1
|
Kazeminia S, Eirin A. Role of mitochondria in endogenous renal repair. Clin Sci (Lond) 2024; 138:963-973. [PMID: 39076039 PMCID: PMC11410300 DOI: 10.1042/cs20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Sara Kazeminia
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
| | - Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, U.S.A
| |
Collapse
|
2
|
Lin HYH, Liang CJ, Yang MY, Chen PL, Wang TM, Chen YH, Shih YH, Liu W, Chiu CC, Chiang CK, Lin CS, Lin HC. Critical roles of tubular mitochondrial ATP synthase dysfunction in maleic acid-induced acute kidney injury. Apoptosis 2024; 29:620-634. [PMID: 38281282 PMCID: PMC11055741 DOI: 10.1007/s10495-023-01897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 01/30/2024]
Abstract
Maleic acid (MA) induces renal tubular cell dysfunction directed to acute kidney injury (AKI). AKI is an increasing global health burden due to its association with mortality and morbidity. However, targeted therapy for AKI is lacking. Previously, we determined mitochondrial-associated proteins are MA-induced AKI affinity proteins. We hypothesized that mitochondrial dysfunction in tubular epithelial cells plays a critical role in AKI. In vivo and in vitro systems have been used to test this hypothesis. For the in vivo model, C57BL/6 mice were intraperitoneally injected with 400 mg/kg body weight MA. For the in vitro model, HK-2 human proximal tubular epithelial cells were treated with 2 mM or 5 mM MA for 24 h. AKI can be induced by administration of MA. In the mice injected with MA, the levels of blood urea nitrogen (BUN) and creatinine in the sera were significantly increased (p < 0.005). From the pathological analysis, MA-induced AKI aggravated renal tubular injuries, increased kidney injury molecule-1 (KIM-1) expression and caused renal tubular cell apoptosis. At the cellular level, mitochondrial dysfunction was found with increasing mitochondrial reactive oxygen species (ROS) (p < 0.001), uncoupled mitochondrial respiration with decreasing electron transfer system activity (p < 0.001), and decreasing ATP production (p < 0.05). Under transmission electron microscope (TEM) examination, the cristae formation of mitochondria was defective in MA-induced AKI. To unveil the potential target in mitochondria, gene expression analysis revealed a significantly lower level of ATPase6 (p < 0.001). Renal mitochondrial protein levels of ATP subunits 5A1 and 5C1 (p < 0.05) were significantly decreased, as confirmed by protein analysis. Our study demonstrated that dysfunction of mitochondria resulting from altered expression of ATP synthase in renal tubular cells is associated with MA-induced AKI. This finding provides a potential novel target to develop new strategies for better prevention and treatment of MA-induced AKI.
Collapse
Affiliation(s)
- Hugo Y-H Lin
- Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1St Road, Kaohsiung, 80708, Taiwan.
| | - Chan-Jung Liang
- Department of Oral Hygiene, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- Grander Pharmacy, Kaohsiung, Taiwan
| | - Ming-Yu Yang
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, USA
| | - Tzu-Ming Wang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Hua Chen
- School of Medicine, Doctoral Program of Clinical and Experimental Medicine, Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yao-Hsiang Shih
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1St Road, Kaohsiung, 80708, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1St Road, Kaohsiung, 80708, Taiwan.
