1
|
Tyagi K, Rai P, Gautam A, Kaur H, Kapoor S, Suttee A, Jaiswal PK, Sharma A, Singh G, Barnwal RP. Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders. Eur J Med Res 2023; 28:307. [PMID: 37649125 PMCID: PMC10469568 DOI: 10.1186/s40001-023-01293-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Coronaviruses such as Severe Acute Respiratory Syndrome coronavirus (SARS), Middle Eastern Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are associated with critical illnesses, including severe respiratory disorders. SARS-CoV-2 is the causative agent of the deadly COVID-19 illness, which has spread globally as a pandemic. SARS-CoV-2 may enter the human body through olfactory lobes and interact with the angiotensin-converting enzyme2 (ACE2) receptor, further facilitating cell binding and entry into the cells. Reports have shown that the virus can pass through the blood-brain barrier (BBB) and enter the central nervous system (CNS), resulting in various disorders. Cell entry by SARS-CoV-2 largely relies on TMPRSS2 and cathepsin L, which activate S protein. TMPRSS2 is found on the cell surface of respiratory, gastrointestinal and urogenital epithelium, while cathepsin-L is a part of endosomes. AIM The current review aims to provide information on how SARS-CoV-2 infection affects brain function.. Furthermore, CNS disorders associated with SARS-CoV-2 infection, including ischemic stroke, cerebral venous thrombosis, Guillain-Barré syndrome, multiple sclerosis, meningitis, and encephalitis, are discussed. The many probable mechanisms and paths involved in developing cerebrovascular problems in COVID patients are thoroughly detailed. MAIN BODY There have been reports that the SARS-CoV-2 virus can cross the blood-brain barrier (BBB) and enter the central nervous system (CNS), where it could cause a various illnesses. Patients suffering from COVID-19 experience a range of neurological complications, including sleep disorders, viral encephalitis, headaches, dysgeusia, and cognitive impairment. The presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of COVID-19 patients has been reported. Health experts also reported its presence in cortical neurons and human brain organoids. The possible mechanism of virus infiltration into the brain can be neurotropic, direct infiltration and cytokine storm-based pathways. The olfactory lobes could also be the primary pathway for the entrance of SARS-CoV-2 into the brain. CONCLUSIONS SARS-CoV-2 can lead to neurological complications, such as cerebrovascular manifestations, motor movement complications, and cognitive decline. COVID-19 infection can result in cerebrovascular symptoms and diseases, such as strokes and thrombosis. The virus can affect the neural system, disrupt cognitive function and cause neurological disorders. To combat the epidemic, it is crucial to repurpose drugs currently in use quickly and develop novel therapeutics.
Collapse
Affiliation(s)
- Kritika Tyagi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Prachi Rai
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Anuj Gautam
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Harjeet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Sumeet Kapoor
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | |
Collapse
|
2
|
Agirbasli M. Challenges Before Considering Full-Dose Anticoagulation in Noncritically Ill Patients With COVID-19. J Am Coll Cardiol 2023; 82:e57. [PMID: 37558379 DOI: 10.1016/j.jacc.2023.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 08/11/2023]
|
3
|
Richards GA, Smith O. Techniques for Oxygenation and Ventilation in Coronavirus Disease 2019. Semin Respir Crit Care Med 2023; 44:91-99. [PMID: 36646088 DOI: 10.1055/s-0042-1758836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper discusses mechanisms of hypoxemia and interventions to oxygenate critically ill patients with COVID-19 which range from nasal cannula to noninvasive and mechanical ventilation. Noninvasive ventilation includes continuous positive airway pressure ventilation (CPAP) and high-flow nasal cannula (HFNC) with or without proning. The evidence for each of these modalities is discussed and thereafter, when to transition to mechanical ventilation (MV). Various techniques of MV, again with and without proning, and rescue strategies which would include extra corporeal membrane oxygenation (ECMO) when it is available and permissive hypoxemia where it is not, are discussed.
