1
|
Yan Y, Li C, Jie Q, Zhang J, Liu Y, Li Y, Cui D, Hua D, Huang J. 3β-hydroxysteroid-Δ24 reductase integrates cholesterol metabolism and innate immune to promote PRRSV replication. Int J Biol Macromol 2025; 309:142867. [PMID: 40203946 DOI: 10.1016/j.ijbiomac.2025.142867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Cholesterol metabolism is a strategy used by PRRSV to inhibit host antiviral innate immunity. However, the key enzymes or the natural products and mechanisms involved have not been well elucidated. Here, we show that PRRSV infection upregulated DHCR24, the rate-limiting enzyme in the cholesterol synthesis pathway, to increase virus proliferation. We further elucidated that PRRSV Nsp4 interacts with the FAD domain of DHCR24, promoting its expression and increasing cellular cholesterol levels. In addition, U18666A treatment inhibited DHCR24 enzyme activity, significantly reduced cell cholesterol content and PRRSV replication, and exogenous cholesterol supplementation could rescued this effect. We also found that DHCR24 is a negative regulator of type I interferon (IFN-I) production upon viral infection. Mechanistically, DHCR24 interacts with TBK1 and disrupts the interaction of TBK1-IRF3, thereby inhibiting IRF3 phosphorylation and nuclear translocation. Taken together, these findings elucidate that DHCR24 is utilized by PRRSV to regulate host cholesterol content, inhibit the innate immune response, and promote virus proliferation.
Collapse
Affiliation(s)
- Yuchao Yan
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Changyan Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Qun Jie
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Junyang Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yijia Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yong Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Daqing Cui
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Depin Hua
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Liu X, Chi H, Yang X, Zheng Z, Zhu C, Wu Y, Chang WJ, Gong H. A comprehensive analysis of the genomic and proteomic profiles of a megalocytivirus isolated from Larimichthys crocea. Front Microbiol 2025; 16:1528930. [PMID: 40099184 PMCID: PMC11911517 DOI: 10.3389/fmicb.2025.1528930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The prevalence of viral diseases has posed significant challenges to the sustainable development of large yellow croaker (Larimichthys crocea) aquaculture, with megalocytivirus being one of the primary viral pathogens affecting this species. There have been two proteomic and genomic studies regarding two members of the genus Megalocytivirus: the spotted knifejaw iridovirus (SKIV) and the infectious spleen and kidney necrosis virus (ISKNV). However, both studies were conducted more than 10 years ago. To further investigate the pathogenesis of megalocytivirus, we sequenced the genome of the viral strain FD201807 isolated from L. crocea, and conducted a proteomics analysis. Methods Viral DNA was sequenced using the Illumina HiSeq 2000 platform. Viral proteins from purified virions and supernatants of viral infected cells were subjected to LC-MS/MS analysis, and the expression of four viral proteins was further confirmed by Western blotting. The entire viral genome was subjected to phylogenetic and bioinformatic analyses. Results The FD201807 genome comprises 112,214 bp of double-stranded DNA with a G + C content of 53.53%. It contains 130 potential open reading frames, with coding capacities ranging from 41 to 1,293 amino acids. Phylogenetic analysis of the whole-genome sequence indicated that the closest known megalocytivirus related to FD201807 is Pompano iridovirus, with a sequence identity of 98.98%. Label-free proteomics analysis identified 27 viral proteins in the viral-infected cell culture supernatants and 46 viral proteins in the purified virus of FD201807. Among these, 19 viral proteins were detected in both the viral-infected cell culture supernatants and the purified virus samples, while 8 viral proteins were exclusively identified in the viral-infected cell culture supernatants. Notably, there were two proteins derived from the cultured cell line MFF-1 (mandarin fish fry cell line-1), namely cytochrome c and ubiquitin-activating enzyme E1, present in both the purified virus samples and the culture supernatant of infected cells. These cellular proteins may be associated with virus-host protein interactions and/or host cell apoptosis. Discussion We present the most comprehensive proteomic analysis to date of the megalocytivirus isolated from L. crocea, and help identify highly expressed proteins that may serve as future targets for immunotherapy and biochemical analysis.