| | - Han-Chen Lin
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1St Road, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
| |
Collapse
|
3
|
Mamillapalli R, Cho S, Mutlu L, Taylor HS. Therapeutic role of uterine-derived stem cells in acute kidney injury. Stem Cell Res Ther 2022; 13:107. [PMID: 35279204 PMCID: PMC8917641 DOI: 10.1186/s13287-022-02789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) causes abrupt deterioration in kidney function that disrupts metabolic, electrolyte and fluid homeostasis. Although the prevalence of AKI is steadily increasing, no definitive treatment options are available, leading to severe morbidity and mortality. We evaluated the role of uterine-derived multipotent stem cells in kidney regeneration after ischemic AKI. METHODS Female C57BL/6J mice were hysterectomized and subsequently subject to AKI by either unilateral or bilateral renal ischemia-reperfusion injury. Uterine-derived cells (UDCs), containing a population of uterine stem cells, were isolated from the uteri of female transgenic DsRed mice and injected intravenously to AKI mice. Engraftment of DsRed cells was analyzed by flow cytometry while serum creatinine levels were determined colorimetrically. Expression of UDC markers and cytokine markers were analyzed by immunohistochemical and qRT-PCR methods, respectively. The Kaplan-Meier method was used to analyze survival time while unpaired t test with Welch's correction used for data analysis between two groups. RESULTS Mice with an intact uterus, and hence an endogenous source of UDCs, had a higher survival rate after bilateral ischemic AKI compared to hysterectomized mice. Mice treated with infusion of exogenous UDCs after hysterectomy/AKI had lower serum creatinine levels and higher survival rates compared to controls that did not receive UDCs. Engraftment of labeled UDCs was significantly higher in kidneys of bilateral ischemic AKI mice compared to those that underwent a sham surgery. When unilateral ischemic AKI was induced, higher numbers of UDCs were found in the injured than non-injured kidney. Immunofluorescence staining demonstrated double-positive DsRed/Lotus tetragonolobus agglutinin (LTA) positive cells and DsRed/CD31 positive cells indicating contribution of UDCs in renal tubular and vascular regeneration. Expression of Cxcl12, Bmp2, Bmp4, and Ctnf in renal tissue was significantly higher in the UDCs injection group than the control group. CONCLUSIONS UDCs engrafted injured kidneys, contributed to proximal tubule and vascular regeneration, improved kidney function and increased survival in AKI mice. UDC administration is a promising new therapy for AKI. Endogenous uterine stem cells likely also preserve kidney function, suggesting a novel interaction between the uterus and kidney. We suggest that hysterectomy may have a detrimental effect on response to renal injury.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.
| | - SiHyun Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea
| | - Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
4
|
Wang Z, Zhang W. The crosstalk between hypoxia-inducible factor-1α and microRNAs in acute kidney injury. Exp Biol Med (Maywood) 2020; 245:427-436. [PMID: 31996035 DOI: 10.1177/1535370220902696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common critical clinical disease that is characterized by a rapid decline in renal function and reduced urine output. Ischemia and hypoxia are dominant pathophysiological changes in AKI that are induced by many factors, and the role of the “master” regulator hypoxia-inducible factor-1α (HIF-1α) is well recognized in AKI-related studies. MicroRNAs have been found to act as critical regulators of AKI pathophysiological process. More studies now have reported mutual interactions between HIF-1α and microRNAs in AKI. Therefore, in this brief review, we look into the mutual regulatory mechanisms between HIF-1α and microRNAs and discuss their function in the process of AKI. Recent studies demonstrated that HIF-1α is involved in the regulation of multiple functional microRNAs in AKI, and in turn, the level of HIF-1α is regulated by specific microRNAs. However, the role of the interactions between HIF-1α and microRNAs in AKI are controversial, and whether interventions targeting relevant mechanisms could achieve clinical benefits is not clear. Much work remains to further explore the value of targeting the HIF-1α-microRNA pathway in AKI treatment. Impact statement At first, we have discussed the role of hypoxia-inducible factor-1α (HIF-1α) and microRNAs in the acute kidney injury (AKI) pathophysiology. Then we have summarized the interactions between HIF-1α and microRNAs reported by AKI-related studies and concluded their regulatory effects in AKI process. Finally, we have made a vision of HIF-1α/microRNAs pathway’s potential as the intervention target in AKI. The mini review provides a systematic understanding of the crosstalk between HIF-1α and microRNAs in AKI and their effects on AKI pathophysiology and treatment.