Collapse
Affiliation(s)
- Guy A Richards
- Department of Critical Care, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg South Africa
| | - Oliver Smith
- Department of Critical Care and Anaesthesia, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Brock S, Jackson DB, Soldatos TG, Hornischer K, Schäfer A, Diella F, Emmert MY, Hoerstrup SP. Whole patient knowledge modeling of COVID-19 symptomatology reveals common molecular mechanisms. FRONTIERS IN MOLECULAR MEDICINE 2023; 2:1035290. [PMID: 39086962 PMCID: PMC11285600 DOI: 10.3389/fmmed.2022.1035290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 08/02/2024]
Abstract
Infection with SARS-CoV-2 coronavirus causes systemic, multi-faceted COVID-19 disease. However, knowledge connecting its intricate clinical manifestations with molecular mechanisms remains fragmented. Deciphering the molecular basis of COVID-19 at the whole-patient level is paramount to the development of effective therapeutic approaches. With this goal in mind, we followed an iterative, expert-driven process to compile data published prior to and during the early stages of the pandemic into a comprehensive COVID-19 knowledge model. Recent updates to this model have also validated multiple earlier predictions, suggesting the importance of such knowledge frameworks in hypothesis generation and testing. Overall, our findings suggest that SARS-CoV-2 perturbs several specific mechanisms, unleashing a pathogenesis spectrum, ranging from "a perfect storm" triggered by acute hyper-inflammation, to accelerated aging in protracted "long COVID-19" syndromes. In this work, we shortly report on these findings that we share with the community via 1) a synopsis of key evidence associating COVID-19 symptoms and plausible mechanisms, with details presented within 2) the accompanying "COVID-19 Explorer" webserver, developed specifically for this purpose (found at https://covid19.molecularhealth.com). We anticipate that our model will continue to facilitate clinico-molecular insights across organ systems together with hypothesis generation for the testing of potential repurposing drug candidates, new pharmacological targets and clinically relevant biomarkers. Our work suggests that whole patient knowledge models of human disease can potentially expedite the development of new therapeutic strategies and support evidence-driven clinical hypothesis generation and decision making.
Collapse
Affiliation(s)
| | | | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochschule, University of Applied Science, Heidelberg, Germany
| | | | | | | | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Battaglini D, Al-Husinat L, Normando AG, Leme AP, Franchini K, Morales M, Pelosi P, Rocco PR. Personalized medicine using omics approaches in acute respiratory distress syndrome to identify biological phenotypes. Respir Res 2022; 23:318. [PMID: 36403043 PMCID: PMC9675217 DOI: 10.1186/s12931-022-02233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
In the last decade, research on acute respiratory distress syndrome (ARDS) has made considerable progress. However, ARDS remains a leading cause of mortality in the intensive care unit. ARDS presents distinct subphenotypes with different clinical and biological features. The pathophysiologic mechanisms of ARDS may contribute to the biological variability and partially explain why some pharmacologic therapies for ARDS have failed to improve patient outcomes. Therefore, identifying ARDS variability and heterogeneity might be a key strategy for finding effective treatments. Research involving studies on biomarkers and genomic, metabolomic, and proteomic technologies is increasing. These new approaches, which are dedicated to the identification and quantitative analysis of components from biological matrixes, may help differentiate between different types of damage and predict clinical outcome and risk. Omics technologies offer a new opportunity for the development of diagnostic tools and personalized therapy in ARDS. This narrative review assesses recent evidence regarding genomics, proteomics, and metabolomics in ARDS research.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Ana Gabriela Normando
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Adriana Paes Leme
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Kleber Franchini
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Marcelo Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Marsán-Suárez V, Casado-Hernández I, Hernández-Ramos E, Díaz-Domínguez G, Triana-Marrero Y, Duarte-Pérez Y, Miranda-Navarro J, Bringas-Pérez R, Simón-Pita AM, Hernández-Rego YDLM, Miguel-Morales M, Patria-Sánchez M, Zamora-González Y, Romero-Díaz Y, Aquino-Rojas S, González-Díaz I, Merlín-Linares JC, Leyva-Rodríguez A, Rodríguez-Pérez M, Benito-Caballero O, Navarro-Mariño JA, Elejalde-Larrinaga AR, Elejalde-Tamayo C, Tam-Rey LM, Ruiz-Villegas L, de la Guardia-Peña OM, Jerez-Barcel Y, Chang-Monteagudo A, Lam-Díaz RM, Macías-Abraham CM. Biomarkers of sequela in adult patients convalescing from COVID-19. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2022; 4:36-53. [PMID: 36404876 PMCID: PMC9645947 DOI: 10.1016/j.abst.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/18/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Different biomarkers for SARS-CoV-2 have been linked to detection, diagnosis, treatment, disease progression, and development of new drugs and vaccines. The objective of this research was to evaluate various hematological, biochemicals, immunological, radiological and spirometric parameters in 20 adult patients convalescing from COVID-19 and their possible relationship with the clinical course of the disease. The frequencies of categorical variables were compared using the chi-square and Fisher's exact test. The levels of statistical significance were denoted in each figure legend. Two-dimensional clustering analysis was performed using MeV software from TIGR. The tests with P value of ≤ 0.05 were considered statistically significant. Most of the patients studied presented alterations in dissimilar laboratory, radiological and spirometric parameters, which were related to the clinical evolution of the disease. The results obtained show that certain hematological, biochemical, immunological and radiological parameters can be considered as biomarkers of sequela in adult COVID-19 patients, which allows their stratification, according to the degree of involvement or sequela, into three groups: I (mild degree of involvement or sequela), without lung lesions on computerized axial tomography (CT scan) and high values of IgG, C3 and hemoglobin, II (moderate degree of involvement or sequel), without lung lesions on CT scan, characterized by high levels of CD3+/CD4+ T lymphocytes and the rest of the variables with low values and III (severe degree of involvement or sequela), with lung lesions on CT scan and high values of erythrocyte sedimentation rate, monocytes and neutrophils, associated with lymphopenia and decreased concentrations of IgG and C3.
