1
|
Ma R, Zhang C, Zhang Y, Tan H, Zhang Y, Li Q, Bai Y, Sun X. The Impact of Respiratory Syncytial Virus on Asthma Development and Exacerbation. Ann Allergy Asthma Immunol 2025:S1081-1206(25)00236-4. [PMID: 40389152 DOI: 10.1016/j.anai.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
Asthma is a chronic inflammatory disorder of the lower airways clinically characterized by recurrent wheezing, breathlessness, cough, and dyspnea, and is the most prevalent chronic disease among children and adolescents. Respiratory viral infections are implicated in asthma inception and exacerbation, with respiratory syncytial virus (RSV) emerging as a key contributor. RSV is a leading cause of acute lower respiratory tract infections (LRTIs), particularly infant bronchiolitis, and is associated with a type-2-biased immune response, diminished interferon activity, epithelial barrier dysfunction, and altered airway microbiome. While the causal relationship between RSV and asthma remains debated, early-life RSV LRTIs are increasingly recognized as a significant risk factor for recurrent wheezing and asthma-like symptoms in childhood. This review comprehensively evaluates existing evidence on the long-term respiratory outcomes of infant RSV infection, elucidates the pathophysiological mechanisms connecting RSV infection to asthma development-such as immune dysregulation, chronic airway inflammation, and gene-environment interplay-and highlights novel preventive strategies. Recent advancements, such as maternal RSV vaccines and long-acting monoclonal antibodies, demonstrate efficacy in reducing severe RSV disease burden and subsequent wheeze in high-risk infants. By bridging clinical observations with mechanistic insights, this review underpins the development of future clinical therapies.
Collapse
Affiliation(s)
- Ruixue Ma
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Chenyu Zhang
- School of Basic Medicine, the Fourth Military Medical University, Xi'an, China
| | - Yi Zhang
- School of Basic Medicine, the Fourth Military Medical University, Xi'an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yao Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Qiuhong Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yumei Bai
- Department of Oncology, the Central Theater Command Air Force Hospital of People's Liberation Army, Datong, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Pedersen CET, Hoang TT, Jin J, Starnawska A, Granell R, Elliott HR, Huels A, Zar HJ, Stein DJ, Zhang Y, Dekker HTD, Duijts L, Felix JF, Sangüesa J, Bustamante M, Casas M, Vrijheid M, Kadalayil L, Rezwan FI, Arshad H, Holloway JW, Röder S, Zenclussen AC, Herberth G, Staunstrup NH, Horsdal HT, Mill J, Hannon E, Annesi-Maesano I, Pesce G, Baïz N, Heude B, Hosseinian-Mohazzab S, Breton CV, Harlid S, Harbs J, Domellof M, West C, Yeung E, Zeng X, Nystad W, Håberg SE, Magnus MC, Schendel D, London SJ, Bønnelykke K. Maternal asthma and newborn DNA methylation. Clin Epigenetics 2025; 17:79. [PMID: 40349045 PMCID: PMC12065361 DOI: 10.1186/s13148-025-01858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/11/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Prenatal exposure to maternal asthma may influence DNA methylation patterns in offspring, potentially affecting their susceptibility to later diseases including asthma. OBJECTIVE To investigate the relationship between parental asthma and newborn blood DNA methylation. METHODS Epigenome-wide association analyses were conducted in 13 cohorts on 7433 newborns with blood methylation data from the Illumina450K or EPIC array. We used fixed effects meta-analyses to identify differentially methylated CpGs (DMCs) and comb-p to identify differentially methylated regions (DMRs) associated with maternal asthma during pregnancy and maternal asthma ever. Paternal asthma was analyzed for comparison. Models were adjusted for covariates and cell-type composition. We examined whether implicated sites related to gene expression analyses in publicly available data for childhood blood and adult lung. RESULTS We identified 27 CpGs associated with maternal asthma during pregnancy at False Discovery Rate < 0.05 but none for maternal asthma ever. Two distinct CpGs were associated with paternal asthma. We observed 5 DMRs associated with maternal asthma during pregnancy 3 associated with maternal asthma ever and 13 DMRs associated with paternal asthma. Gene expression analysis using data in blood from 832 children and lung from 424 adults showed associations between identified DMCs using maternal asthma and expression of several genes, including HLA genes and HOXA5, previously implicated in asthma or lung function. CONCLUSION Parental asthma, especially maternal asthma during pregnancy, may be associated with alterations in newborn DNA methylation. These findings might shed light on underlying mechanisms for asthma susceptibility.
Collapse
Affiliation(s)
- Casper-Emil Tingskov Pedersen
- Copenhagen Prospective Studies On Asthma in Childhood, Herlev and Gentofte Hospital, COPSAC, University of Copenhagen, Ledreborg Alle 34 Gentofte, 2820, Copenhagen, Denmark
| | - Thanh T Hoang
- Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), MD A3-05, PO 12233, Research Triangle Park, NC, 27709, USA
- Department of Pediatrics, Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Jianping Jin
- Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), MD A3-05, PO 12233, Research Triangle Park, NC, 27709, USA
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Raquel Granell
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
| | - Hannah R Elliott
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
| | - Anke Huels
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Ganagarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Heather J Zar
- SAMRC Unit On Child & Adolescent Health, Dept of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- SAMRC Unit On Child & Adolescent Health, Dept of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Yining Zhang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Herman T den Dekker
- The Generation R Study Group and Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group and Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Neonatal and Pedicatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group and Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Latha Kadalayil
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Faisal I Rezwan
- Department of Computer Science, Aberystwyth University, University, Aberystwyth, SY23 3DB, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK
| | - John W Holloway
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Nicklas Heine Staunstrup
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Henriette Thisted Horsdal
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Giancarlo Pesce
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Nour Baïz
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Barbara Heude
- Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Université Paris Cité and Université Sorbonne Paris Nord, 75004, Paris, France
| | - Sahra Hosseinian-Mohazzab
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sophia Harlid
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Justin Harbs
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Magnus Domellof
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Christina West
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Edwina Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20817, USA
| | - Xuehuo Zeng
- Glotech Inc., 1801 Research Blvd #605, Rockville, MD, 20850, USA
| | - Wenche Nystad
- Department of Chronic Diseases, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
| | - Maria C Magnus
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Diana Schendel
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- AJ Drexel Autism Institute, Drexel University, Philadelphia, USA
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), MD A3-05, PO 12233, Research Triangle Park, NC, 27709, USA.
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies On Asthma in Childhood, Herlev and Gentofte Hospital, COPSAC, University of Copenhagen, Ledreborg Alle 34 Gentofte, 2820, Copenhagen, Denmark.
| |
Collapse
|
3
|
Li Y, Zhu Z, Camargo CA, Espinola JA, Hasegawa K, Liang L. Epigenomic and proteomic analyses provide insights into early-life immune regulation and asthma development in infants. Nat Commun 2025; 16:3556. [PMID: 40229234 PMCID: PMC11997043 DOI: 10.1038/s41467-025-57288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/17/2025] [Indexed: 04/16/2025] Open
Abstract
Infants with severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) face increased risks of respiratory diseases in childhood. We conduct epigenome-wide association studies in a multi-ethnic cohort of these infants. We identify 61 differentially methylated regions in infant blood (<1 year of age) associated with recurrent wheezing by age 3 (170 cases, 318 non-cases) and/or asthma by age 6 (112 cases, 394 non-cases). These differentially methylated regions are enriched in the enhancers of peripheral blood neutrophils. Several differentially methylated regions exhibit interaction with rhinovirus infection and/or specific blood cell types. In the same blood samples, circulating levels of 104 proteins correlate with the differentially methylated regions, and many proteins show phenotypic association with asthma. Through Mendelian randomization, we find causal evidence supporting a protective role of higher plasma ST2 (also known as IL1RL1) protein against asthma. DNA methylation is also associated with ST2 protein level in infant blood. Taken together, our findings suggest the contribution of DNA methylation to asthma development through regulating early-life systemic immune responses.
Collapse
Affiliation(s)
- Yijun Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Zakarya R, Chan YL, Wang B, Thorpe A, Xenaki D, Ho KF, Guo H, Chen H, Oliver BG, O'Neill C. Developmental air pollution exposure augments airway hyperreactivity, alters transcriptome, and DNA methylation in female adult progeny. Commun Biol 2025; 8:400. [PMID: 40057553 PMCID: PMC11890619 DOI: 10.1038/s42003-025-07835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
Maternal exposure to particulate air pollution increases the incidence and severity of asthma in offspring, yet the mechanisms for this are unclear. Known susceptibility loci are a minor component of this effect. We interrogate a mouse allergic airway disease model to assess epigenetic associations between maternal air pollution exposure and asthma responses in offspring. Maternal air pollution exposure increased allergic airway disease severity in adult offspring associated with a suppressed transcriptomic response. Control progeny showed differential expression of 2842 genes across several important pathways, whilst air pollutant progeny showed an 80% reduction in differentially expressed genes and abrogation of many pathway associations. Whole genome CpG methylome analysis following allergen challenge detected differential methylation regions across the genome. Differentially methylated regions were markedly reduced in air pollutant offspring, and this was most evident in intronic regions and some transposable element classes. This study shows that asthma in adult offspring of PM2.5 exposed mothers had a markedly repressed transcriptomic response, a proportion of which was associated with identifiable changes in the lung's methylome. The results point to an epigenetic contribution to the severity of asthma in offspring of mothers exposed to particulate air pollution.
Collapse
Affiliation(s)
- Razia Zakarya
- School of Life Sciences, University of Technology Sydney, Sydney, Australia.
- Epigenetics of Chronic Disease Group, Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia.
| | - Yik Lung Chan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia
| | - Baoming Wang
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia
| | - Andrew Thorpe
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia
| | - Dikaia Xenaki
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia
| | - Kin Fai Ho
- Jockey Club School of Public Health and Primary, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of the People's Republic of China, Hong Kong, China
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hui Chen
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, Australia.
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia.
| | - Christopher O'Neill
- School of Life Sciences, University of Technology Sydney, Sydney, Australia.
- Epigenetics of Chronic Disease Group, Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia.
| |
Collapse
|
5
|
Arnau‐Soler A, Tremblay BL, Sun Y, Madore A, Simard M, Kersten ETG, Ghauri A, Marenholz I, Eiwegger T, Simons E, Chan ES, Nadeau K, Sampath V, Mazer BD, Elliott S, Hampson C, Soller L, Sandford A, Begin P, Hui J, Wilken BF, Gerdts J, Bourkas A, Ellis AK, Vasileva D, Clarke A, Eslami A, Ben‐Shoshan M, Martino D, Daley D, Koppelman GH, Laprise C, Lee Y, Asai Y. Food Allergy Genetics and Epigenetics: A Review of Genome-Wide Association Studies. Allergy 2025; 80:106-131. [PMID: 39698764 PMCID: PMC11724255 DOI: 10.1111/all.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In this review, we provide an overview of food allergy genetics and epigenetics aimed at clinicians and researchers. This includes a brief review of the current understanding of genetic and epigenetic mechanisms, inheritance of food allergy, as well as a discussion of advantages and limitations of the different types of studies in genetic research. We specifically focus on the results of genome-wide association studies in food allergy, which have identified 16 genetic variants that reach genome-wide significance, many of which overlap with other allergic diseases, including asthma, atopic dermatitis, and allergic rhinitis. Identified genes for food allergy are mainly involved in epithelial barrier function (e.g., FLG, SERPINB7) and immune function (e.g., HLA, IL4). Epigenome-wide significant findings at 32 loci are also summarized as well as 14 additional loci with significance at a false discovery of < 1 × 10-4. Integration of epigenetic and genetic data is discussed in the context of disease mechanisms, many of which are shared with other allergic diseases. The potential utility of genetic and epigenetic discoveries is deliberated. In the future, genetic and epigenetic markers may offer ways to predict the presence or absence of clinical IgE-mediated food allergy among sensitized individuals, likelihood of development of natural tolerance, and response to immunotherapy.
