1
|
da Silva BP, Pinto ACD, Borges LB, Oliveira ES, Soares JKC, Soman de Medeiros L, Guilhon-Simplicio F, Lima ES. Synthesis of a New Benzylated Derivative of Rutin and Study of Its Cosmetic Applications. ACS OMEGA 2025; 10:8883-8890. [PMID: 40092833 PMCID: PMC11904437 DOI: 10.1021/acsomega.4c04908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
This study aimed to obtain a derivative of rutin that has biological activities for cosmetic applications. The benzylated derivative of rutin was prepared through a substitution reaction of the hydrogens and aromatic rings of rutin by benzylation with benzyl bromide, and the product of this synthesis was encoded as RuDiOBn. The structural elucidation of the compound was performed using NMR and LC-MS/MS. Assays were performed to examine antioxidant (DPPH, ABTS, and cellular antioxidant) content, enzyme and glycation inhibition, cytotoxicity, proliferation, and inhibition of collagen production. In the in vitro glycation assay, RuDiOBn inhibited the formation of advanced glycation end products in collagen via the glyoxal pathway, with an IC50 (μg/mL) equal to 2.45 ± 0.47. In the cytotoxicity evaluation, RuDiOBn showed no toxicity to human fibroblasts. Regarding its proliferative activity, there was a significant stimulation in cell proliferation and migration, and it increased the synthesis of collagen deposited in the cell matrix. In the inhibitory activity on collagenase, using the zymographic method, RuDiOBn showed the inhibition of metalloproteinases. Our study presents a benzylated derivative of rutin and aspects of its efficacy and safety for application as a new bioactive cosmetic product.
Collapse
Affiliation(s)
| | | | - Larissa Barbosa Borges
- Faculty
of Pharmaceutical Sciences, Federal University
of Amazonas, 69077-000 Manaus, AM, Brazil
| | - Edinilze Souza
Coelho Oliveira
- Nucleus
of Amazonian Micromolecules Studies, Institute of Exact Sciences, Federal University of Amazonas, 690770-000 Manaus, AM, Brazil
| | - Jullio Kennedy Castro Soares
- Institute
of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09972-270 Diadema, SP, Brazil
| | - Lívia Soman de Medeiros
- Institute
of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09972-270 Diadema, SP, Brazil
| | | | - Emersom Silva Lima
- Faculty
of Pharmaceutical Sciences, Federal University
of Amazonas, 69077-000 Manaus, AM, Brazil
| |
Collapse
|
2
|
Han X, Li S, Sun X, Zhang J, Zhang X, Bi X. Preparation of imidazolium ionic liquid functionalized paper membrane for selective extraction of caffeic acid and its structural and functional analogues from Taraxaci Herba. Biomed Chromatogr 2024; 38:e5953. [PMID: 38965739 DOI: 10.1002/bmc.5953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
In the search for pharmaceutically active compounds from natural products, it is crucial and challenging to develop separation or purification methods that target not only structurally similar compounds but also those with specific pharmaceutical functions. The adsorption-based method is widely employed in this field and holds potential for this application, given the diverse range of functional monomers that can be chosen based on structural or functional selectivity. In this work, an imidazolium ionic liquid (IL) modified paper membrane was synthesized via microwave reaction. Caffeic acid (CA), with potential interactions with imidazolium IL and a representative component of phenolic acids in Taraxaci Herba, was chosen as a target compound. After optimization of synthesis and extraction parameters, the resulting extraction membrane could be used to quantitatively analyze CA at ng/ml level, and to extract CA's analogues from the sample matrix. Cheminformatics confirmed the presence of structural and functional similarity among these extracted compounds. This study offers a novel approach to preparing a readily synthesized extraction membrane capable of isolating compounds with structural and functional analogies, as well as developing a membrane solid-phase extraction-based analytical method for natural products.