Collapse
Affiliation(s)
- Vianed Marsán-Suárez
- Dr. in Medical Sciences, 1st and 2nd Degree Specialist in Immunology, Associated Professor, Assistant Researcher, Immunochemistry and Immunology Department, Institute of Hematology and Immunology, Cuba
| | - Imilla Casado-Hernández
- Degree in Biology, Assistant Professor, Assistant Researcher, Immunochemistry and Immunology Department, Institute of Hematology and Immunology, Cuba
| | - Elizabeth Hernández-Ramos
- Degree in Biochemistry and Molecular Biology, Immunochemistry and Immunology Department, Institute of Hematology and Immunology, Cuba
| | - Gabriela Díaz-Domínguez
- Degree in Biochemistry and Molecular Biology, Assistant Researcher, Department of Immunochemistry and Immunology, Institute of Hematology and Immunology, Cuba
| | - Yenisey Triana-Marrero
- 1st Degree Specialist Physician in Comprehensive General Medicine and Immunology, Instructor Teacher, Immunochemistry and Immunology Department, Institute of Hematology and Immunology, Cuba
| | - Yaneisy Duarte-Pérez
- 1st Degree Specialist Physician in Comprehensive General Medicine and Immunology, Instructor Teacher, Immunochemistry and Immunology Department, Institute of Hematology and Immunology, Cuba
| | - Jamilet Miranda-Navarro
- Assistant Researcher, Master of Science in Mathematics Bioinformatics Department, Center for Genetic Engineering and Biotechnology (CIGB), Cuba
| | - Ricardo Bringas-Pérez
- Doctor in Biological Sciences, Professor and Senior Researcher, Bioinformatics Department, Center for Genetic Engineering and Biotechnology (CIGB), Cuba
| | - Ana María Simón-Pita
- Graduate in Health Technology, Assistant Teacher, Assistant Researcher, Department of Morphology and Pathological Anatomy, Institute of Hematology and Immunology, Cuba
| | | | - Maydelín Miguel-Morales
- Degree in Biochemistry, Associated Research, Assistant Professor, Enzyme and Haemostasis Department, Institute of Hematology and Immunology, Cuba
| | - Mysleidis Patria-Sánchez
- Graduate in Health Technology, Enzyme e and Haemostasis Department, Institute of Hematology and Immunology, Cuba
| | - Yaneth Zamora-González
- Graduate in Health Technology, Assistant Teacher, Assistant Researcher, Enzyme and Haemostasis Department, Institute of Hematology and Immunology, Cuba
| | - Yisenia Romero-Díaz
- Degree in Biochemistry and Molecular Biology, Assistant Researcher, Immunohematology Department, Institute of Hematology and Immunology, Cuba
| | - Suharmi Aquino-Rojas
- Degree in Health Technology, Transfusion Medicine Specialist, Assistant Teacher, Immunohematology Department, Institute of Hematology and Immunology, Cuba
| | - Ihosvani González-Díaz
- Graduate in Clinical Laboratory, Immunohematology Department, Institute of Hematology and Immunology, Cuba
| | - Julio César Merlín-Linares
- Degree in Biochemistry, Assistant Researcher, Immunochemistry and Immunology Department, Institute of Hematology and Immunology, Cuba
| | - Aymara Leyva-Rodríguez
- Degree in Biology, Aspiring Researcher, Immunochemistry and Immunology Department, Institute of Hematology and Immunology, Cuba
| | - Maylín Rodríguez-Pérez
- 1th and 2nd Degree Specialist Physician in Microbiology, Assistant Researcher, Assistant Teacher, Master in Parasitology, Microbiology Department, Institute of Hematology and Immunology, Cuba
| | - Onasi Benito-Caballero
- 1th Degree Specialist Physician in Comprehensive General Medicine and Imaging, Imaging Department, Institute of Hematology and Immunology, Cuba
| | - José Antonio Navarro-Mariño
- 1th and 2nd Degree Specialist in Comprehensive General Medicine and 1st in Imaging, Master in Diagnostic Media, Imaging Department, Institute of Hematology and Immunology, Cuba
| | - Angel René Elejalde-Larrinaga
- 1th and 2nd Degree Specialist in Pneumology, Assistant Professor, Assistant Researcher, Master in Public Health and Population Aging, Imaging Department, Institute of Oncology and Radiobiology, Cuba
| | - Claudia Elejalde-Tamayo
- 1th Degree Specialist Physician in Comprehensive General Medicine and Pulmonology, Spirometry Department, "Clinical Surgical University Hospital" Comandante Manuel Fajardo, Cuba
| | - Lázara Minerva Tam-Rey
- Degree in Health Technology, Aspiring Researcher, External Services Department, Institute of Hematology and Immunology, Cuba
| | - Laura Ruiz-Villegas
- Degree in Biology, Aspiring Researcher, Coordinator of Clinical Trials, Department of Teaching and Research, Institute of Hematology and Immunology, Cuba
| | - Odalis María de la Guardia-Peña