Collapse
Affiliation(s)
- Aleix Arnau‐Soler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Bénédicte L. Tremblay
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Anne‐Marie Madore
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Mathieu Simard
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Elin T. G. Kersten
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Ingo Marenholz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
| | - Thomas Eiwegger
- Translational Medicine Program, Research InstituteHospital for Sick ChildrenTorontoOntarioCanada
- Department of Immunology, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
- Department of Pediatric and Adolescent MedicineUniversity Hospital St. PöltenSt. PöltenAustria
- Department of Paediatrics, Division of Clinical Immunology and Allergy, Food Allergy and Anaphylaxis Program, the Hospital for Sick ChildrenThe University of TorontoTorontoOntarioCanada
| | - Elinor Simons
- Section of Allergy & Clinical Immunology, Department of Pediatrics & Child Health, University of ManitobaChildren's Hospital Research InstituteWinnipegManitobaCanada
| | - Edmond S. Chan
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kari Nadeau
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Vanitha Sampath
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Bruce D. Mazer
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Susan Elliott
- Department of Geography and Environmental ManagementUniversity of WaterlooWaterlooOntarioCanada
| | | | - Lianne Soller
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Andrew Sandford
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical ImmunologyCentre Hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
- Department of Medicine, Service of Allergy and Clinical ImmunologyCentre Hospitalier de l'Université de MontréalMontréalQuébecCanada
| | - Jennie Hui
- School of Population HealthUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Bethany F. Wilken
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | | | - Adrienn Bourkas
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Anne K. Ellis
- Division of Allergy & Immunology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Denitsa Vasileva
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Ann Clarke
- Department of Medicine, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Aida Eslami
- Département de médecine Sociale et préventive, Faculté de médecineUniversité LavalQuebecCanada
| | - Moshe Ben‐Shoshan
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montréal Children's HospitalMcGill University Health CentreMontréalQuebecCanada
| | - David Martino
- Wal‐Yan Respiratory Research CentreTelethon Kids InstitutePerthAustralia
| | - Denise Daley
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Catherine Laprise
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Young‐Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Yuka Asai
- Division of Dermatology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
6
|
Otten T, Jiang X, Gupta MK, Vadaq N, Cleophas-Jacobs M, dos Santos JC, Groenendijk A, Vos W, van Eekeren LE, Blaauw MJT, Meeder EM, Richel O, Matzaraki V, van Lunzen J, Joosten LAB, Li Y, Xu CJ, van der Ven A, Netea MG. Impact of COVID-19, lockdowns and vaccination on immune responses in a HIV cohort in the Netherlands. Front Immunol 2024; 15:1459593. [PMID: 39744634 PMCID: PMC11688194 DOI: 10.3389/fimmu.2024.1459593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION During the COVID-19 pandemic, major events with immune-modulating effects at population-level included COVID-19 infection, lockdowns, and mass vaccinations campaigns. As immune responses influence many immune-mediated diseases, population scale immunological changes may have broad consequences. METHODS We investigated the impact of lockdowns, COVID-19 infection and vaccinations on immune responses in the 2000HIV study including 1895 asymptomatic virally-suppressed people living with HIV recruited between October 2019 and October 2021. Their inflammatory profile was assessed by targeted plasma proteomics, immune responsiveness by cytokine production capacity of circulating immune cells, and epigenetic profile by genome-wide DNA methylation of immune cells. RESULTS Past mild COVID-19 infection had limited long-term immune effects. In contrast, COVID-19 vaccines and especially lockdowns significantly altered both the epigenetic profile in immune cells at DNA methylation level and immune responses. Lockdowns resulted in a strong overall exaggerated immune responsiveness, while COVID-19 vaccines moderately dampened immune responses. Lockdown-associated immune responsiveness alterations were confirmed in 30 healthy volunteers from the 200FG cohort that, like the 2000HIV study, is part of the Human Functional Genomics Project. DISCUSSION Our data suggest that lockdowns have unforeseen immunological effects. Furthermore, COVID-19 vaccines have immunological effects beyond anti-SARS-CoV-2 activity, and studies of their impact on non-COVID-19 immune-mediated pathology are warranted.
Collapse
Affiliation(s)
- Twan Otten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Xun Jiang
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Nadira Vadaq
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maartje Cleophas-Jacobs
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jéssica C. dos Santos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Albert Groenendijk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Wilhelm Vos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Louise E. van Eekeren
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marc J. T. Blaauw
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Elise M.G. Meeder
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, Netherlands
| | - Olivier Richel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan van Lunzen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Translational Medical Research, ViiV Healthcare, Brentford, United Kingdom
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Andre van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Wang J, Hu J, Qin D, Han D, Hu J. A multi-omics Mendelian randomization identifies putatively causal genes and DNA methylation sites for asthma. World Allergy Organ J 2024; 17:101008. [PMID: 39720783 PMCID: PMC11667005 DOI: 10.1016/j.waojou.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/02/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024] Open
Abstract
Background Asthma is a global chronic respiratory disease with complex pathogenesis. While current therapies offer some relief, they often fall short in effectively managing symptoms and preventing exacerbations for numerous patients. Thus, understanding its mechanisms and discovering new drug targets remains a pressing need for better treatment. Methods Using the GEO dataset, we screened differentially expressed genes (DEGs) in asthma patients' blood. Employing Summary Data-based Mendelian Randomization (SMR) and Two-Sample Mendelian Randomization (TSMR), we pinpointed asthma causal genes, causal DNA methylation sites, and methylation sites affecting gene expression, cross validated with at least 2 large-scale GWAS from each source. We utilized colocalization for genetic associations, meta-analysis for data integration, two-step MR for methylation-gene-asthma mediation mechanism. Druggability was evaluated using Open Target, virtual screening, and docking. Results Among the 954 DEGs found in asthma patients' blood, increased expression of CEP95 (discovery, OR_SMR = 0.94, 95% CI: 0.91-0.97), RBM6 (discovery, OR_SMR = 0.97, 95% CI: 0.95-0.99), and ITPKB (discovery, OR_SMR = 0.82, 95% CI: 0.74-0.92) in the blood decreased the risk of asthma, higher levels of HOXB-AS1 (discovery, OR_SMR = 1.05, 95% CI: 1.03-1.07), ETS1 (discovery, OR_SMR = 1.62, 95% CI: 1.29-2.04), and JAK2 (discovery, OR_SMR = 1.13, 95% CI: 1.06-1.21) in the blood increased the risk of asthma. Additionally, a total of 8 methylation sites on ITPKB, ETS1, and JAK2 were identified to influence asthma. An increase in methylation at site cg16265553 raised the risk of asthma partially by suppressing ITPKB expression. Similarly, increased methylation at cg13661497 reduced the asthma risk totally by suppressing JAK2 expression. The impact of CEP95, HOXB-AS1, and RBM6 expressions on asthma was further confirmed in lung tissues. Except for HOXB-AS1, all the other genes were potential druggable targets. Conclusion Our study highlighted that specific gene expressions and methylation sites significantly influence asthma risk and revealed a potential methylation-to-gene-to-asthma mechanism. This provided pivotal evidence for future targeted functional studies and the development of preventive and treatment strategies.
Collapse
Affiliation(s)
- Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinxin Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Qin
- Research Center of Traditional Chinese Medicine Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Han
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Tu J, Wan W, Tang B, Jiang F, Wen J, Luo Q, Ye J. Dissecting the pathogenic effects of smoking in blood DNA methylation on allergic diseases. World Allergy Organ J 2024; 17:100995. [PMID: 39640897 PMCID: PMC11617736 DOI: 10.1016/j.waojou.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background Allergic diseases, such as asthma and allergic rhinitis, present significant health challenges globally. Elucidating the genetic and epigenetic foundations is crucial for developing effective interventions. Methods We performed two-sample Mendelian Randomization (MR) analyses to investigate the associations between smoking behaviors and various allergic diseases, leveraging data from the FinnGen database. Additionally, we examined the relationships of DNA methylation (CpG sites) with allergic diseases, employing mQTLs as epigenetic proxies. Furthermore, we conducted reverse MR analyses on CpG sites that exhibited cross-allergic disease effects. Results In our genomic MR analysis, smoking behaviors such as smoking initiation and the number of cigarettes smoked per day were identified to be causally associated with an increased risk of asthma. Additionally, there was suggestive evidence linking smoking initiation to atopic contact dermatitis. Our epigenetic MR analysis found that methylation changes at 46 CpG sites, assessed via mQTLs, were significantly associated with asthma risk. Notably, cg17272563 (PRRT1), cg03689048 (BAT3), cg20069688 (STK19), and cg20513976 (LIME1) were identified with cross-allergic effects. Crucially, reverse MR analysis substantiated these associations. Conclusions Our study has highlighted the associations between smoking behaviors and allergic diseases in the genetic and epigenetic landscape, notably asthma. We identified several DNA methylation-related CpG sites, such as cg03689048 (BAT3), cg17272563 (PRRT1), and cg20069688 (STK19), which demonstrate cross-allergic potential and reverse causal relationships.
Collapse
Affiliation(s)
- Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Wei Wan
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fan Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jinyang Wen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Allergy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
10
|
Wang S, Casey E, Sordillo J, Aguilar-Lacasaña S, Morales Berstein F, Biedrzycki RJ, Brescianini S, Chen S, Hough A, Isaevska E, Kim WJ, Lecorguillé M, Li SS, Page CM, Park J, Röder S, Salontaji K, Santorelli G, Sun Y, Won S, Zillich E, Zillich L, Annesi-Maesano I, Arshad SH, Bustamante M, Cecil CAM, Elliott HR, Ewart S, Felix JF, Gagliardi L, Håberg SE, Herberth G, Heude B, Holloway JW, Huels A, Karmaus W, Koppelman GH, London SJ, Mumford SL, Nisticò L, Popovic M, Rusconi F, Schisterman EF, Stein DJ, Send T, Tiemeier H, Vonk JM, Vrijheid M, Wiemels JL, Witt SH, Wright J, Yeung EH, Zar HJ, Zenclussen AC, Zhang H, Chavarro JE, Hivert MF. Cesarean delivery and blood DNA methylation at birth and childhood: Meta-analysis in the Pregnancy and Childhood Epigenetics Consortium. SCIENCE ADVANCES 2024; 10:eadr2084. [PMID: 39602535 PMCID: PMC11601205 DOI: 10.1126/sciadv.adr2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Children born via cesarean delivery have a higher risk of metabolic, immunological, and neurodevelopmental disorders compared to those born via vaginal delivery, although mechanisms remain unclear. We conducted a meta-analysis of epigenome-wide association studies to examine the associations between delivery mode and blood DNA methylation at birth and its persistence in early childhood. Participants were from 19 pregnancy cohorts (9833 term newborns) and 6 pediatric cohorts (2429 children aged 6 to 10 years). We identified six CpGs in cord blood associated with cesarean delivery (effect size range: 0.4 to 0.7%, P < 1.0 × 10-7): MAP2K2 (cg19423175), LIM2 (cg01500140), CNP (cg13917614), BLM (cg18247172), RASA3 (cg22348356), and RUNX3 (cg20674490), independent of cell proportions and other confounders. In childhood, none of these CpGs were associated with cesarean delivery, and no additional CpGs were identified. Delivery mode was associated with cell proportions at birth but not in childhood. Further research is needed to elucidate cesarean delivery's molecular influence on offspring health.