Collapse
Affiliation(s)
- Xiaohui Han
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shumin Li
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoxue Sun
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingyu Zhang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuerui Zhang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaodong Bi
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Jinan, Shandong, China
| |
Collapse
|
3
|
Analogues of Anticancer Natural Products: Chiral Aspects. Int J Mol Sci 2023; 24:ijms24065679. [PMID: 36982753 PMCID: PMC10058835 DOI: 10.3390/ijms24065679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Life is chiral, as its constituents consist, to a large degree, of optically active molecules, be they macromolecules (proteins, nucleic acids) or small biomolecules. Hence, these molecules interact disparately with different enantiomers of chiral compounds, creating a preference for a particular enantiomer. This chiral discrimination is of special importance in medicinal chemistry, since many pharmacologically active compounds are used as racemates—equimolar mixtures of two enantiomers. Each of these enantiomers may express different behaviour in terms of pharmacodynamics, pharmacokinetics, and toxicity. The application of only one enantiomer may improve the bioactivity of a drug, as well as reduce the incidence and intensity of adverse effects. This is of special significance regarding the structure of natural products since the great majority of these compounds contain one or several chiral centres. In the present survey, we discuss the impact of chirality on anticancer chemotherapy and highlight the recent developments in this area. Particular attention has been given to synthetic derivatives of drugs of natural origin, as naturally occurring compounds constitute a major pool of new pharmacological leads. Studies have been selected which report the differential activity of the enantiomers or the activities of a single enantiomer and the racemate.
Collapse
|
4
|
Okamoto T, Kishimoto S, Watanabe K. Isolation of Natural Prodrug-Like Metabolite by Simulating Human Prodrug Activation in Filamentous Fungus. Chem Pharm Bull (Tokyo) 2022; 70:304-308. [DOI: 10.1248/cpb.c21-01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takumi Okamoto
- Department of Pharmaceutical Sciences, University of Shizuoka
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
5
|
Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Selective modification of oleuropein, a multifunctional bioactive natural product. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Li Y, Han L, Lu T, Noman M, Qiang W, Lan X, Gao T, Guo J, Zhang X, Li H, Yang J, Du L. Antidepressant-like activities of extracts of the fungus Paecilomyces tenuipes M98. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1691352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Affiliation(s)
- Yaying Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Long Han
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Tong Lu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Muhammad Noman
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Weidong Qiang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xinxin Lan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Tingting Gao
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jinnan Guo
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiaomei Zhang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jing Yang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Linna Du
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
| |
Collapse
|
8
|
Cheminformatics Explorations of Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:1-35. [PMID: 31621009 DOI: 10.1007/978-3-030-14632-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemistry of natural products is fascinating and has continuously attracted the attention of the scientific community for many reasons including, but not limited to, biosynthesis pathways, chemical diversity, the source of bioactive compounds and their marked impact on drug discovery. There is a broad range of experimental and computational techniques (molecular modeling and cheminformatics) that have evolved over the years and have assisted the investigation of natural products. Herein, we discuss cheminformatics strategies to explore the chemistry and applications of natural products. Since the potential synergisms between cheminformatics and natural products are vast, we will focus on three major aspects: (1) exploration of the chemical space of natural products to identify bioactive compounds, with emphasis on drug discovery; (2) assessment of the toxicity profile of natural products; and (3) diversity analysis of natural product collections and the design of chemical collections inspired by natural sources.
Collapse
|
9
|
Dey P. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol Res 2019; 147:104367. [PMID: 31344423 DOI: 10.1016/j.phrs.2019.104367] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.
Collapse
Affiliation(s)
- Priyankar Dey
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
10
|
S-ethyl ethanethiosulfinate, a derivative of allicin, induces metacaspase-dependent apoptosis through ROS generation in Penicillium chrysogenum. Biosci Rep 2019; 39:BSR20190167. [PMID: 31142631 PMCID: PMC6567679 DOI: 10.1042/bsr20190167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
Allicin can be used as fumigant to protect food and cultural relics from fungal contamination because of its strong antifungal activity and the characteristics of high volatility and no residues. However, the obvious disadvantages such as high minimal inhibitory concentration and instability prevent it from wide application. In this study, a stable derivative of allicin, S-ethyl ethanethiosulfinate (ALE), was synthesized. We further explored its antifungal activity and apoptosis-inducing effect, as well as the underlying mechanism. ALE had an excellent capability of inhibiting spore germination and mycelial growth of Penicillium chrysogenum observed by inverted microscope and scanning electron microscopy. XTT colorimetric assay indicated ALE could reduce the cell viability obviously and IC50 was 0.92 μg/ml, only 1/42 of allicin (38.68 μg/ml). DHR 123 ROS Assay Kit, flow cytometry assay and confocal immunofluorescence revealed intercellular ROS generation and metacaspase-dependent apoptosis triggered by ALE, while antioxidant tocopherol could reverse ALE-induced cytotoxicity effect and metacaspase activation. These results indicate that ALE induces metacaspase-dependent apoptosis through ROS generation, thus possesses an effective antifungal activity. This new derivative of allicin might be developed as a high efficient alternative to the conventional fungicides for food storage and cultural relic protection.