- Medical Specialist of 1st and 2nd Degree in Immunology, Assistant Professor and Researcher, External Services Department, Institute of Hematology and Immunology, Cuba
| | - Yanet Jerez-Barcel
- 1th Degree Specialist Physician in Comprehensive General Medicine and Immunology, Instructor Teacher, Blood Bank Department, Institute of Hematology and Immunology, Cuba
| | - Arturo Chang-Monteagudo
- Specialist Physician of 1st Degree in Comprehensive General Medicine and 2nd Degree in Immunology, Master in Biochemistry, Mention in Immunology, Assistant Professor and Researcher, Technical Deputy Director, Institute of Hematology and Immunology, Cuba
| | - Rosa María Lam-Díaz
- Medical Specialist in Biostatistics, Assistant Researcher, Department of Teaching and Research, Institute of Hematology and Immunology, Cuba
| | - Consuelo Milagros Macías-Abraham
- Dr. in Medical Sciences, 1st and 2nd Degree Specialist in Immunology, Professor and Senior Researcher, Director of the Institute of Hematology and Immunology, Cuba
| |
Collapse
|
7
|
Leligdowicz A, Harhay MO, Calfee CS. Immune Modulation in Sepsis, ARDS, and Covid-19 - The Road Traveled and the Road Ahead. NEJM EVIDENCE 2022; 1:EVIDra2200118. [PMID: 38319856 DOI: 10.1056/evidra2200118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Immune Modulation in Sepsis, ARDS, and Covid-19Leligdowicz et al. consider the history and future of immunomodulating therapies in sepsis and ARDS, including ARDS due to Covid-19, and remark on the larger challenge of clinical research on therapies for syndromes with profound clinical and biologic heterogeneity.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Department of Medicine, Division of Critical Care Medicine, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Michael O Harhay
- Clinical Trials Methods and Outcomes Lab, Palliative and Advanced Illness Research (PAIR) Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Carolyn S Calfee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco
| |
Collapse
|
8
|
Agirbasli M. The effects of antihypertensive medications on severity and outcomes of COVID19. J Hum Hypertens 2022; 36:875-879. [PMID: 35810205 PMCID: PMC9281571 DOI: 10.1038/s41371-022-00722-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mehmet Agirbasli
- Department of Cardiology, School of Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey.
| |
Collapse
|
9
|
Sefik E, Israelow B, Mirza H, Zhao J, Qu R, Kaffe E, Song E, Halene S, Meffre E, Kluger Y, Nussenzweig M, Wilen CB, Iwasaki A, Flavell RA. A humanized mouse model of chronic COVID-19. Nat Biotechnol 2022; 40:906-920. [PMID: 34921308 PMCID: PMC9203605 DOI: 10.1038/s41587-021-01155-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that can present as an uncontrolled, hyperactive immune response, causing severe immunological injury. Existing rodent models do not recapitulate the sustained immunopathology of patients with severe disease. Here we describe a humanized mouse model of COVID-19 that uses adeno-associated virus to deliver human ACE2 to the lungs of humanized MISTRG6 mice. This model recapitulates innate and adaptive human immune responses to severe acute respiratory syndrome coronavirus 2 infection up to 28 days after infection, with key features of chronic COVID-19, including weight loss, persistent viral RNA, lung pathology with fibrosis, a human inflammatory macrophage response, a persistent interferon-stimulated gene signature and T cell lymphopenia. We used this model to study two therapeutics on immunopathology, patient-derived antibodies and steroids and found that the same inflammatory macrophages crucial to containing early infection later drove immunopathology. This model will enable evaluation of COVID-19 disease mechanisms and treatments.
Collapse
Affiliation(s)
- Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Haris Mirza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jun Zhao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Apostolidis SA, Sarkar A, Giannini HM, Goel RR, Mathew D, Suzuki A, Baxter AE, Greenplate AR, Alanio C, Abdel-Hakeem M, Oldridge DA, Giles JR, Wu JE, Chen Z, Huang YJ, Belman J, Pattekar A, Manne S, Kuthuru O, Dougherty J, Weiderhold B, Weisman AR, Ittner CAG, Gouma S, Dunbar D, Frank I, Huang AC, Vella LA, Reilly JP, Hensley SE, Rauova L, Zhao L, Meyer NJ, Poncz M, Abrams CS, Wherry EJ. Signaling Through FcγRIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19. Front Immunol 2022; 13:834988. [PMID: 35309299 PMCID: PMC8928747 DOI: 10.3389/fimmu.2022.834988] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.