Collapse
Affiliation(s)
- Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Emma Casey
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Joanne Sordillo
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Sofía Aguilar-Lacasaña
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Fernanda Morales Berstein
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Richard J. Biedrzycki
- Glotech Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850, USA
| | - Sonia Brescianini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161 Italy
| | - Su Chen
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Amy Hough
- Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon 24289, Korea
| | - Marion Lecorguillé
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - Sebastian Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Christian M. Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
- Department of Physical Health and Aging, Division for Mental and Physical Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Kristina Salontaji
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | | | - Yidan Sun
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen 9700 RB, Netherlands
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
- Department of Public Health Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eric Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Isabella Annesi-Maesano
- Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, Montpellier, France
- Division of Respiratory Medicine, Allergology, and of Thoracic Oncology, University Hospital of Montpellier, 34093 Montpellier, France
| | - S. Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | - Hannah R. Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | - Luigi Gagliardi
- Department of Mother and Child Health, Azienda USL Toscana Nord Ovest, Pisa 56121, Italy
| | - Siri E. Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Kalfarveien 31, N-5018 Bergen, Norway
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anke Huels
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Gerard H. Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen 9700 RB, Netherlands
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sunni L. Mumford
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of Medicine, Philadelphia, PA 19087, USA
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Lorenza Nisticò
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161 Italy
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Franca Rusconi
- Department of Mother and Child Health, Azienda USL Toscana Nord Ovest, Pisa 56121, Italy
| | - Enrique F. Schisterman
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of Medicine, Philadelphia, PA 19087, USA
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Dan J. Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa
| | - Tabea Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Judith M. Vonk
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen 9700 RB, Netherlands
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Joseph Leo Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - John Wright
- Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Edwina H. Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Heather J. Zar
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, Department of Paediatrics, University of Cape Town, Rondebosch 7700, South Africa
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
11
|
Van Asselt AJ, Beck JJ, Finnicum CT, Johnson BN, Kallsen N, Viet S, Huizenga P, Ligthart L, Hottenga JJ, Pool R, der Zee AHMV, Vijverberg SJ, de Geus E, Boomsma DI, Ehli EA, van Dongen J. Epigenetic signatures of asthma: a comprehensive study of DNA methylation and clinical markers. Clin Epigenetics 2024; 16:151. [PMID: 39488688 PMCID: PMC11531182 DOI: 10.1186/s13148-024-01765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. METHODS The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood from 319 participants from 94 families. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 individuals. Principal component analysis on the clinical asthma markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. RESULTS 221 unique CpGs reached genome-wide significance at timepoint 1 after Bonferroni correction. PC7, which correlated with loadings of eosinophil counts and immunoglobulin levels, accounted for the majority of associations (204). Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points yielded a correlation of 0.81. CONCLUSION We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to a robust DNA methylation profile as a new, stable biomarker for asthma.
Collapse
Affiliation(s)
- Austin J Van Asselt
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA.
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Jeffrey J Beck
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Casey T Finnicum
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Brandon N Johnson
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Noah Kallsen
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Sarah Viet
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Patricia Huizenga
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Lannie Ligthart
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S J Vijverberg
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Liao Y, Cavalcante RG, Waller JB, Deng F, Scruggs AM, Huang YJ, Atasoy U, Chen Y, Huang SK. Differences in the DNA methylome of T cells in adults with asthma of varying severity. Clin Epigenetics 2024; 16:139. [PMID: 39380119 PMCID: PMC11459694 DOI: 10.1186/s13148-024-01750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity are less well-defined. OBJECTIVE To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. METHODS Peripheral blood T cells from 35 adults with asthma in Beijing, China, were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. RESULTS Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. CONCLUSION These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to differences in clinical indices of asthma.
Collapse
Affiliation(s)
- Yixuan Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Raymond G Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Waller
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Zar HJ, Cacho F, Kootbodien T, Mejias A, Ortiz JR, Stein RT, Hartert TV. Early-life respiratory syncytial virus disease and long-term respiratory health. THE LANCET. RESPIRATORY MEDICINE 2024; 12:810-821. [PMID: 39265601 DOI: 10.1016/s2213-2600(24)00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/14/2024]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection (LRTI), hospital admission, and mortality in children worldwide. Early-life RSV LRTI has also been associated with subsequent long-term respiratory sequelae, including recurrent LRTI, recurrent wheezing, asthma, and lung function impairment, and these effects can persist into adulthood as chronic respiratory disease. New preventive measures (maternal vaccine or long-acting monoclonal antibodies) have been licensed to reduce the burden of acute RSV LRTI in infants and children at high risk through passive immunisation. Studies of these RSV prevention products show high efficacy and effectiveness, particularly for preventing severe RSV LRTI, with implementation in many high-income countries, but limited access in low-income and middle-income countries (LMICs). These interventions might also reduce the risk of additional health outcomes and long-term morbidity. This Series paper provides the evidence for the long-term effects of early-life RSV disease, discusses mechanisms of disease development, and addresses the potential full public health value of prevention of RSV illness. Further research is needed to determine whether prevention of RSV LRTI or delay of RSV illness in early life might prevent or ameliorate the development of associated long-term respiratory disease. This potential further underscores the urgency for access and availability of new interventions to prevent early-life RSV LRTI in LMICs.
Collapse
Affiliation(s)
- Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Ferdinand Cacho
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tahira Kootbodien
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Asuncion Mejias
- Department of Infectious Disease, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin R Ortiz
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Renato T Stein
- Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tina V Hartert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
14
|
Ioachimescu OC. State of the art: Alternative overlap syndrome-asthma and obstructive sleep apnea. J Investig Med 2024; 72:589-619. [PMID: 38715213 DOI: 10.1177/10815589241249993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In the general population, Bronchial Asthma (BA) and Obstructive Sleep Apnea (OSA) are among the most prevalent chronic respiratory disorders. Significant epidemiologic connections and complex pathogenetic pathways link these disorders via complex interactions at genetic, epigenetic, and environmental levels. The coexistence of BA and OSA in an individual likely represents a distinct syndrome, that is, a collection of clinical manifestations attributable to several mechanisms and pathobiological signatures. To avoid terminological confusion, this association has been named alternative overlap syndrome (vs overlap syndrome represented by the chronic obstructive pulmonary disease-OSA association). This comprehensive review summarizes the complex, often bidirectional links between the constituents of the alternative overlap syndrome. Cross-sectional, population, or clinic-based studies are unlikely to elucidate causality or directionality in these relationships. Even longitudinal epidemiological evaluations in BA cohorts developing over time OSA, or OSA cohorts developing BA during follow-up cannot exclude time factors or causal influence of other known or unknown mediators. As such, a lot of pathophysiological interactions described here have suggestive evidence, biological plausibility, potential or actual directionality. By showcasing existing evidence and current knowledge gaps, the hope is that deliberate, focused, and collaborative efforts in the near-future will be geared toward opportunities to shine light on the unknowns and accelerate discovery in this field of health, clinical care, education, research, and scholarly endeavors.
Collapse
|
15
|
Meng M, Ma Y, Xu J, Chen G, Mahato RK. DNA methylation-mediated FGFR1 silencing enhances NF-κB signaling: implications for asthma pathogenesis. Front Mol Biosci 2024; 11:1433557. [PMID: 39377013 PMCID: PMC11456769 DOI: 10.3389/fmolb.2024.1433557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background Fibroblast growth factor receptor 1 (FGFR1) is known to play a crucial role in the pathogenesis of asthma, although the precise mechanism remains unclear. This study aims to investigate how DNA methylation-mediated silencing of FGFR1 contributes to the enhancement of NF-κB signaling, thereby influencing the progression of asthma. Methods RT-qPCR was utilized to assess FGFR1 mRNA levels in the serum of asthma patients and BEAS-2B, HBEpiC, and PCS-301-011 cells. CCK8 assays were conducted to evaluate the impact of FGFR1 overexpression on the proliferation of BEAS-2B, PCS-301-011, and HBEpiC cells. Dual-luciferase and DNA methylation inhibition assays were performed to elucidate the underlying mechanism of FGFR1 gene in asthma. The MassARRAY technique was employed to measure the methylation levels of the FGFR1 DNA. Results Elevated FGFR1 mRNA levels were observed in the serum of asthma patients compared to healthy controls. Overexpression of FGFR1 in BEAS-2B cells significantly enhanced cell proliferation and stimulated NF-ĸB transcriptional activity in HERK-293T cells. Furthermore, treatment with 5-Aza-CdR, a DNA demethylating agent, markedly increased the expression of FGFR1 mRNA in BEAS-2B, PCS-301-011, and HBEpiC cells. Luciferase activity analysis confirmed heightened NF-ĸB transcriptional activity in FGFR1-overexpressing BEAS-2B cells and BEAS-2B cells treated with 5-Aza-CdR. Additionally, a decrease in methylation levels in the FGFR1 DNA promoter was detected in the serum of asthma patients using the MassARRAY technique. Conclusion Our findings reveal a potential mechanism involving FGFR1 in the progression of asthma. DNA methylation of FGFR1 inactivates the NF-ĸB signaling pathway, suggesting a promising avenue for developing effective therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Minglu Meng
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
- Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Yingjiao Ma
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
| | - Jianguo Xu
- Department of Respiratory Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Gao Chen
- Department of Laboratory Medicine, The People’s Hospital of Hechi, Hechi, China
| | | |
Collapse
|
16
|
Ding Q, Hao T, Gao Y, Jiang S, Huang Y, Liang Y. Association between dietary choline intake and asthma and pulmonary inflammation and lung function: NHANES analysis 2009-2018. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:143. [PMID: 39252146 PMCID: PMC11386084 DOI: 10.1186/s41043-024-00635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Asthma is a chronic inflammatory condition, and choline may alleviate airway inflammation and oxidative stress but studies on the association between dietary choline and asthma remain limited. The purpose of this study is to investigate the associations between dietary choline intake and asthma, as well as pulmonary inflammation and lung function in children and adults. METHODS In our research, we employed the data of the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2018, including 7,104 children and 16,580 adults. We used fractional exhaled nitric oxide (FENO) to assess pulmonary inflammation and forced expiratory volume in one second (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio, peak expiratory flow rate (PEF), predicted FEV1% and predicted FVC% to assess lung function. Binary logistic regression, linear regression, and the restricted cubic splines were used to analyze the associations between dietary choline intake and asthma and pulmonary inflammation and lung function. RESULTS In children, we observed the positive associations between the natural logarithmic transformation of choline (ln-choline) and ln-FEV1 [ β:0.011; 95%CI: (0.004,0.018)] and ln-FVC [ β:0.009; 95%CI: (0.002,0.016)]. In adult males, the ln-choline was positively associated with ln-FEV1[ β:0.018; 95%CI: (0.011,0.024)], ln-FVC [ β:0.020; 95%CI: (0.014,0.026)], ln-PEF [ β:0.014; 95%CI: (0.007,0.022)], ln-predicted FEV1% [ β: 0.007; 95%CI: (0.001, 0.013)] and ln-predicted FVC%[ β: 0.010; 95%CI: (0.005, 0.015)] and negatively associated with FENO [ β: -0.029; 95%CI: (-0.049, -0.009)]. In unadjusted and partially adjusted models, adult females with ln-choline in the highest quartile had 25.2% (95%CI:9.4-38.3%) and 23.8% (95%CI:7.6-37.1%) decreased odds of asthma compared to those with the lowest quartile group. In the dose-response relationships of dietary choline and pulmonary inflammation and lung function indicators in adults, there existed threshold and saturation effects. CONCLUSION The associations between dietary choline and lung function indicators such as FEV1 and FVC are positive in children and adults. The association between dietary choline and pulmonary inflammation is negative only in adults.