Collapse
|
11
|
Peeters L, Beirnaert C, Van der Auwera A, Bijttebier S, De Bruyne T, Laukens K, Pieters L, Hermans N, Foubert K. Revelation of the metabolic pathway of hederacoside C using an innovative data analysis strategy for dynamic multiclass biotransformation experiments. J Chromatogr A 2019; 1595:240-247. [DOI: 10.1016/j.chroma.2019.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 11/28/2022]
|
12
|
Li T, Ding T, Li J. Medicinal Purposes: Bioactive Metabolites from Marine-derived Organisms. Mini Rev Med Chem 2019; 19:138-164. [PMID: 28969543 DOI: 10.2174/1389557517666170927113143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 06/17/2017] [Indexed: 12/20/2022]
Abstract
The environment of marine occupies about 95% biosphere of the world and it can be a critical source of bioactive compounds for humans to be explored. Special environment such as high salt, high pressure, low temperature, low nutrition and no light, etc. has made the production of bioactive substances different from terrestrial organisms. Natural ingredients secreted by marine-derived bacteria, fungi, actinomycetes, Cyanobacteria and other organisms have been separated as active pharmacophore. A number of evidences have demonstrated that bioactive ingredients isolated from marine organisms can be other means to discover novel medicines, since enormous natural compounds from marine environment were specified to be anticancer, antibacterial, antifungal, antitumor, cytotoxic, cytostatic, anti-inflammatory, antiviral agents, etc. Although considerable progress is being made within the field of chemical synthesis and engineering biosynthesis of bioactive compounds, marine environment still remains the richest and the most diverse sources for new drugs. This paper reviewed the natural compounds discovered recently from metabolites of marine organisms, which possess distinct chemical structures that may form the basis for the synthesis of new drugs to combat resistant pathogens of human life. With developing sciences and technologies, marine-derived bioactive compounds are still being found, showing the hope of solving the problems of human survival and sustainable development of resources and environment.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning, 116600, China
| | - Ting Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China
| |
Collapse
|
13
|
AbouAitah K, Swiderska-Sroda A, Farghali AA, Wojnarowicz J, Stefanek A, Gierlotka S, Opalinska A, Allayeh AK, Ciach T, Lojkowski W. Folic acid-conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action. Oncotarget 2018; 9:26466-26490. [PMID: 29899871 PMCID: PMC5995188 DOI: 10.18632/oncotarget.25470] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Naturally derived prodrugs have a wide range of pharmacological activities, including anticancer, antioxidant, and antiviral effects. However, significant barriers inhibit their use in medicine, e.g. their hydrophobicity. In this comprehensive study, we investigated simple and effective nanoformulations consisting of amine-functionalized and conjugated with folic acid (FA) mesoporous silica nanoparticles (MSNs). Two types of MSNs were studied: KCC- 1, with mean size 324 nm and mean pore diameter 3.4 nm, and MCM - 41, with mean size 197 and pore diameter 2 nm. Both types of MSNs were loaded with three anticancer prodrugs: curcumin, quercetin, and colchicine. The nanoformulations were tested to target in vitro human hepatocellular carcinoma cells (HepG2) and HeLa cancer cells. The amine-functionalized and FA-conjugated curcumin-loaded, especially KCC-1 MSNs penetrated all cells organs and steadily released curcumin. The FA-conjugated MSNs displayed higher cellular uptake, sustained intracellular release, and cytotoxicity effects in comparison to non-conjugated MSNs. The KCC-1 type MSNs carrying curcumin displayed the highest anticancer activity. Apoptosis was induced through specific signaling molecular pathways (caspase-3, H2O2, c-MET, and MCL-1). The nanoformulations displayed also an enhanced antioxidant activity compared to the pure forms of the prodrugs, and the effect depended on the time of release, type of MSN, prodrug, and assay used. FA-conjugated MSNs carrying curcumin and other safe natural prodrugs offer new possibilities for targeted cancer therapy.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Medicinal and Aromatic Plants Research, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza, Egypt
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Stefanek
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Opalinska
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Abdou K. Allayeh
