr(55-83), was shown to exhibit ion-channel-like activity when reconstituted into (1) planar lipid bilayers and (2) lipid bilayers held at the tip of a glass pipette. The two set-ups led to differences in the oligomerization state of the peptide, which was reflected in differences in the conductance levels. Experiments under applied hydrostatic pressure affect the dynamics of the protein within the membrane.
Collapse
|
25
|
Krüger J, Fischer WB. Structural implications of mutations assessed by molecular dynamics: Vpu1-32 from HIV-1. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1069-77. [PMID: 19506851 DOI: 10.1007/s00249-009-0487-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 12/27/2022]
Abstract
Structural pore models are generated for Vpu(1-32)WT from HIV-1 as well as for three mutants W23L, S24L and R31V. A computational methodology is employed which samples the whole conformational space of the pentameric assemblies of Vpu. The analysis of the related energy landscape reveals a small set of reasonable pore models, which are thoroughly investigated regarding their structural properties as well as their putative stability under native-like conditions. The models are also discussed in respect of earlier experimental findings about their channel activities. The study proposes functional pores reflecting the experimentally found conductance states of Vpu and its mutants.
Collapse
Affiliation(s)
- J Krüger
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei, 112, Taiwan
| | | |
Collapse
|