Collapse
Affiliation(s)
- Zhiyu Wang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Zhang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Wang H, Liu N, Li R, Tian J, Hu W, Zhang J. Nephropreventing effect of hypoxia-inducible factor 1α in a rat model of ischaemic/reperfusion acute kidney injury. Clin Exp Pharmacol Physiol 2018; 45:1076-1082. [PMID: 29667230 DOI: 10.1111/1440-1681.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) occurs in 5% of hospitalized patients and in 50% of sepsis patients with acute renal dysfunction. However, there have been no safe and effective therapeutic strategies. The hypoxia condition is closely related to renal injury and function under AKI. As hypoxia-inducible factor 1α (HIF-1α) is critical for the cellular response to hypoxia, we investigated the protective effect of HIF-1α in a rat AKI model. We found that HIF-1α injection improved the survival of rat with AKI, and the level of creatinine and blood urea nitrogen (BUN) was also increased. Our data showed that HIF-1α treatment significantly alleviated ischaemic/reperfusion injury to kidney tubules and nephrocytes. We also found the downstream factors, such as EPOR, VEGF, and PHD3, were also upregulated by HIF-1α. Finally, it was observed that HIF-1α treatment also increased the percentage of adult resident progenitor cells (ARPC) in vitro and in vivo. In conclusion, HIF-1α plays a protective role in the ischaemic AKI model through stimulating the proliferation of ARPC, and our study provided a potential therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Huiling Wang
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Nanmei Liu
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Rui Li
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Jun Tian
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Weifeng Hu
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Jinyuan Zhang
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| |
Collapse
|
6
|
Hsieh WC, Ramadesikan S, Fekete D, Aguilar RC. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS One 2018; 13:e0192635. [PMID: 29444177 PMCID: PMC5812626 DOI: 10.1371/journal.pone.0192635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Lowe syndrome is an X-linked condition characterized by congenital cataracts, neurological abnormalities and kidney malfunction. This lethal disease is caused by mutations in the OCRL1 gene, which encodes for the phosphatidylinositol 5-phosphatase Ocrl1. While in the past decade we witnessed substantial progress in the identification and characterization of LS patient cellular phenotypes, many of these studies have been performed in knocked-down cell lines or patient's cells from accessible cell types such as skin fibroblasts, and not from the organs affected. This is partially due to the limited accessibility of patient cells from eyes, brain and kidneys. Here we report the preparation of induced pluripotent stem cells (iPSCs) from patient skin fibroblasts and their reprogramming into kidney cells. These reprogrammed kidney cells displayed primary cilia assembly defects similar to those described previously in cell lines. Additionally, the transcription factor and cap mesenchyme marker Six2 was substantially retained in the Golgi complex and the functional nuclear-localized fraction was reduced. These results were confirmed using different batches of differentiated cells from different iPSC colonies and by the use of the human proximal tubule kidney cell line HK2. Indeed, OCRL1 KO led to both ciliogenesis defects and Six2 retention in the Golgi complex. In agreement with Six2's role in the suppression of ductal kidney lineages, cells from this pedigree were over-represented among patient kidney-reprogrammed cells. We speculate that this diminished efficacy to produce cap mesenchyme cells would cause LS patients to have difficulties in replenishing senescent or damaged cells derived from this lineage, particularly proximal tubule cells, leading to pathological scenarios such as tubular atrophy.
Collapse
Affiliation(s)
- Wen-Chieh Hsieh
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
| | - Swetha Ramadesikan
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
| | - Donna Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN United States of America
| | - Ruben Claudio Aguilar
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN United States of America
| |
Collapse
|
7
|
Zhou C, Zou J, Zou S, Li X. INO80 is Required for Osteogenic Differentiation of Human Mesenchymal Stem Cells. Sci Rep 2016; 6:35924. [PMID: 27804957 PMCID: PMC5090198 DOI: 10.1038/srep35924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023] Open
Abstract
Bone marrow derived human mesenchymal stem cells (MSC) are a great source in bone tissue engineering. However, how to improve the efficiency of MSC osteogenesis remains a big challenge in bone regenerative medicine. Here, we characterized the role of INO80 chromatin remodeling complex in osteogenic differentiation of MSC. We showed that silencing of subunits of INO80 reduced the mineral deposition of MSC in osteogenic condition. Moreover, INO80-silencing MSC cultured in osteogenic condition expressed lower mRNA levels of osteoblast-specific genes, including Runx2, Osx, Col1α1 and OCN. INO80 can interact with Wdr5 in MSC and positively regulates the canonical Wnt signaling transduction. Importantly, the mice implanted with INO80-silencing MSC displayed less bone formation. Overall, our study provides a new mechanism regarding osteogenic differentiation of MSC and could potentially be applied in clinical tissue engineering and treatment of osteoporosis.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodonitcs, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodonitcs, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodonitcs, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Baba M, Toyama H, Sun L, Takubo K, Suh HC, Hasumi H, Nakamura-Ishizu A, Hasumi Y, Klarmann KD, Nakagata N, Schmidt LS, Linehan WM, Suda T, Keller JR. Loss of Folliculin Disrupts Hematopoietic Stem Cell Quiescence and Homeostasis Resulting in Bone Marrow Failure. Stem Cells 2016; 34:1068-82. [PMID: 27095138 PMCID: PMC4843833 DOI: 10.1002/stem.2293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2015] [Indexed: 12/21/2022]
Abstract
Folliculin (FLCN) is an autosomal dominant tumor suppressor gene that modulates diverse signaling pathways required for growth, proliferation, metabolism, survival, motility, and adhesion. FLCN is an essential protein required for murine embryonic development, embryonic stem cell (ESC) commitment, and Drosophila germline stem cell maintenance, suggesting that Flcn may be required for adult stem cell homeostasis. Conditional inactivation of Flcn in adult hematopoietic stem/progenitor cells (HSPCs) drives hematopoietic stem cells (HSC) into proliferative exhaustion resulting in the rapid depletion of HSPC, loss of all hematopoietic cell lineages, acute bone marrow (BM) failure, and mortality after 40 days. HSC that lack Flcn fail to reconstitute the hematopoietic compartment in recipient mice, demonstrating a cell-autonomous requirement for Flcn in HSC maintenance. BM cells showed increased phosphorylation of Akt and mTorc1, and extramedullary hematopoiesis was significantly reduced by treating mice with rapamycin in vivo, suggesting that the mTorc1 pathway was activated by loss of Flcn expression in hematopoietic cells in vivo. Tfe3 was activated and preferentially localized to the nucleus of Flcn knockout (KO) HSPCs. Tfe3 overexpression in HSPCs impaired long-term hematopoietic reconstitution in vivo, recapitulating the Flcn KO phenotype, and supporting the notion that abnormal activation of Tfe3 contributes to the Flcn KO phenotype. Flcn KO mice develop an acute histiocytic hyperplasia in multiple organs, suggesting a novel function for Flcn in macrophage development. Thus, Flcn is intrinsically required to maintain adult HSC quiescence and homeostasis, and Flcn loss leads to BM failure and mortality in mice.