- Environmental Virology Laboratory, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Stein UH, Wimmer B, Ortner M, Fuchs W, Bochmann G. Maximizing the production of butyric acid from food waste as a precursor for ABE-fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:993-1000. [PMID: 28468123 DOI: 10.1016/j.scitotenv.2017.04.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/31/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The current study reports on the maximization of butyric acid production from food waste using a mixed microbial fermentation. In semi-continuous fermentations the effect of three different pH values (5.5, 7.0 and 9.0), three different temperatures (37°C, 55°C and 70°C) and two levels of hydraulic retention time (HRT, 2days and 6days) on the formation of butyric acid as well as total volatile fatty acid production (tVFA) were investigated. Overall, pH5.5 provided the lowest butyric acid concentrations regardless of the temperature and the HRT. At mesophilic temperature (37°C) alkaline conditions (pH9.0) lead to a strong incline of tVFA as well as butyric acid concentration probably due to a decreased solubilization of the substrate. However, most efficient in terms of butyric acid production was the fermentation conducted at 55°C and pH7 where a butyric acid concentrations of 10.55g/L (HRT 2days) and 13.00g/L (HRT 6days) were achieved. Additional experiments at 70°C showed declining butyric acid production. Increase of the HRT from 2days to 6days provided an increment of butyric acid concentration throughout almost all experimental settings. However, regarding volumetric productivity the increase in concentration does not compensate for the bigger reactor volume required to establish a higher HRT. At pH7 and 55°C the resulting volumetric production rates were 5.27g/L∗d at a HRT 2days and only 2.17g/L∗d at a HRT of 6days.
Collapse
Affiliation(s)
- Ullrich Heinz Stein
- University of Natural Resources and Life Sciences, Institute for Environmental Biotechnology, Vienna, Austria.
| | - B Wimmer
- University of Natural Resources and Life Sciences, Institute for Environmental Biotechnology, Vienna, Austria
| | - M Ortner
- Bioenergy 2020+ GmbH, Graz, Austria
| | - W Fuchs
- University of Natural Resources and Life Sciences, Institute for Environmental Biotechnology, Vienna, Austria
| | - G Bochmann
- University of Natural Resources and Life Sciences, Institute for Environmental Biotechnology, Vienna, Austria
| |
Collapse
|
15
|
NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation. Toxicon 2017; 133:10-17. [DOI: 10.1016/j.toxicon.2017.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/11/2022]
|
16
|
Wang L, Phan DDK, Zhang J, Ong PS, Thuya WL, Soo R, Wong ALA, Yong WP, Lee SC, Ho PCL, Sethi G, Goh BC. Anticancer properties of nimbolide and pharmacokinetic considerations to accelerate its development. Oncotarget 2016; 7:44790-44802. [PMID: 27027349 PMCID: PMC5190135 DOI: 10.18632/oncotarget.8316] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
Nimbolide is one of the main components in the leaf extract of Azadirachta indica (A. indica). Accumulating evidence from various in vitro and in vivo studies indicates that nimbolide possesses potent anticancer activity against several types of cancer and also shows potential chemopreventive activity in animal models. The main mechanisms of action of nimbolide include anti-proliferation, induction of apoptosis, inhibition of metastasis and angiogenesis, and modulation of carcinogen-metabolizing enzymes. Although multiple pharmacodynamic (PD) studies have been carried out, nimbolide is still at the infant stage in the drug development pipeline due to the lack of systematic pharmacokinetic (PK) studies and long-term toxicological studies. Preclinical PK and toxicological studies are vital in determining the dosage range to support the safety of nimbolide for first-in-human clinical trials. In this review, we will provide a comprehensive summary for the current status of nimbolide as an anticancer and chemopreventive lead compound, and highlight the importance of systematic preclinical PK and toxicological studies in accelerating the process of application of nimbolide as a therapeutic agent against various malignancies.
Collapse
Affiliation(s)
- Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University Health System, Singapore
| | - Do Dang Khoa Phan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, National University Health System, Singapore
| | - Pei-Shi Ong
- Department of Pharmacy, National University of Singapore, Singapore
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore
| | - Ross Soo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, National University Health System, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University Health System, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore
| |
Collapse
|
17
|
da Costa LS, Andreazza NL, Correa WR, Cunha IBDS, Ruiz ALTG, de Carvalho JE, Schinor EC, Dias DA, Salvador MJ. Antiproliferative activity, antioxidant capacity and chemical composition of extracts from the leaves and stem of Chresta sphaerocephala. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett 2015; 362:8-14. [DOI: 10.1016/j.canlet.2015.03.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
|