Collapse
Affiliation(s)
- Sokratis A. Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Amrita Sarkar
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Heather M. Giannini
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Aae Suzuki
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Amy E. Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Cécile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mohamed Abdel-Hakeem
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Derek A. Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Josephine R. Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Jennifer E. Wu
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Zeyu Chen
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Yinghui Jane Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Jonathan Belman
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ajinkya Pattekar
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Brittany Weiderhold
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Ariel R. Weisman
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Caroline A. G. Ittner
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Debora Dunbar
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Laura A. Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - John P. Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Scott E. Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lubica Rauova
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mortimer Poncz
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
11
|
Resistin and IL-15 as Predictors of Invasive Mechanical Ventilation in COVID-19 Pneumonia Irrespective of the Presence of Obesity and Metabolic Syndrome. J Pers Med 2022; 12:jpm12030391. [PMID: 35330391 PMCID: PMC8955294 DOI: 10.3390/jpm12030391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
The cytokine signature present in COVID-19 could provide information on the pathogenic mechanisms of the disease and could identify possible prognostic biomarkers and possible therapeutic targets. In this longitudinal work, we studied the clinical and biochemical parameters and circulating cytokine levels of 146 patients at the time of admission for COVID-19 and 4–6 weeks later. The main objective of this study was to determine whether basal cytokines could be early prognostic biomarkers of COVID-19, and also to analyze the impact of comorbidities, such as obesity or metabolic syndrome (MS), in the cytokine profile. The levels of most inflammatory cytokines were elevated on admission in relation to the level that was reached 4–6 weeks later, except for IL-1β, which was lower on admission; these levels were irrespective of the presence of obesity or MS since the cytokine storm masks these inflammatory processes. Among the cytokines analyzed, those that correlated with a worse prognosis of COVID-19 were resistin, IL-6, IL-8, IL-15, MCP-1 and TNF-α. Specifically, resistin and IL-15 are the best early predictors of requiring invasive ventilation. Therefore, resistin and IL-15 should be included in the personalized treatment decision algorithm of patients with COVID-19.
Collapse
|
12
|
Abstract
Purpose/Aims Healthcare workers internationally continue to look for innovative ways to improve patient outcomes and optimize resource utilization during the coronavirus disease 2019 (COVID-19) pandemic. Proning awake, nonintubated patients has been suggested as a potential intervention in critical care. The aim of this study is to provide a multidisciplinary approach to safely perform awake self-prone positioning in the acute care setting. Design This is a prospective, descriptive study. Method Patients with COVID-19 were screened and enrolled within 48 hours of a positive test. After approval from the primary team, patients were provided education materials by a multidisciplinary team on the self-prone intervention. Visual cues were placed in the room. Patients were requested to maintain a diary of hours of prone positioning. Patients' baseline characteristics, admission vitals, daily oxygen requirements, and level of care were collected. Results Of 203 patients screened, 31 were enrolled. No pressure-related injury or catheter (intravenous or urinary) displacement was identified. Eighty-one percent of patients spent less than 8 hours a day in prone positioning. Among patients enrolled, none required invasive ventilation or died. Conclusions Awake self-proning can be performed safely in patients given a diagnosis of COVID-19 in the acute care setting with a multidisciplinary team.
Collapse
|
13
|
Thrombosis and fibrosis: mutually inclusive targets to combat in COVID-19. Future Sci OA 2022; 8:FSO777. [PMID: 35194516 PMCID: PMC8687043 DOI: 10.2144/fsoa-2021-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
|
14
|
PEHLİVANLAR KÜÇÜK M, KÜÇÜK AO, PEHLİVANLAR A, AYAYDIN MÜRTEZAOĞLU S, ÇOBAN K, KILIÇ G, AYÇİÇEK O, ÖZTUNA F, BÜLBÜL Y, ÖZLÜ T. Effect of tocilizumab on intensive care patients with Covid-19 pneumonia, a retrospective cohort study. Turk J Med Sci 2022; 52:39-49. [PMID: 36161598 PMCID: PMC10734863 DOI: 10.3906/sag-2106-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/22/2022] [Accepted: 11/09/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND In this study, the efficacy of an IL-6 antagonist, Tocilizumab, administered in the early period was studied in intensive care patients with COVID-19 pneumonia followed by hypoxic and systemic inflammation not receiving mechanical ventilation support. METHODS Patients with COVID-19 pneumonia who have signs of hypoxia and systemic inflammation and/or who have acute bilateral infiltrates on chest radiograph and who received tocilizumab treatment were compared with the patients who received standard medical therapy. Patients who were followed up with COVID-19 pneumonia and respiratory failure between March 2020 and March 2021 were retrospectively evaluated in the study. A 400 mg - 800 mg iv dose (depending on weight) of Tocilizumab was administered. The primary endpoint was determined as intensive care unit mortality. RESULTS A total of 213 patients who were admitted with respiratory failure associated with COVID-19 to our third-level intensive care unit were evaluated. Of these patients, the study was conducted with 50 patients in the tocilizumab treatment group and 92 patients in the standard treatment group. During the intensive care period, 26 patients (28.3%) in the standard treatment group and 12 patients (24%) in the group receiving tocilizumab died. The adjusted hazard ratio for mortality in the tocilizumab group was 0.39 (95% confidence interval [CI], 0.186 to 0.808; p = 0.001 by log-rank test). During the intensive care period, 22 patients (24.8%) in the standart treatment group and 16 patients (32%) in the tocilizumab group were intubated. The adjusted hazard ratio for a primary outcome intubation in the tocilizumab group was 0.71 (95% confidence interval [CI], 0.355 to 1.424; p = 0.184 by log-rank test).