Collapse
Affiliation(s)
- Qi Ding
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China
| | - Tingting Hao
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China
| | - Yuan Gao
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China
| | - Shanjiamei Jiang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China
| | - Yue'e Huang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China.
| | - Yali Liang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China.
| |
Collapse
|
17
|
Van Asselt AJ, Beck JJ, Johnson BN, Finnicum CT, Kallsen N, Viet S, Huizenga P, Ligthart L, Hottenga JJ, Pool R, Maitland-van der Zee AH, Vijverberg SJ, de Geus E, Boomsma DI, Ehli EA, van Dongen J. Epigenetic Signatures of Asthma: A Comprehensive Study of DNA Methylation and Clinical Markers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310829. [PMID: 39108502 PMCID: PMC11302610 DOI: 10.1101/2024.07.22.24310829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Background Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood samples from 319 participants. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 of these individuals. Principal component analysis (PCA) on the clinical markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. Results 221 unique CpGs reached genome-wide significance at timepoint 1 (T1) after Bonferroni correction. PC7 accounted for the majority of associations (204), which correlated with loadings of eosinophil counts and immunoglobulin levels. Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint (T2) identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points (271 in total) yielded a correlation of 0.81. Conclusion We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to using this robust DNA methylation profile as a new, stable biomarker for asthma.
Collapse
|
18
|
Han R, Zhu D, Sha J, Zhao B, Jin P, Meng C. Decoding the role of DNA methylation in allergic diseases: from pathogenesis to therapy. Cell Biosci 2024; 14:89. [PMID: 38965641 PMCID: PMC11225420 DOI: 10.1186/s13578-024-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.
Collapse
Affiliation(s)
- Ruiming Han
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Boning Zhao
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael ST NE, Atlanta, GA, 30322, USA.
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China.
| |
Collapse
|
19
|
Zhang P, Zheng Z, Sun H, Gao T, Xiao X. A review of common influencing factors and possible mechanisms associated with allergic diseases complicating tic disorders in children. Front Pediatr 2024; 12:1360420. [PMID: 38957776 PMCID: PMC11218626 DOI: 10.3389/fped.2024.1360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past few decades, the incidence of childhood allergic diseases has increased globally, and their impact on the affected child extends beyond the allergy itself. There is evidence of an association between childhood allergic diseases and the development of neurological disorders. Several studies have shown a correlation between allergic diseases and tic disorders (TD), and allergic diseases may be an important risk factor for TD. Possible factors influencing the development of these disorders include neurotransmitter imbalance, maternal anxiety or depression, gut microbial disorders, sleep disturbances, maternal allergic status, exposure to tobacco, and environmental factors. Moreover, gut microbial disturbances, altered immunological profiles, and DNA methylation in patients with allergic diseases may be potential mechanisms contributing to the development of TD. An in-depth investigation of the relationship between allergic diseases and TD in children will be important for preventing and treating TD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Zhimin Zheng
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Hao Sun
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Tieying Gao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Xuwu Xiao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
20
|
Liao Y, Cavalcante R, Waller J, Deng F, Scruggs A, Huang Y, Atasoy U, Chen Y, Huang S. Differences in the DNA Methylome of T cells in Adults With Asthma of Varying Severity. RESEARCH SQUARE 2024:rs.3.rs-4476948. [PMID: 38946998 PMCID: PMC11213176 DOI: 10.21203/rs.3.rs-4476948/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity or asthma endotypes are less well-defined. Objective To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. Methods Peripheral blood T cells from 35 adults with asthma in Beijing, China were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. Results Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. Conclusion These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to the phenotype and severity of their overall disease.
Collapse
|
21
|
Zhang L, Chun Y, Arditi Z, Grishina G, Lo T, Wisotzkey K, Agashe C, Grishin A, Wang J, Sampson HA, Sicherer S, Berin MC, Bunyavanich S. Joint transcriptomic and cytometric study of children with peanut allergy reveals molecular and cellular cross talk in reaction thresholds. J Allergy Clin Immunol 2024; 153:1721-1728. [PMID: 38272374 PMCID: PMC11162334 DOI: 10.1016/j.jaci.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/22/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Reaction thresholds in peanut allergy are highly variable. Elucidating causal relationships between molecular and cellular processes associated with variable thresholds could point to therapeutic pathways for raising thresholds. OBJECTIVE The aim of this study was to characterize molecular and cellular systemic processes associated with reaction threshold in peanut allergy and causal relationships between them. METHODS A total of 105 children aged 4 to 14 years with suspected peanut allergy underwent double-blind, placebo-controlled food challenge to peanut. The cumulative peanut protein quantity eliciting allergic symptoms was considered the reaction threshold for each child. Peripheral blood samples collected at 0, 2, and 4 hours after challenge start were used for RNA sequencing, whole blood staining, and cytometry. Statistical and network analyses were performed to identify associations and causal mediation between the molecular and cellular profiles and peanut reaction threshold. RESULTS Within the cohort (N = 105), 81 children (77%) experienced allergic reactions after ingesting varying quantities of peanut, ranging from 43 to 9043 mg of cumulative peanut protein. Peripheral blood expression of transcripts (eg, IGF1R [false discovery rate (FDR) = 5.4e-5] and PADI4 [FDR = 5.4e-5]) and neutrophil abundance (FDR = 9.5e-4) were associated with peanut threshold. Coexpression network analyses revealed that the threshold-associated transcripts were enriched in modules for FcγR-mediated phagocytosis (FDR = 3.2e-3) and Toll-like receptor (FDR = 1.4e-3) signaling. Bayesian network, key driver, and causal mediation analyses identified key drivers (AP5B1, KLHL21, VASP, TPD52L2, and IGF2R) within these modules that are involved in bidirectional causal mediation relationships with neutrophil abundance. CONCLUSION Key driver transcripts in FcγR-mediated phagocytosis and Toll-like receptor signaling interact bidirectionally with neutrophils in peripheral blood and are associated with reaction threshold in peanut allergy.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tracy Lo
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kayla Wisotzkey
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charuta Agashe
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hugh A Sampson
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott Sicherer
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
22
|
Böck A, Urner K, Eckert JK, Salvermoser M, Laubhahn K, Kunze S, Kumbrink J, Hoeppner MP, Kalkbrenner K, Kreimeier S, Beyer K, Hamelmann E, Kabesch M, Depner M, Hansen G, Riedler J, Roponen M, Schmausser-Hechfellner E, Barnig C, Divaret-Chauveau A, Karvonen AM, Pekkanen J, Frei R, Roduit C, Lauener R, Schaub B. An integrated molecular risk score early in life for subsequent childhood asthma risk. Clin Exp Allergy 2024; 54:314-328. [PMID: 38556721 DOI: 10.1111/cea.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Numerous children present with early wheeze symptoms, yet solely a subgroup develops childhood asthma. Early identification of children at risk is key for clinical monitoring, timely patient-tailored treatment, and preventing chronic, severe sequelae. For early prediction of childhood asthma, we aimed to define an integrated risk score combining established risk factors with genome-wide molecular markers at birth, complemented by subsequent clinical symptoms/diagnoses (wheezing, atopic dermatitis, food allergy). METHODS Three longitudinal birth cohorts (PAULINA/PAULCHEN, n = 190 + 93 = 283, PASTURE, n = 1133) were used to predict childhood asthma (age 5-11) including epidemiological characteristics and molecular markers: genotype, DNA methylation and mRNA expression (RNASeq/NanoString). Apparent (ap) and optimism-corrected (oc) performance (AUC/R2) was assessed leveraging evidence from independent studies (Naïve-Bayes approach) combined with high-dimensional logistic regression models (LASSO). RESULTS Asthma prediction with epidemiological characteristics at birth (maternal asthma, sex, farm environment) yielded an ocAUC = 0.65. Inclusion of molecular markers as predictors resulted in an improvement in apparent prediction performance, however, for optimism-corrected performance only a moderate increase was observed (upto ocAUC = 0.68). The greatest discriminate power was reached by adding the first symptoms/diagnosis (up to ocAUC = 0.76; increase of 0.08, p = .002). Longitudinal analysis of selected mRNA expression in PASTURE (cord blood, 1, 4.5, 6 years) showed that expression at age six had the strongest association with asthma and correlation of genes getting larger over time (r = .59, p < .001, 4.5-6 years). CONCLUSION Applying epidemiological predictors alone showed moderate predictive abilities. Molecular markers from birth modestly improved prediction. Allergic symptoms/diagnoses enhanced the power of prediction, which is important for clinical practice and for the design of future studies with molecular markers.