Collapse
Affiliation(s)
- Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 〒 860-0811, Japan
| | - Hirofumi Toyama
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Lei Sun
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hyung-Chan Suh
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hisashi Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayako Nakamura-Ishizu
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yukiko Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly D. Klarmann
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, 〒 860-0811, Japan
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 〒 860-0811, Japan
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Xu J, Li PX, Wu J, Gao YJ, Yin MX, Lin Y, Yang M, Chen DP, Sun HP, Liu ZB, Gu XC, Huang HL, Fu LL, Hu HM, He LL, Wu WQ, Fei ZL, Ji HB, Zhang L, Mei CL. Involvement of the Hippo pathway in regeneration and fibrogenesis after ischaemic acute kidney injury: YAP is the key effector. Clin Sci (Lond) 2016; 130:349-363. [PMID: 26574480 PMCID: PMC4727597 DOI: 10.1042/cs20150385] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/12/2023]
Abstract
Renal tubule cells can recover after they undergo AKI (acute kidney injury). An incomplete repair of renal tubules can result in progressive fibrotic CKD (chronic kidney disease). Studies have revealed the relationship between tubular epithelial cells and kidney fibrogenesis. However, the underlying mechanism remains unclear. Hippo pathway components were evaluated in complete/incomplete repair of I/R (ischaemia/reperfusion) AKI rat models, HK-2 cells and AKI human renal biopsy samples. We found that the expression levels of the Hippo pathway components changed dynamically during kidney regeneration and fibrogenesis in rat models of I/R-induced AKI and human renal biopsy samples. The transcription cofactor YAP (Yes-associated protein) might be a key effector of renal regeneration and fibrogenesis. Our results showed further that YAP might elicit both beneficial and detrimental effects on I/R AKI. After I/R injury occurred, YAP could promote the repair of the injured epithelia. The constant YAP increase and activation might be related to interstitial fibrosis and abnormal renal tubule differentiation. These results indicate that the proper modulation of the Hippo pathway, specifically the transcription cofactor YAP, during repair might be a potent therapeutic target in AKI-CKD transition after I/R injury.
Collapse
Affiliation(s)
- Jing Xu
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| | - Pei-Xue Li
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, P.R. China
| | - Jun Wu
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| | - Yi-Jun Gao
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| | - Meng-Xin Yin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, P.R. China
| | - Ye Lin
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| | - Ming Yang
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| | - Dong-Ping Chen
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| | - Hai-Peng Sun
- Division of Nephrology, Central Hospital of TaiAn, TaiAn, Shandong 271000, P.R. China
| | - Zeng-Bo Liu
- Division of Nephrology, No. 456 Hospital of PLA, Jinan, Shandong 250031, P.R. China
| | - Xiang-Chen Gu
- Division of Nephrology, Yueyang Hospital, Shanghai 200437, P.R. China
| | - Hong-Ling Huang
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, B-3000, Belgium
| | - Li-Li Fu
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| | - Hui-Min Hu
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| | - Liang-Liang He
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| | - Wen-Qing Wu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, P.R. China
| | - Zhao-Liang Fei
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, P.R. China
| | - Hong-Bin Ji
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, P.R. China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, P.R. China
| | - Chang-Lin Mei
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003, P.R. China
| |
Collapse
|