Collapse
Affiliation(s)
- Mehtap PEHLİVANLAR KÜÇÜK
- Department of Chest Diseases, Division Of Intensive Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Ahmet Oğuzhan KÜÇÜK
- Department of Anesthesiology and Reanimation, Division of Intensive Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Ayşegül PEHLİVANLAR
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | | | - Kadir ÇOBAN
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Gamze KILIÇ
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Olcay AYÇİÇEK
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Funda ÖZTUNA
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Yılmaz BÜLBÜL
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Tevfik ÖZLÜ
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| |
Collapse
|
15
|
Collins SP, Chappell MC, Files DC. The Renin-Angiotensin-Aldosterone System in COVID-19-related and Non-COVID-19-related Acute Respiratory Distress Syndrome: Not So Different after All? Am J Respir Crit Care Med 2021; 204:1007-1008. [PMID: 34473935 PMCID: PMC8663005 DOI: 10.1164/rccm.202108-1904ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sean P Collins
- Department of Emergency Medicine Vanderbilt University Medical Center Nashville, Tennessee
| | - Mark C Chappell
- Division of Hypertension Wake Forest University School of Medicine Winston Salem, North Carolina
| | - D Clark Files
- Division of Pulmonary and Critical Care Medicine Wake Forest University School of Medicine Winston Salem, North Carolina
| |
Collapse
|
16
|
D’Amico R, Monaco F, Siracusa R, Cordaro M, Fusco R, Peritore AF, Gugliandolo E, Crupi R, Cuzzocrea S, Di Paola R, Impellizzeri D, Genovese T. Ultramicronized Palmitoylethanolamide in the Management of Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Int J Mol Sci 2021; 22:ijms222111388. [PMID: 34768820 PMCID: PMC8583705 DOI: 10.3390/ijms222111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a severe condition characterized by the systemic formation of microthrombi complicated with bleeding tendency and organ dysfunction. In the last years, it represents one of the most frequent consequences of coronavirus disease 2019 (COVID-19). The pathogenesis of DIC is complex, with cross-talk between the coagulant and inflammatory pathways. The objective of this study is to investigate the anti-inflammatory action of ultramicronized palmitoylethanolamide (um-PEA) in a lipopolysaccharide (LPS)-induced DIC model in rats. Experimental DIC was induced by continual infusion of LPS (30 mg/kg) for 4 h through the tail vein. Um-PEA (30 mg/kg) was given orally 30 min before and 1 h after the start of intravenous infusion of LPS. Results showed that um-PEA reduced alteration of coagulation markers, as well as proinflammatory cytokine release in plasma and lung samples, induced by LPS infusion. Furthermore, um-PEA also has the effect of preventing the formation of fibrin deposition and lung damage. Moreover, um-PEA was able to reduce the number of mast cells (MCs) and the release of its serine proteases, which are also necessary for SARS-CoV-2 infection. These results suggest that um-PEA could be considered as a potential therapeutic approach in the management of DIC and in clinical implications associated to coagulopathy and lung dysfunction, such as COVID-19.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Francesco Monaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy; (F.M.); (M.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy; (F.M.); (M.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| |
Collapse
|
17
|
Li J, Zhang K, Wu D, Ren L, Chu X, Qin C, Han X, Hang T, Xu Y, Yang L, Yin L. Liposomal remdesivir inhalation solution for targeted lung delivery as a novel therapeutic approach for COVID-19. Asian J Pharm Sci 2021; 16:772-783. [PMID: 34703490 PMCID: PMC8529908 DOI: 10.1016/j.ajps.2021.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Strong infectivity enables coronavirus disease 2019 (COVID-19) to rage throughout the world. Moreover, the lack of drugs with definite therapeutic effects further aggravates the spread of the pandemic. Remdesivir is one of the most promising anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. However, the limited clinical effects make its therapeutic effect controversial, which may result from the poor accumulation and activation of remdesivir in the lung. Therefore, we developed lyophilized remdesivir liposomes (Rdv-lips) which can be reconstituted as liposomal aerosol for pulmonary delivery to improve the in vivo behavior of existing remdesivir cyclodextrin conclusion compound (Rdv-cyc) injections. Liposome encapsulation endowed remdesivir with much higher solubility and better biocompatibility. The in vitro liposomal aerosol characterization demonstrated that Rdv-lips possessed a mass median aerodynamic diameter of 4.118 µm and fine particle fraction (<5 µm) higher than 50%, indicating good pulmonary delivery properties. Compared to the Rdv-cyc intravenous injection group, the Rdv-lips inhalation group displayed a nearly 100-fold increase in the remdesivir-active metabolite nucleotide triphosphate (NTP) concentration and better NTP accumulation in the lung than the Rdv-cyc inhalation group. A faster transition from remdesivir to NTP of Rdv-lips (inhalation) could also be observed due to better cell uptake. Compared to other preparations, the superiority of Rdv-lips was further evidenced by the results of an in vivo safety study, with little possibility of inducing inflammation. In conclusion, Rdv-lips for pulmonary delivery will be a potent formulation to improve the in vivo behavior of remdesivir and exert better therapeutic effects in COVID-19 treatment.