Collapse
Affiliation(s)
- Andreas Böck
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Kathrin Urner
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Jana Kristin Eckert
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Michael Salvermoser
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Kristina Laubhahn
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center - Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, LMU Munich, Munich, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kathrin Kalkbrenner
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Simone Kreimeier
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Health Economics and Health Care Management, School of Public Health, Bielefeld University, Bielefeld, Germany
| | - Kirsten Beyer
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eckard Hamelmann
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department for Pediatrics, Children's Center Bethel, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Michael Kabesch
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- University Children's Hospital Regensburg (KUNO), St. Hedwig's Hospital of the Order of St. John and the University of Regensburg, Regensburg, Germany
| | - Martin Depner
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Gesine Hansen
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Excellence Cluster Resolving Infection Susceptibility RESIST (EXC 2155), Deutsche Forschungsgemeinschaft, Hannover Medical School, Hannover, Germany
| | | | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisabeth Schmausser-Hechfellner
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Cindy Barnig
- Department of Respiratory Disease, University Hospital, Besanҫon, France
- INSERM, EFS BFC, LabEx LipSTIC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Amandine Divaret-Chauveau
- Pediatric Allergy Department, Children's Hospital, University Hospital of Nancy, Vandoeuvre les Nancy, France
- EA3450 Development, Adaptation and Handicap (devah), Pediatric Allergy Department, University of Lorraine, Nancy, France
- UMR/CNRS 6249 Chrono-environment, University of Franche Comté, Besançon, France
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Remo Frei
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Caroline Roduit
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Roger Lauener
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Comprehensive Pneumology Center - Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
23
|
Makrinioti H, Zhu Z, Saglani S, Camargo CA, Hasegawa K. Infant Bronchiolitis Endotypes and the Risk of Developing Childhood Asthma: Lessons From Cohort Studies. Arch Bronconeumol 2024; 60:215-225. [PMID: 38569771 DOI: 10.1016/j.arbres.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Abrar MNF, Jiang Y, Zhang H, Li L, Arshad H. Epigenetic Features in Newborns Associated with Preadolescence Lung Function and Asthma Acquisition during Adolescence. EPIGENOMES 2024; 8:12. [PMID: 38525738 PMCID: PMC10961756 DOI: 10.3390/epigenomes8020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
The association between newborn DNA methylation (DNAm) and asthma acquisition (AA) during adolescence has been suggested. Lung function (LF) has been shown to be associated with asthma risk and its severity. However, the role of LF in the associations between DNAm and AA is unclear, and it is also unknown whether the association between DNAm and AA is consistent with that between DNAm and LF. We address this question through assessing newborn epigenetic features of preadolescence LF and of AA during adolescence, along with their biological pathways and processes. Our study's primary medical significance lies in advancing the understanding of asthma's early life origins. By investigating epigenetic markers in newborns and their association with lung function in preadolescence, we aim to uncover potential early biomarkers of asthma risk. This could facilitate earlier detection and intervention strategies. Additionally, exploring biological pathways linking early lung function to later asthma development can offer insights into the disease's pathogenesis, potentially leading to novel therapeutic targets. METHODS The study was based on the Isle of Wight Birth cohort (IOWBC). Female subjects with DNAm data at birth and with no asthma at age 10 years were included (n = 249). The R package ttScreening was applied to identify CpGs potentially associated with AA from 10 to 18 years and with LF at age 10 (FEV1, FVC, and FEV1/FVC), respectively. Agreement in identified CpGs between AA and LF was examined, along with their biological pathways and processes via the R function gometh. We tested the findings in an independent cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC), to examine overall replicability. RESULTS In IOWBC, 292 CpGs were detected with DNAm associated with AA and 1517 unique CpGs for LF (514 for FEV1, 436 for FVC, 408 for FEV1/FVC), with one overlapping CpG, cg23642632 (NCKAP1) between AA and LF. Among the IOWBC-identified CpGs, we further tested in ALSPAC and observed the highest agreement between the two cohorts in FVC with respect to the direction of association and statistical significance. Epigenetic enrichment analyses indicated non-specific connections in the biological pathways and processes between AA and LF. CONCLUSIONS The present study suggests that FEV1, FVC, and FEV1/FVC (as objective measures of LF) and AA (incidence of asthma) are likely to have their own specific epigenetic features and biological pathways at birth. More replications are desirable to fully understand the complexity between DNAm, lung function, and asthma acquisition.
Collapse
Affiliation(s)
- Mohammad Nahian Ferdous Abrar
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; (M.N.F.A.); (Y.J.); (L.L.)
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; (M.N.F.A.); (Y.J.); (L.L.)
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; (M.N.F.A.); (Y.J.); (L.L.)
| | - Liang Li
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; (M.N.F.A.); (Y.J.); (L.L.)
| | - Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Isle of Wight P030 5TG, UK;
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton S017 1BJ, UK
| |
Collapse
|
25
|
Yue M, Tao S, Gaietto K, Chen W. Omics approaches in asthma research: Challenges and opportunities. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:1-9. [PMID: 39170962 PMCID: PMC11332849 DOI: 10.1016/j.pccm.2024.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 08/23/2024]
Abstract
Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, methylation sites, proteins, and even the microbiome components. This review provides an insightful overview of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced statistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and personalized treatment strategies for this heterogeneous condition.
Collapse
Affiliation(s)
- Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Shiyue Tao
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kristina Gaietto
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
26
|
Ghozal M, Kadawathagedara M, Delvert R, Divaret-Chauveau A, Raherison C, Varraso R, Bédard A, Crépet A, Sirot V, Charles MA, Adel-Patient K, de Lauzon-Guillain B. Prenatal dietary exposure to mixtures of chemicals is associated with allergy or respiratory diseases in children in the ELFE nationwide cohort. Environ Health 2024; 23:5. [PMID: 38195595 PMCID: PMC10775451 DOI: 10.1186/s12940-023-01046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Prenatal exposure to environmental chemicals may be associated with allergies later in life. We aimed to examine the association between prenatal dietary exposure to mixtures of chemicals and allergic or respiratory diseases up to age 5.5 y. METHODS We included 11,638 mother-child pairs from the French "Étude Longitudinale Française depuis l'Enfance" (ELFE) cohort. Maternal dietary exposure during pregnancy to eight mixtures of chemicals was previously assessed. Allergic and respiratory diseases (eczema, food allergy, wheezing and asthma) were reported by parents between birth and age 5.5 years. Associations were evaluated with adjusted logistic regressions. Results are expressed as odds ratio (OR[95%CI]) for a variation of one SD increase in mixture pattern. RESULTS Maternal dietary exposure to a mixture composed mainly of trace elements, furans and polycyclic aromatic hydrocarbons (PAHs) was positively associated with the risk of eczema (1.10 [1.05; 1.15]), this association was consistent across sensitivity analyses. Dietary exposure to one mixture of pesticides was positively associated with the risk of food allergy (1.10 [1.02; 1.18]), whereas the exposure to another mixture of pesticides was positively but slightly related to the risk of wheezing (1.05 [1.01; 1.08]). This last association was not found in all sensitivity analyses. Dietary exposure to a mixture composed by perfluoroalkyl acids, PAHs and trace elements was negatively associated with the risk of asthma (0.89 [0.80; 0.99]), this association was consistent across sensitivity analyses, except the complete-case analysis. CONCLUSION Whereas few individual chemicals were related to the risk of allergic and respiratory diseases, some consistent associations were found between prenatal dietary exposure to some mixtures of chemicals and the risk of allergic or respiratory diseases. The positive association between trace elements, furans and PAHs and the risk of eczema, and that between pesticides mixtures and food allergy need to be confirmed in other studies. Conversely, the negative association between perfluoroalkyl acids, PAHs and trace elements and the risk of asthma need to be further explored.
Collapse
Affiliation(s)
- Manel Ghozal
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France.
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| | - Rosalie Delvert
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Amandine Divaret-Chauveau
- Unité d'allergologie pédiatrique, Hôpital d'enfants, CHRU de Nancy, Vandoeuvre les Nancy, France
- EA 3450 DevAH, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
- UMR 6249 Chrono-Environnement, Université de Bourgogne Franche Comté, Besançon, France
| | - Chantal Raherison
- Inserm, Team EPICENE, Bordeaux Population Health Research Center, UMR 1219, Bordeaux University, Bordeaux, France
| | - Raphaëlle Varraso
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Annabelle Bédard
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Véronique Sirot
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Marie Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| | - Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Blandine de Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| |
Collapse
|
27
|
Mijač S, Banić I, Genc AM, Lipej M, Turkalj M. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:110. [PMID: 38256371 PMCID: PMC10820670 DOI: 10.3390/medicina60010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Allergic diseases are one of the most common chronic conditions and their prevalence is on the rise. Environmental exposure, primarily prenatal and early life influences, affect the risk for the development and specific phenotypes of allergic diseases via epigenetic mechanisms. Exposure to pollutants, microorganisms and parasites, tobacco smoke and certain aspects of diet are known to drive epigenetic changes that are essential for immune regulation (e.g., the shift toward T helper 2-Th2 cell polarization and decrease in regulatory T-cell (Treg) differentiation). DNA methylation and histone modifications can modify immune programming related to either pro-allergic interleukin 4 (IL-4), interleukin 13 (IL-13) or counter-regulatory interferon γ (IFN-γ) production. Differential expression of small non-coding RNAs has also been linked to the risk for allergic diseases and associated with air pollution. Certain exposures and associated epigenetic mechanisms play a role in the susceptibility to allergic conditions and specific clinical manifestations of the disease, while others are thought to have a protective role against the development of allergic diseases, such as maternal and early postnatal microbial diversity, maternal helminth infections and dietary supplementation with polyunsaturated fatty acids and vitamin D. Epigenetic mechanisms are also known to be involved in mediating the response to common treatment in allergic diseases, for example, changes in histone acetylation of proinflammatory genes and in the expression of certain microRNAs are associated with the response to inhaled corticosteroids in asthma. Gaining better insight into the epigenetic regulation of allergic diseases may ultimately lead to significant improvements in the management of these conditions, earlier and more precise diagnostics, optimization of current treatment regimes, and the implementation of novel therapeutic options and prevention strategies in the near future.
Collapse
Affiliation(s)
- Sandra Mijač
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Ivana Banić
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
- Department of Innovative Diagnostics, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia
| | - Ana-Marija Genc
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Marcel Lipej
- IT Department, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
| | - Mirjana Turkalj
- Department of Pediatric Allergy and Pulmonology, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, J.J. Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Faculty of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
28
|
Xu Z, Forno E, Sun Y, Manni ML, Han YY, Kim S, Yue M, Vonk JM, Kersten ETM, Acosta-Perez E, Canino G, Koppelman GH, Chen W, Celedón JC. Nasal epithelial gene expression and total IgE in children and adolescents with asthma. J Allergy Clin Immunol 2024; 153:122-131. [PMID: 37742934 PMCID: PMC10842443 DOI: 10.1016/j.jaci.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Little is known about nasal epithelial gene expression and total IgE in youth. OBJECTIVE We aimed to identify genes whose nasal epithelial expression differs by total IgE in youth, and group them into modules that could be mapped to airway epithelial cell types. METHODS We conducted a transcriptome-wide association study of total IgE in 469 Puerto Ricans aged 9 to 20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study, separately in all subjects and in those with asthma. We then attempted to replicate top findings for each analysis using data from 3 cohorts. Genes with a Benjamini-Hochberg-adjusted P value of less than .05 in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study and a P value of less than .05 in the same direction of association in 1 or more replication cohort were considered differentially expressed genes (DEGs). DEGs for total IgE in subjects with asthma were further dissected into gene modules using coexpression analysis, and such modules were mapped to specific cell types in airway epithelia using public single-cell RNA-sequencing data. RESULTS A higher number of DEGs for total IgE were identified in subjects with asthma (n = 1179 DEGs) than in all subjects (n = 631 DEGs). In subjects with asthma, DEGs were mapped to 11 gene modules. The top module for positive correlation with total IgE was mapped to myoepithelial and mucus secretory cells in lower airway epithelia and was regulated by IL-4, IL5, IL-13, and IL-33. Within this module, hub genes included CDH26, FETUB, NTRK2, CCBL1, CST1, and CST2. Furthermore, an enrichment analysis showed overrepresentation of genes in signaling pathways for synaptogenesis, IL-13, and ferroptosis, supporting interactions between interleukin- and acetylcholine-induced responses. CONCLUSIONS Our findings for nasal epithelial gene expression support neuroimmune coregulation of total IgE in youth with asthma.