Collapse
Affiliation(s)
- Xiaodong Liu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering Technology Research Center for Aquatic Diseases Control and Prevention, Fuzhou, China
| | - Hongshu Chi
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering Technology Research Center for Aquatic Diseases Control and Prevention, Fuzhou, China
| | - Xixi Yang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering Technology Research Center for Aquatic Diseases Control and Prevention, Fuzhou, China
| | - Zaiyu Zheng
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering Technology Research Center for Aquatic Diseases Control and Prevention, Fuzhou, China
| | - Chunhua Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yunkun Wu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering Technology Research Center for Aquatic Diseases Control and Prevention, Fuzhou, China
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, Clinton, NY, United States
| | - Hui Gong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering Technology Research Center for Aquatic Diseases Control and Prevention, Fuzhou, China
- State Key Laboratory of Mariculture Breeding, Ningde, China
| |
Collapse
|
3
|
Dai Y, Li Y, Hu X, Jiang N, Liu W, Meng Y, Zhou Y, Xu C, Xue M, Fan Y. Nonstructural protein NS17 of grass carp reovirus Honghu strain promotes virus infection by mediating cell-cell fusion and apoptosis. Virus Res 2023; 334:199150. [PMID: 37302658 PMCID: PMC10410512 DOI: 10.1016/j.virusres.2023.199150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Fusion-associated small transmembrane (FAST) proteins can promote cell fusion, alter membrane permeability and trigger apoptosis to promote virus proliferation in orthoreoviruses. However, it is unknown whether FAST proteins perform these functions in aquareoviruses (AqRVs). Non-structural protein 17 (NS17) carried by grass carp reovirus Honghu strain (GCRV-HH196) belongs to the FAST protein family, and we preliminarily explored its relevance to virus infection. NS17 has similar domains to FAST protein NS16 of GCRV-873, comprising a transmembrane domain, a polybasic cluster, a hydrophobic patch and a polyproline motif. It was observed in the cytoplasm and the cell membrane. Overexpression of NS17 enhanced the efficiency of cell-cell fusion induced by GCRV-HH196 and promoted virus replication. Overexpression of NS17 also led to DNA fragmentation and reactive oxygen species (ROS) accumulation, and it triggered apoptosis. The findings illuminate the functions of NS17 in GCRV infection, and provide a reference for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Xi Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Variations in the NSP4 gene of the type 2 porcine reproductive and respiratory syndrome virus isolated in China from 1996 to 2021. Virus Genes 2023; 59:109-120. [PMID: 36383275 PMCID: PMC9667009 DOI: 10.1007/s11262-022-01957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/05/2022] [Indexed: 11/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has continuously mutated since its first isolation in China in 1996, leading to difficulties in infection prevention and control. Infections caused by PRRSV-2 strains are the main epidemic strains in China, as determined by phylogenetic analysis. In this study, we focused on the prevalence and genetic variations of the non-structural protein 4 (NSP4) from PRRSV-2 over the past 20 years in China. The fundamental biological properties of the NSP4 were predicted, and an analysis and comparison of NSP4 homology at the nucleotide and amino acid levels was conducted using 123 PRRSV-2 strains. The predicted molecular weight of the NSP4 protein was determined to be 21.1 kDa, and it was predicted to be a stable hydrophobic protein that lacks a signal peptide. NSP4 from different strains exhibited a high degree of amino acid (85.8-100%) and nucleotide sequence homology (81.0-100%). Multiple amino acid substitutions were identified in NSP4 among 15 representative PRRSV-2 strains. Phylogenetic analysis showed that the lineage 8 and 1 strains, the most prevalent strains in China, were indifferent clades with a long genetic distance. This analysis will help fully elucidate the parameters of the PRRSV NSP4 epidemic in China to lay a foundation for adequate understanding of the function of NSP4. Genetic information results from the accumulation of conserved and non-conserved sequences. The high conservation of the NSP4 gene determines the most basic life traits and functions of PRRSV. Analyzing the spatial structure of NSP4 protein and studying the genetic evolution of NSP4 not only provide the theoretical basis for how NSP4 participates in the regulation of the innate response of the host but also provide a target for genetic manipulation and a reasonable target molecule and structure for new drug molecules.
Collapse
|
5
|
Ke W, Zhou Y, Lai Y, Long S, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type I interferon production. Redox Biol 2021; 49:102207. [PMID: 34911669 PMCID: PMC8758914 DOI: 10.1016/j.redox.2021.102207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular cholesterol plays an important role in the life cycles of enveloped viruses. Previous studies by our group and other groups have demonstrated that the depletion of cellular cholesterol by methyl-β-cyclodextrin (MβCD) reduces the proliferation of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine Arterivirus that has been devastating the swine industry worldwide for over two decades. However, how PRRSV infection regulates cholesterol synthesis is not fully understood. In this study, we showed that PRRSV infection upregulated the activity of protein phosphatase 2 (PP2A), which subsequently activated 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the cholesterol synthesis pathway, to increase the levels of cellular cholesterol. By screening the PRRSV-encoded proteins, we showed that nsp4 dominated the upregulation of cellular cholesterol, independently of the 3C-like protease activity of nsp4. A mutation analysis showed that domain I (amino acids 1–80) of PRRSV nsp4 interacted with PR65 alpha (PR65α), the structural subunit, and PP2Ac, the catalytic subunit, of PP2A. Importantly, domain I of nsp4 inhibited Sendai virus-induced interferon β production, and this inhibitory effect was eliminated by Lovastatin, an HMGCR inhibitor, indicating that the upregulation of cellular cholesterol by nsp4 is a strategy used by PRRSV to suppress the antiviral innate immunity of its host. Collectively, we here demonstrated the mechanism by which PRRSV regulates cellular cholesterol synthesis and reported a novel strategy by which PRRSV evades its host's antiviral innate immune response. PRRSV nsp4 up-regulates cellular cholesterol via the PP2A-HMGCR pathway. Nsp4 domain I (amino acids 1–80) interacts with A and C subunits of PP2A. Nsp4 domain I inhibits IFN-I production by upregulating cellular cholesterol. The HMGCR inhibitor Lovastatin inhibits PRRSV proliferation.