Collapse
Affiliation(s)
- Jingjing Li
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Kai Zhang
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wu
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lianjie Ren
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Chu
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Qin
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaopeng Han
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Taijun Hang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
- Corresponding author.
| | - Lifang Yin
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
- Corresponding author.
| |
Collapse
|
18
|
Laudanski K, Okeke T, Hajj J, Siddiq K, Rader DJ, Wu J, Susztak K. Longitudinal urinary biomarkers of immunological activation in covid-19 patients without clinically apparent kidney disease versus acute and chronic failure. Sci Rep 2021; 11:19675. [PMID: 34608231 PMCID: PMC8490434 DOI: 10.1038/s41598-021-99102-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Kidney function is affected in COVID-19, while kidney itself modulates the immune response. Here, hypothesize if COVID-19 urine biomarkers level can assess immune activation vs. clinical trajectory. Considering the kidney's critical role in modulating the immune response, we sought to analyze activation markers in patients with pre-existing dysfunction. This was a cross-sectional study of 68 patients. Blood and urine were collected within 48 h of hospital admission (H1), followed by 96 h (H2), seven days (H3), and up to 25 days (H4) from admission. Serum level ferritin, procalcitonin, IL-6 assessed immune activation overall, while the response to viral burden was gauged with serum level of spike protein and αspike IgM and IgG. 39 markers correlated highly between urine and blood. Age and race, and to a lesser extend gender, differentiated several urine markers. The burden of pre-existing conditions correlated with urine DCN, CAIX and PTN, but inversely with IL-5 or MCP-4. Higher urinary IL-12 and lower CAIX, CCL23, IL-15, IL-18, MCP-1, MCP-3, MUC-16, PD-L1, TNFRS12A, and TNFRS21 signified non-survivors. APACHE correlated with urine TNFRS12, PGF, CAIX, DCN, CXCL6, and EGF. Admission urine LAG-3 and IL-2 predicted death. Pre-existing kidney disease had a unique pattern of urinary inflammatory markers. Acute kidney injury was associated, and to a certain degree, predicted by IFNg, TWEAK, MMP7, and MUC-16. Remdesavir had a more profound effect on the urine biomarkers than steroids. Urinary biomarkers correlated with clinical status, kidney function, markers of the immune system activation, and probability of demise in COVID-19.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, The University of Pennsylvania, Philadelphia, PA, USA.
- Leonard Davis Institute for Healthcare Economics, The University of Pennsylvania, Philadelphia, PA, USA.