Collapse
Affiliation(s)
- Zhongli Xu
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Michelle L Manni
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Yueh Ying Han
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Soyeon Kim
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Molin Yue
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elin T M Kersten
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute of Puerto Rico, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute of Puerto Rico, University of Puerto Rico, San Juan, Puerto Rico; Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
29
|
Mrkić Kobal I, Plavec D, Vlašić Lončarić Ž, Jerković I, Turkalj M. Atopic March or Atopic Multimorbidity-Overview of Current Research. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:21. [PMID: 38256282 PMCID: PMC10819021 DOI: 10.3390/medicina60010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
The atopic march encompasses a sequence of allergic conditions, including atopic dermatitis, food allergy, allergic rhinitis, and asthma, that frequently develop in a sequential pattern within the same individual. It was introduced as a conceptual framework aimed at elucidating the developmental trajectory of allergic conditions during childhood. Following the introduction of this concept, it was initially believed that the atopic march represented the sole and definitive trajectory of the development of allergic diseases. However, this perspective evolved with the emergence of new longitudinal studies, which revealed that the evolution of allergic diseases is far more intricate. It involves numerous immunological pathological mechanisms and may not align entirely with the traditional concept of the atopic march. The objective of our review is to portray the atopic march alongside other patterns in the development of childhood allergic diseases, with a specific emphasis on the potential for a personalized approach to the prevention, diagnosis, and treatment of atopic conditions.
Collapse
Affiliation(s)
- Iva Mrkić Kobal
- Clinic for Pediatric Medicine Helena, Ulica kneza Branimira 71, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Davor Plavec
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Prima Nova, Zagrebačka cesta 132a, 10000 Zagreb, Croatia
| | - Željka Vlašić Lončarić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia
| | - Ivana Jerković
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia
| | - Mirjana Turkalj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia
- Faculty of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Lima DDS, de Morais RV, Rechenmacher C, Michalowski MB, Goldani MZ. Epigenetics, hypersensibility and asthma: what do we know so far? Clinics (Sao Paulo) 2023; 78:100296. [PMID: 38043345 DOI: 10.1016/j.clinsp.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 12/05/2023] Open
Abstract
In this review, we describe recent advances in understanding the relationship between epigenetic changes, especially DNA methylation (DNAm), with hypersensitivity and respiratory disorders such as asthma in childhood. It is clearly described that epigenetic mechanisms can induce short to long-term changes in cells, tissues, and organs. Through the growing number of studies on the Origins of Health Development and Diseases, more and more data exist on how environmental and genomic aspects in early life can induce allergies and asthma. The lack of biomarkers, standardized assays, and access to more accessible tools for data collection and analysis are still a challenge for future studies. Through this review, the authors draw a panorama with the available information that can assist in the establishment of an epigenetic approach for the risk analysis of these pathologies.
Collapse
Affiliation(s)
- Douglas da Silva Lima
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rahuany Velleda de Morais
- Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ciliana Rechenmacher
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mariana Bohns Michalowski
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Serviço de Oncologia Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Marcelo Zubaran Goldani
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Herrera-Luis E, Rosa-Baez C, Huntsman S, Eng C, Beckman KB, LeNoir MA, Rodriguez-Santana JR, Villar J, Laprise C, Borrell LN, Ziv E, Burchard EG, Pino-Yanes M. Novel insights into the whole-blood DNA methylome of asthma in ethnically diverse children and youth. Eur Respir J 2023; 62:2300714. [PMID: 37802634 PMCID: PMC10841414 DOI: 10.1183/13993003.00714-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 08/20/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The epigenetic mechanisms of asthma remain largely understudied in African Americans and Hispanics/Latinos, two populations disproportionately affected by asthma. We aimed to identify markers, regions and processes with differential patterns of DNA methylation (DNAm) in whole blood by asthma status in ethnically diverse children and youth, and to assess their functional consequences. METHODS DNAm levels were profiled with the Infinium MethylationEPIC or HumanMethylation450 BeadChip arrays among 1226 African Americans or Hispanics/Latinos and assessed for differential methylation per asthma status at the CpG and region (differentially methylated region (DMR)) level. Novel associations were validated in blood and/or nasal epithelium from ethnically diverse children and youth. The functional and biological implications of the markers identified were investigated by combining epigenomics with transcriptomics from study participants. RESULTS 128 CpGs and 196 DMRs were differentially methylated after multiple testing corrections, including 92.3% and 92.8% novel associations, respectively. 41 CpGs were replicated in other Hispanics/Latinos, prioritising cg17647904 (NCOR2) and cg16412914 (AXIN1) as asthma DNAm markers. Significant DNAm markers were enriched in previous associations for asthma, fractional exhaled nitric oxide, bacterial infections, immune regulation or eosinophilia. Functional annotation highlighted epigenetically regulated gene networks involved in corticosteroid response, host defence and immune regulation. Several implicated genes are targets for approved or experimental drugs, including TNNC1 and NDUFA12. Many differentially methylated loci previously associated with asthma were validated in our study. CONCLUSIONS We report novel whole-blood DNAm markers for asthma underlying key processes of the disease pathophysiology and confirm the transferability of previous asthma DNAm associations to ethnically diverse populations.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Carlos Rosa-Baez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Scott Huntsman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael A LeNoir
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Bay Area Pediatrics, Oakland, CA, USA
| | - Jose R Rodriguez-Santana
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Centro de Neumología Pediátrica, San Juan, Puerto Rico
| | - Jesús Villar
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Li Ka Shing Knowledge Institute at St Michael's Hospital, Toronto, ON, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Spain
- These authors contributed equally as senior authors
| |
Collapse
|
32
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Zhu Z, Li Y, Freishtat RJ, Celedón JC, Espinola JA, Harmon B, Hahn A, Camargo CA, Liang L, Hasegawa K. Epigenome-wide association analysis of infant bronchiolitis severity: a multicenter prospective cohort study. Nat Commun 2023; 14:5495. [PMID: 37679381 PMCID: PMC10485022 DOI: 10.1038/s41467-023-41300-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Bronchiolitis is the most common lower respiratory infection in infants, yet its pathobiology remains unclear. Here we present blood DNA methylation data from 625 infants hospitalized with bronchiolitis in a 17-center prospective study, and associate them with disease severity. We investigate differentially methylated CpGs (DMCs) for disease severity. We characterize the DMCs based on their association with cell and tissues types, biological pathways, and gene expression. Lastly, we also examine the relationships of severity-related DMCs with respiratory and immune traits in independent cohorts. We identify 33 DMCs associated with severity. These DMCs are differentially methylated in blood immune cells. These DMCs are also significantly enriched in multiple tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are associated with respiratory and immune traits (e.g., asthma, lung function, IgE levels). Our study suggests the role of DNA methylation in bronchiolitis severity.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yijun Li
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
35
|
Kienhorst S, van Aarle MHD, Jöbsis Q, Bannier MAGE, Kersten ETG, Damoiseaux J, van Schayck OCP, Merkus PJFM, Koppelman GH, van Schooten FJ, Smolinska A, Dompeling E. The ADEM2 project: early pathogenic mechanisms of preschool wheeze and a randomised controlled trial assessing the gain in health and cost-effectiveness by application of the breath test for the diagnosis of asthma in wheezing preschool children. BMC Public Health 2023; 23:629. [PMID: 37013496 PMCID: PMC10068201 DOI: 10.1186/s12889-023-15465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The prevalence of asthma-like symptoms in preschool children is high. Despite numerous efforts, there still is no clinically available diagnostic tool to discriminate asthmatic children from children with transient wheeze at preschool age. This leads to potential overtreatment of children outgrowing their symptoms, and to potential undertreatment of children who turn out to have asthma. Our research group developed a breath test (using GC-tof-MS for VOC-analysis in exhaled breath) that is able to predict a diagnosis of asthma at preschool age. The ADEM2 study assesses the improvement in health gain and costs of care with the application of this breath test in wheezing preschool children. METHODS This study is a combination of a multi-centre, parallel group, two arm, randomised controlled trial and a multi-centre longitudinal observational cohort study. The preschool children randomised into the treatment arm of the RCT receive a probability diagnosis (and corresponding treatment recommendations) of either asthma or transient wheeze based on the exhaled breath test. Children in the usual care arm do not receive a probability diagnosis. Participants are longitudinally followed up until the age of 6 years. The primary outcome is disease control after 1 and 2 years of follow-up. Participants of the RCT, together with a group of healthy preschool children, also contribute to the parallel observational cohort study developed to assess the validity of alternative VOC-sensing techniques and to explore numerous other potential discriminating biological parameters (such as allergic sensitisation, immunological markers, epigenetics, transcriptomics, microbiomics) and the subsequent identification of underlying disease pathways and relation to the discriminative VOCs in exhaled breath. DISCUSSION The potential societal and clinical impact of the diagnostic tool for wheezing preschool children is substantial. By means of the breath test, it will become possible to deliver customized and high qualitative care to the large group of vulnerable preschool children with asthma-like symptoms. By applying a multi-omics approach to an extensive set of biological parameters we aim to explore (new) pathogenic mechanisms in the early development of asthma, creating potentially interesting targets for the development of new therapies. TRIAL REGISTRATION Netherlands Trial Register, NL7336, Date registered 11-10-2018.
Collapse
Affiliation(s)
- Sophie Kienhorst
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Moniek H D van Aarle
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Quirijn Jöbsis
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel A G E Bannier
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elin T G Kersten
- Department of Paediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, and GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Onno C P van Schayck
- Department of Family Medicine, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Peter J F M Merkus
- Department of Paediatric Pulmonology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gerard H Koppelman
- Department of Paediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, and GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederik-Jan van Schooten
- Department Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Edward Dompeling
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
36
|
Alshamrani AA, Alshehri S, Alqarni SS, Ahmad SF, Alghibiwi H, Al-Harbi NO, Alqarni SA, Al-Ayadhi LY, Attia SM, Alfardan AS, Bakheet SA, Nadeem A. DNA Hypomethylation Is Associated with Increased Inflammation in Peripheral Blood Neutrophils of Children with Autism Spectrum Disorder: Understanding the Role of Ubiquitous Pollutant Di(2-ethylhexyl) Phthalate. Metabolites 2023; 13:metabo13030458. [PMID: 36984898 PMCID: PMC10057726 DOI: 10.3390/metabo13030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multidimensional disorder in which environmental, immune, and genetic factors act in concert to play a crucial role. ASD is characterized by social interaction/communication impairments and stereotypical behavioral patterns. Epigenetic modifications are known to regulate genetic expression through various mechanisms. One such mechanism is DNA methylation, which is regulated by DNA methyltransferases (DNMTs). DNMT transfers methyl groups onto the fifth carbon atom of the cytosine nucleotide, thus converting it into 5-methylcytosine (5mC) in the promoter region of the DNA. Disruptions in methylation patterns of DNA are usually associated with modulation of genetic expression. Environmental pollutants such as the plasticizer Di(2-ethylhexyl) phthalate (DEHP) have been reported to affect epigenetic mechanisms; however, whether DEHP modulates DNMT1 expression, DNA methylation, and inflammatory mediators in the neutrophils of ASD subjects has not previously been investigated. Hence, this investigation focused on the role of DNMT1 and overall DNA methylation in relation to inflammatory mediators (CCR2, MCP-1) in the neutrophils of children with ASD and typically developing healthy children (TDC). Further, the effect of DEHP on overall DNA methylation, DNMT1, CCR2, and MCP-1 in the neutrophils was explored. Our results show that the neutrophils of ASD subjects have diminished DNMT1 expression, which is associated with hypomethylation of DNA and increased inflammatory mediators such as CCR2 and MCP-1. DEHP further causes downregulation of DNMT1 expression in the neutrophils of ASD subjects, probably through oxidative inflammation, as antioxidant treatment led to reversal of a DEHP-induced reduction in DNMT1. These data highlight the importance of the environmental pollutant DEHP in the modification of epigenetic machinery such as DNA methylation in the neutrophils of ASD subjects.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Sara ŻS, Joanna J, Daniela P, Kinga P, Agnieszka B. The Effect of Environmental Factors on Immunological Pathways of Asthma in Children of the Polish Mother and Child Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4774. [PMID: 36981683 PMCID: PMC10049367 DOI: 10.3390/ijerph20064774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The FOXP3 transcription factor is a marker of regulatory T cells (Tregs), and is essential in the process of their activation and proper expression by promoting immune homeostasis. To assess the influence of the environment on the development of asthma, we hypothesized that in our cohort, exposure to environmental factors is associated with asthma risk in children, and that FOXP3 levels vary with their incidence and are negatively correlated with developing asthma. This prospective study conducted in Poland uses a cohort of 85 children (42 with and 43 without asthma diagnosis) aged 9 to 12 years recruited for the Polish Mother and Child Cohort Study. We collected questionnaires and organized visits to assess patients' clinical condition (skin prick tests, lung function assessments). Blood samples were taken to determine immune parameters. Breastfed children had lower risk of asthma. Asthma risk was higher in children who live in the city, with antibiotic course before the age of 2 and antibiotic therapy more than twice a year. Environmental factors were associated with childhood asthma. Breastfeeding, the coexistence of other allergic diseases, and the frequency of housekeeping affect FOXP3 levels, which are negatively correlated with the risk of asthma.