Collapse
Affiliation(s)
- Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yinan Lai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
6
|
Hu Y, Fu Y, Jin S, Fu H, Qiao H, Zhang W, Jiang S, Gong Y, Xiong Y, Wu Y, Wang Y, Xu L. Comparative transcriptome analysis of lethality in response to RNA interference of the oriental river prawn (Macrobrachium nipponense). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100802. [PMID: 33578185 DOI: 10.1016/j.cbd.2021.100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
A previous study identified slow-tonic S2 tropomyosin and slow tropomyosin isoform as sex-related genes in Macrobrachium nipponense. Their functions were analyzed using RNA interference. However, more than half of the specimens died approximately 8-12 h after injection of the respective double-stranded RNAs (dsRNAs), and HE staining indicated that the heart and gills were the most likely tissues responsible for the resultant deaths. In the current study, we conducted a comparative transcriptomic study of the gills and hearts of M. nipponense to identify potential target genes associated with acute death after dsRNA injection. A total of 68,772 annotated unigenes were generated. In the heart, differentially expressed genes (DEGs) were mainly enriched in glycolysis/gluconeogenesis and oxidative phosphorylation, while the most relevant pathways in the gills were lysosome, phagosome, and peroxisome. Ten DEGs were screened out and analyzed under lethal hypoxic stress. Among these, fructose 1, 6-biphosphate-aldolase (FBA), glyceraldehyde 3-phosphate dehydrogenase (GDPDH), alcohol dehydrogenase class-3 (ADC3), ATP-synthase subunit 9 (ATPS9), and acid ceramidase-like (ACL) were all differentially expressed under hypoxic conditions. This study shed light on the lethal mechanism caused by interference with tropomyosin genes in M. nipponense, and identifies the related pathways and key genes that could help to improve stress resistance and tolerance in M. nipponense.
Collapse
Affiliation(s)
- Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| | - Yin Fu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yabing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| |
Collapse
|
7
|
Liu Y, Hu Y, Chai Y, Liu L, Song J, Zhou S, Su J, Zhou L, Ge X, Guo X, Han J, Yang H. Identification of Nonstructural Protein 8 as the N-Terminus of the RNA-Dependent RNA Polymerase of Porcine Reproductive and Respiratory Syndrome Virus. Virol Sin 2018; 33:429-439. [PMID: 30353315 PMCID: PMC6235764 DOI: 10.1007/s12250-018-0054-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/30/2018] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a member within the family Arteriviridae of the order Nidovirales. Replication of this positive-stranded RNA virus within the host cell involves expression of viral replicase proteins encoded by two ORFs, namely ORF1a and ORF1b. In particular, translation of ORF1b depends on a -1-ribosomal frameshift strategy. Thus, nonstructural protein 9 (nsp9), the first protein within ORF1b that specifies the function of the viral RNA-dependent RNA polymerase, is expressed as the C-terminal extension of nsp8, a small nsp that is encoded by ORF1a. However, it has remained unclear whether the mature form of nsp9 in virus-infected cells still retains nsp8, addressing which is clearly critical to understand the biological function of nsp9. By taking advantage of specific antibodies to both nsp8 and nsp9, we report the following findings. (1) In infected cells, PRRSV nsp9 was identified as a major product with a size between 72 and 95 kDa (72-95 KDa form), which exhibited the similar mobility on the gel to the in vitro expressed nsp8-9ORF1b, but not the ORF1b-coded portion (nsp9ORF1b). (2) The antibodies to nsp8, but not to nsp7 or nsp10, could detect a major product that had the similar mobility to the 72-95 KDa form of nsp9. Moreover, nsp9 could be co-immunoprecipitated by antibodies to nsp8, and vice versa. (3) Neither nsp4 nor nsp2 PLP2 was able to cleave nsp8-nsp9 in vitro. Together, our studies provide experimental evidence to suggest that nsp8 is an N-terminal extension of nsp9. Our findings here paves way for further charactering the biological function of PRRSV nsp9.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunhao Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yue Chai
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Liping Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiangwei Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaochuan Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jia Su
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|