Collapse
Affiliation(s)
- Żywiołowska-Smuga Sara
- Department of Pediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Pabianicka Street 62, 93-513 Lodz, Poland
| | - Jerzyńska Joanna
- Department of Pediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Pabianicka Street 62, 93-513 Lodz, Poland
| | - Podlecka Daniela
- Department of Pediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Pabianicka Street 62, 93-513 Lodz, Poland
| | - Polańska Kinga
- Department of Pediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Pabianicka Street 62, 93-513 Lodz, Poland
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Brzozowska Agnieszka
- Department of Pediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Pabianicka Street 62, 93-513 Lodz, Poland
| |
Collapse
|
38
|
Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78:940-956. [PMID: 36727912 DOI: 10.1111/all.15666] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Asthma is a complex and heterogeneous chronic inflammatory disease of the airways. Alongside environmental factors, asthma susceptibility is strongly influenced by genetics. Given its high prevalence and our incomplete understanding of the mechanisms underlying disease susceptibility, asthma is frequently studied in genome-wide association studies (GWAS), which have identified thousands of genetic variants associated with asthma development. Virtually all these genetic variants reside in non-coding genomic regions, which has obscured the functional impact of asthma-associated variants and their translation into disease-relevant mechanisms. Recent advances in genomics technology and epigenetics now offer methods to link genetic variants to gene regulatory elements embedded within non-coding regions, which have started to unravel the molecular mechanisms underlying the complex (epi)genetics of asthma. Here, we provide an integrated overview of (epi)genetic variants associated with asthma, focusing on efforts to link these disease associations to biological insight into asthma pathophysiology using state-of-the-art genomics methodology. Finally, we provide a perspective as to how decoding the genetic and epigenetic basis of asthma has the potential to transform clinical management of asthma and to predict the risk of asthma development.
Collapse
Affiliation(s)
- Bernard S Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Yang Z, Wen P, Chen J, Kang J, Xiang Y, Ding S, Gao L, Tong X, Guo A. DNA methylation regulatory patterns and underlying pathways behind the co-pathogenesis of allergic rhinitis and chronic spontaneous urticaria. Front Immunol 2023; 13:1053558. [PMID: 36713372 PMCID: PMC9875140 DOI: 10.3389/fimmu.2022.1053558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Background Allergic rhinitis (AR) and chronic spontaneous urticaria (CSU) are often concurrent in patients. Changes in DNA methylation affect T cell biological processes, which may explain the occurrence and progression of comorbidity. However, downstream regulatory pathways of DNA methylation in two diseases and the underlying mechanisms have not been fully elucidated. Methods The GSE50101, GSE72541, GSE50222 and OEP002482 were mined for the identification of differentially expressed genes (DEGs) or co-expressed genes and differentially methylated genes (DMGs) in AR and CSU patients. We applied GO analysis and consensus clustering to study the potential functions and signal pathways of selected genes in two diseases. GSVA and logistic regression analysis were used to find the regulatory pathway between DNA methylation and activation patterns of CD4+ T cells. Besides, we used the Illumina 850k chip to detect DNA methylation expression profiles and recognize the differentially methylated CpG positions (DMPs) on corresponding genes. Finally, we annotated the biological process of these genes using GO and KEGG pathway analysis. Result The AR-related DEGs were found closely related to the differentiation and activation of CD4+ T cells. The DEGs or co-expressed genes of CD4+ T cells in AR and CSU patients were also clustered using GO and KEGG analysis and we got 57 co-regulatory pathways. Furthermore, logistic regression analysis showed that the regulation of cellular component size was closely related to the activation of CD4+ T cells regulated by DNA methylation. We got self-tested data using the Illumina 850k chip and identified 98 CpGs that were differentially methylated in patients. Finally, we mapped the DMPs to 15 genes and found that they were mainly enriched in the same CD4+T cell regulating pathway. Conclusion Our study indicated that DNA methylation affected by pollen participated in the activation patterns of CD4 + T cells, providing a novel direction for the symptomatic treatment of the co-occurrence of AR and CSU.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Puqiao Wen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Kang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaping Xiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shu Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Aiyuan Guo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Aiyuan Guo,
| |
Collapse
|
40
|
Makrinioti H, Morita H, Nastouli E, Jartti T. Editorial: Bridging the gap between immunology, virology, genetics, and epigenetics in bronchiolitis: The multiomics pathway to asthma development. Front Immunol 2023; 14:1154121. [PMID: 36895569 PMCID: PMC9989251 DOI: 10.3389/fimmu.2023.1154121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Eleni Nastouli
- Department of Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Tuomas Jartti
- Research unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Opthalmology (PEDEGO) Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Pediatrics, Oulu University Hospital, Oulu, Finland.,Department of Paediatrics, Turku University Hospital and Turku University, Turku, Finland
| |
Collapse
|
41
|
Schedel M, Leach SM, Strand MJ, Danhorn T, MacBeth M, Faino AV, Lynch AM, Winn VD, Munoz LL, Forsberg SM, Schwartz DA, Gelfand EW, Hauk PJ. Molecular networks in atopic mothers impact the risk of infant atopy. Allergy 2023; 78:244-257. [PMID: 35993851 DOI: 10.1111/all.15490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The prevalence of atopic diseases has increased with atopic dermatitis (AD) as the earliest manifestation. We assessed if molecular risk factors in atopic mothers influence their infants' susceptibility to an atopic disease. METHODS Pregnant women and their infants with (n = 174, high-risk) or without (n = 126, low-risk) parental atopy were enrolled in a prospective birth cohort. Global differentially methylated regions (DMRs) were determined in atopic (n = 92) and non-atopic (n = 82) mothers. Principal component analysis was used to predict atopy risk in children dependent on maternal atopy. Genome-wide transcriptomic analyses were performed in paired atopic (n = 20) and non-atopic (n = 15) mothers and cord blood. Integrative genomic analyses were conducted to define methylation-gene expression relationships. RESULTS Atopic dermatitis was more prevalent in high-risk compared to low-risk children by age 2. Differential methylation analyses identified 165 DMRs distinguishing atopic from non-atopic mothers. Inclusion of DMRs in addition to maternal atopy significantly increased the odds ratio to develop AD in children from 2.56 to 4.26. In atopic compared to non-atopic mothers, 139 differentially expressed genes (DEGs) were identified significantly enriched of genes within the interferon signaling pathway. Expression quantitative trait methylation analyses dependent on maternal atopy identified 29 DEGs controlled by 136 trans-acting methylation marks, some located near transcription factors. Differential expression for the same nine genes, including MX1 and IFI6 within the interferon pathway, was identified in atopic and non-atopic mothers and high-risk and low-risk children. CONCLUSION These data suggest that in utero epigenetic and transcriptomic mechanisms predominantly involving the interferon pathway may impact and predict the development of infant atopy.
Collapse
Affiliation(s)
- Michaela Schedel
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pulmonary Medicine, University Medicine Essen-Ruhrlandklinik, Essen, Germany.,Department of Pulmonary Medicine, University Medicine Essen, University Hospital, Essen, Germany
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Matthew J Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Department of Pharmacology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Morgan MacBeth
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anna V Faino
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Biostatistics, Epidemiology and Research Core, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Anne M Lynch
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Lindsay L Munoz
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Shannon M Forsberg
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Thoracic Oncology, University of Colorado Cancer Center, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Erwin W Gelfand
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Pia J Hauk
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Section Allergy/Immunology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
42
|
Wattacheril JJ, Raj S, Knowles DA, Greally JM. Using epigenomics to understand cellular responses to environmental influences in diseases. PLoS Genet 2023; 19:e1010567. [PMID: 36656803 PMCID: PMC9851565 DOI: 10.1371/journal.pgen.1010567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It is a generally accepted model that environmental influences can exert their effects, at least in part, by changing the molecular regulators of transcription that are described as epigenetic. As there is biochemical evidence that some epigenetic regulators of transcription can maintain their states long term and through cell division, an epigenetic model encompasses the idea of maintenance of the effect of an exposure long after it is no longer present. The evidence supporting this model is mostly from the observation of alterations of molecular regulators of transcription following exposures. With the understanding that the interpretation of these associations is more complex than originally recognised, this model may be oversimplistic; therefore, adopting novel perspectives and experimental approaches when examining how environmental exposures are linked to phenotypes may prove worthwhile. In this review, we have chosen to use the example of nonalcoholic fatty liver disease (NAFLD), a common, complex human disease with strong environmental and genetic influences. We describe how epigenomic approaches combined with emerging functional genetic and single-cell genomic techniques are poised to generate new insights into the pathogenesis of environmentally influenced human disease phenotypes exemplified by NAFLD.
Collapse
Affiliation(s)
- Julia J. Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York, United States of America
| | - Srilakshmi Raj
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Knowles
- New York Genome Center, New York, New York, United States of America
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - John M. Greally
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
43
|
Wjst M. Exome variants associated with asthma and allergy. Sci Rep 2022; 12:21028. [PMID: 36470944 PMCID: PMC9722654 DOI: 10.1038/s41598-022-24960-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The mutational spectrum of asthma and allergy associated genes is not known although recent biobank based exome sequencing studies included these traits. We therefore conducted a secondary analysis of exome data from 281,104 UK Biobank samples for association of mostly rare variants with asthma, allergic rhinitis and atopic dermatitis. Variants of interest (VOI) were tabulated, shared genes annotated and compared to earlier genome-wide SNP association studies (GWAS), whole genome sequencing, exome and bisulfit sequencing studies. 354 VOI were significantly associated with asthma, allergic rhinitis and atopic dermatitis. They cluster mainly in two large regions on chromosome 6 and 17. After exclusion of the variants associated with atopic dermatitis and redundant variants, 321 unique VOI remain in 122 unique genes. 30 genes are shared among the 87 genes with increased and the 65 genes with decreased risk for allergic disease. 85% of genes identified earlier by common GWAS SNPs are not replicated here. Most identified genes are located in interferon ɣ and IL33 signaling pathway. These genes include already known but also new pharmacological targets, including the IL33 receptor ST2/IL1RL1, as well as TLR1, ALOX15, GSDMA, BTNL2, IL13 and IKZF3. Future pharmacological studies will need to included these VOI for stratification of the study population paving the way to individualized treatment.
Collapse
Affiliation(s)
- Matthias Wjst
- Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, München, Germany. .,Institut für KI und Informatik in der Medizin, Lehrstuhl für Medizinische Informatik, Klinikum Rechts der Isar, Grillparzerstr. 18, 81675, München, Germany.
| |
Collapse
|
44
|
Fryett JJ, Morris AP, Cordell HJ. Investigating the prediction of CpG methylation levels from SNP genotype data to help elucidate relationships between methylation, gene expression and complex traits. Genet Epidemiol 2022; 46:629-643. [PMID: 35930604 PMCID: PMC9804820 DOI: 10.1002/gepi.22496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
As popularised by PrediXcan (and related methods), transcriptome-wide association studies (TWAS), in which gene expression is imputed from single-nucleotide polymorphism (SNP) genotypes and tested for association with a phenotype, are a popular approach for investigating the role of gene expression in complex traits. Like gene expression, DNA methylation is an important biological process and, being under genetic regulation, may be imputable from SNP genotypes. Here, we investigate prediction of CpG methylation levels from SNP genotype data to help elucidate relationships between methylation, gene expression and complex traits. We start by examining how well CpG methylation can be predicted from SNP genotypes, comparing three penalised regression approaches and examining whether changing the window size improves prediction accuracy. Although methylation at most CpG sites cannot be accurately predicted from SNP genotypes, for a subset it can be predicted well. We next apply our methylation prediction models (trained using the optimal method and window size) to carry out a methylome-wide association study (MWAS) of primary biliary cholangitis. We intersect the regions identified via MWAS with those identified via TWAS, providing insight into the interplay between CpG methylation, gene expression and disease status. We conclude that MWAS has the potential to improve understanding of biological mechanisms in complex traits.
Collapse
Affiliation(s)
- James J. Fryett
- Population Health Sciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal ResearchUniversity of ManchesterManchesterUK
| | - Heather J. Cordell
- Population Health Sciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
45
|
Nasal DNA methylation at three CpG sites predicts childhood allergic disease. Nat Commun 2022; 13:7415. [PMID: 36456559 PMCID: PMC9715628 DOI: 10.1038/s41467-022-35088-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Childhood allergic diseases, including asthma, rhinitis and eczema, are prevalent conditions that share strong genetic and environmental components. Diagnosis relies on clinical history and measurements of allergen-specific IgE. We hypothesize that a multi-omics model could accurately diagnose childhood allergic disease. We show that nasal DNA methylation has the strongest predictive power to diagnose childhood allergy, surpassing blood DNA methylation, genetic risk scores, and environmental factors. DNA methylation at only three nasal CpG sites classifies allergic disease in Dutch children aged 16 years well, with an area under the curve (AUC) of 0.86. This is replicated in Puerto Rican children aged 9-20 years (AUC 0.82). DNA methylation at these CpGs additionally detects allergic multimorbidity and symptomatic IgE sensitization. Using nasal single-cell RNA-sequencing data, these three CpGs associate with influx of T cells and macrophages that contribute to allergic inflammation. Our study suggests the potential of methylation-based allergy diagnosis.
Collapse
|
46
|
Yu C, Hodge AM, Wong EM, Joo JE, Makalic E, Schmidt DF, Buchanan DD, Severi G, Hopper JL, English DR, Giles GG, Milne RL, Southey MC, Dugué PA. Does genetic predisposition modify the effect of lifestyle-related factors on DNA methylation? Epigenetics 2022; 17:1838-1847. [PMID: 35726372 PMCID: PMC9621069 DOI: 10.1080/15592294.2022.2088038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Lifestyle-related phenotypes have been shown to be heritable and associated with DNA methylation. We aimed to investigate whether genetic predisposition to tobacco smoking, alcohol consumption, and higher body mass index (BMI) moderates the effect of these phenotypes on blood DNA methylation. We calculated polygenic scores (PGS) to quantify genetic predisposition to these phenotypes using training (N = 7,431) and validation (N = 4,307) samples. Using paired genetic-methylation data (N = 4,307), gene-environment interactions (i.e., PGS × lifestyle) were assessed using linear mixed-effects models with outcomes: 1) methylation at sites found to be strongly associated with smoking (1,061 CpGs), alcohol consumption (459 CpGs), and BMI (85 CpGs) and 2) two epigenetic ageing measures, PhenoAge and GrimAge. In the validation sample, PGS explained ~1.4% (P = 1 × 10-14), ~0.6% (P = 2 × 10-7), and ~8.7% (P = 7 × 10-87) of variance in smoking initiation, alcohol consumption, and BMI, respectively. Nominally significant interaction effects (P < 0.05) were found at 61, 14, and 7 CpGs for smoking, alcohol consumption, and BMI, respectively. There was strong evidence that all lifestyle-related phenotypes were positively associated with PhenoAge and GrimAge, except for alcohol consumption with PhenoAge. There was weak evidence that the association of smoking with GrimAge was attenuated in participants genetically predisposed to smoking (interaction term: -0.022, standard error [SE] = 0.012, P = 0.058) and that the association of alcohol consumption with PhenoAge was attenuated in those genetically predisposed to drink alcohol (interaction term: -0.030, SE = 0.015, P = 0.041). In conclusion, genetic susceptibility to unhealthy lifestyles did not strongly modify the association between observed lifestyle behaviour and blood DNA methylation. Potential associations were observed for epigenetic ageing measures, which should be replicated in additional studies.
Collapse
Affiliation(s)
- Chenglong Yu
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel F Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine Universités Paris-Saclay, Uvsq, Villejuif, France
- Department of Statistics, Computer Science and Applications “G. Parenti”, University of Florence, Firenze, Italy
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Dallas R English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
47
|
Melén E, Koppelman GH, Vicedo-Cabrera AM, Andersen ZJ, Bunyavanich S. Allergies to food and airborne allergens in children and adolescents: role of epigenetics in a changing environment. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:810-819. [PMID: 35985346 DOI: 10.1016/s2352-4642(22)00215-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases affect millions of children and adolescents worldwide. In this Review, we focus on allergies to food and airborne allergens and provide examples of prevalence trends during a time when climate change is of increasing concern. Profound environmental changes have affected natural systems in terms of biodiversity loss, air pollution, and climate. We discuss the potential links between these changes and allergic diseases in children, and the clinical implications. Several exposures of relevance for allergic disease also correlate with epigenetic changes such as DNA methylation. We propose that epigenetics could be a promising tool by which exposures and hazards related to a changing environment can be captured. Epigenetics might also provide promising biomarkers and help to elucidate the mechanisms related to allergic disease initiation and progress.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology and Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, Netherlands
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | | | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
Kulkarni A, Kediya DA. A Multi-Point View of Genetic Factors Affecting Hereditary Transmissibility of Asthma. Cureus 2022; 14:e28768. [PMID: 36225476 PMCID: PMC9531716 DOI: 10.7759/cureus.28768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
|
49
|
Augustine T, Al-Aghbar MA, Al-Kowari M, Espino-Guarch M, van Panhuys N. Asthma and the Missing Heritability Problem: Necessity for Multiomics Approaches in Determining Accurate Risk Profiles. Front Immunol 2022; 13:822324. [PMID: 35693821 PMCID: PMC9174795 DOI: 10.3389/fimmu.2022.822324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is ranked among the most common chronic conditions and has become a significant public health issue due to the recent and rapid increase in its prevalence. Investigations into the underlying genetic factors predict a heritable component for its incidence, estimated between 35% and 90% of causation. Despite the application of large-scale genome-wide association studies (GWAS) and admixture mapping approaches, the proportion of variants identified accounts for less than 15% of the observed heritability of the disease. The discrepancy between the predicted heritable component of disease and the proportion of heritability mapped to the currently identified susceptibility loci has been termed the ‘missing heritability problem.’ Here, we examine recent studies involving both the analysis of genetically encoded features that contribute to asthma and also the role of non-encoded heritable characteristics, including epigenetic, environmental, and developmental aspects of disease. The importance of vertical maternal microbiome transfer and the influence of maternal immune factors on fetal conditioning in the inheritance of disease are also discussed. In order to highlight the broad array of biological inputs that contribute to the sum of heritable risk factors associated with allergic disease incidence that, together, contribute to the induction of a pro-atopic state. Currently, there is a need to develop in-depth models of asthma risk factors to overcome the limitations encountered in the interpretation of GWAS results in isolation, which have resulted in the missing heritability problem. Hence, multiomics analyses need to be established considering genetic, epigenetic, and functional data to create a true systems biology-based approach for analyzing the regulatory pathways that underlie the inheritance of asthma and to develop accurate risk profiles for disease.
Collapse
Affiliation(s)
- Tracy Augustine
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Mohammad Ameen Al-Aghbar
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Moza Al-Kowari
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Meritxell Espino-Guarch
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Nicholas van Panhuys
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
50
|
Zhu T, Brown AP, Cai LP, Quon G, Ji H. Single-Cell RNA-Seq Analysis Reveals Lung Epithelial Cell Type-Specific Responses to HDM and Regulation by Tet1. Genes (Basel) 2022; 13:genes13050880. [PMID: 35627266 PMCID: PMC9140484 DOI: 10.3390/genes13050880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Tet1 protects against house dust mite (HDM)-induced lung inflammation in mice and alters the lung methylome and transcriptome. In order to explore the role of Tet1 in individual lung epithelial cell types in HDM-induced inflammation, we established a model of HDM-induced lung inflammation in Tet1 knockout and littermate wild-type mice, then studied EpCAM+ lung epithelial cells using single-cell RNA-seq analysis. We identified eight EpCAM+ lung epithelial cell types, among which AT2 cells were the most abundant. HDM challenge altered the relative abundance of epithelial cell types and resulted in cell type-specific transcriptomic changes. Bulk and cell type-specific analysis also showed that loss of Tet1 led to the altered expression of genes linked to augmented HDM-induced lung inflammation, including alarms, detoxification enzymes, oxidative stress response genes, and tissue repair genes. The transcriptomic regulation was accompanied by alterations in TF activities. Trajectory analysis supports that HDM may enhance the differentiation of AP and BAS cells into AT2 cells, independent of Tet1. Collectively, our data showed that lung epithelial cells had common and unique transcriptomic signatures of allergic lung inflammation. Tet1 deletion altered transcriptomic networks in various lung epithelial cells, which may promote allergen-induced lung inflammation.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Anthony P. Brown
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Lucy P. Cai
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Gerald Quon
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis, CA 95616, USA;
| | - Hong Ji
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-0679
| |
Collapse
|