| | - Tony Okeke
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jihane Hajj
- School of Nursing, Widener University, Philadelphia, PA, USA
| | - Kumal Siddiq
- College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Junnan Wu
- Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Division of Renal Electrolyte and Hypertension, Department of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Division of Renal Electrolyte and Hypertension, Department of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Khalil A, Tazeddinova D, Aljoumaa K, Kazhmukhanbetkyzy ZA, Orazov A, Toshev AD. Carotenoids: Therapeutic Strategy in the Battle against Viral Emerging Diseases, COVID-19: An Overview. Prev Nutr Food Sci 2021; 26:241-261. [PMID: 34737985 PMCID: PMC8531419 DOI: 10.3746/pnf.2021.26.3.241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Carotenoids, a group of phytochemicals, are naturally found in the Plant kingdom, particularly in fruits, vegetables, and algae. There are more than 600 types of carotenoids, some of which are thought to prevent disease, mainly through their antioxidant properties. Carotenoids exhibit several biological and pharmaceutical benefits, such as anti-inflammatory, anti-cancer, and immunity booster properties, particularly as some carotenoids can be converted into vitamin A in the body. However, humans cannot synthesize carotenoids and need to obtain them from their diets or via supplementation. The emerging zoonotic virus severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19), originated in bats, and was transmitted to humans. COVID-19 continues to cause devastating international health problems worldwide. Therefore, natural preventive therapeutic strategies from bioactive compounds, such as carotenoids, should be appraised for strengthening physiological functions against emerging viruses. This review summarizes the most important carotenoids for human health and enhancing immunity, and their potential role in COVID-19 and its related symptoms. In conclusion, promising roles of carotenoids as treatments against emerging disease and related symptoms are highlighted, most of which have been heavily premeditated in studies conducted on several viral infections, including COVID-19. Further in vitro and in vivo research is required before carotenoids can be considered as potent drugs against such emerging diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Diana Tazeddinova
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Khaled Aljoumaa
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | | | - Ayan Orazov
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan University, Uralsk 090009, The Republic of Kazakhstan
| | | |
Collapse
|
20
|
Middleton EA, Zimmerman GA. COVID-19-Associated Acute Respiratory Distress Syndrome: Lessons from Tissues and Cells. Crit Care Clin 2021; 37:777-793. [PMID: 34548133 PMCID: PMC8149203 DOI: 10.1016/j.ccc.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Program in Molecular Medicine, University of Utah School of Medicine, Eccles Institute of Human Genetics, 15 North 2030 East, Room #4220, Salt Lake City, UT 84112, USA
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Program in Molecular Medicine, University of Utah School of Medicine, Eccles Institute of Human Genetics, 15 North 2030 East, Room #4220, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Woo MS, Haag F, Nierhaus A, Jarczak D, Roedl K, Mayer C, Brehm TT, van der Meirschen M, Hennigs A, Christopeit M, Fiedler W, Karagiannis P, Burdelski C, Schultze A, Huber S, Addo MM, Schmiedel S, Friese MA, Kluge S, Schulze zur Wiesch J. Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19. iScience 2021; 24:102752. [PMID: 34179733 PMCID: PMC8213514 DOI: 10.1016/j.isci.2021.102752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a respiratory tract infection that can affect multiple organ systems. Predicting the severity and clinical outcome of individual patients is a major unmet clinical need that remains challenging due to intra- and inter-patient variability. Here, we longitudinally profiled and integrated more than 150 clinical, laboratory, and immunological parameters of 173 patients with mild to fatal COVID-19. Using systems biology, we detected progressive dysregulation of multiple parameters indicative of organ damage that correlated with disease severity, particularly affecting kidneys, hepatobiliary system, and immune landscape. By performing unsupervised clustering and trajectory analysis, we identified T and B cell depletion as early indicators of a complicated disease course. In addition, markers of hepatobiliary damage emerged as robust predictor of lethal outcome in critically ill patients. This allowed us to propose a novel clinical COVID-19 SeveriTy (COST) score that distinguishes complicated disease trajectories and predicts lethal outcome in critically ill patients.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Friedrich Haag
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Kevin Roedl
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas T. Brehm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Center for Infection Research (DZIF), University Medical Center Hamburg-Eppendorf, Lübeck - Borstel - Riems, Hamburg, Germany
| | - Marc van der Meirschen
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Annette Hennigs
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Panagiotis Karagiannis
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christoph Burdelski
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexander Schultze
- Department of Emergency Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marylyn M. Addo
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Center for Infection Research (DZIF), University Medical Center Hamburg-Eppendorf, Lübeck - Borstel - Riems, Hamburg, Germany
| | - Stefan Schmiedel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Center for Infection Research (DZIF), University Medical Center Hamburg-Eppendorf, Lübeck - Borstel - Riems, Hamburg, Germany
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | |
Collapse
|
22
|
Laudanski K, Jihane H, Antalosky B, Ghani D, Phan U, Hernandez R, Okeke T, Wu J, Rader D, Susztak K. Unbiased Analysis of Temporal Changes in Immune Serum Markers in Acute COVID-19 Infection With Emphasis on Organ Failure, Anti-Viral Treatment, and Demographic Characteristics. Front Immunol 2021; 12:650465. [PMID: 34177897 PMCID: PMC8226183 DOI: 10.3389/fimmu.2021.650465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Identification of novel immune biomarkers to gauge the underlying pathology and severity of COVID-19 has been difficult due to the lack of longitudinal studies. Here, we analyzed serum collected upon COVID-19 admission (t1), 48 hours (t2), and seven days later (t3) using Olink proteomics and correlated to clinical, demographics, and therapeutic data. Older age positively correlated with decorin, pleiotrophin, and TNFRS21 but inversely correlated with chemokine (both C-C and C-X-C type) ligands, monocyte attractant proteins (MCP) and TNFRS14. The burden of pre-existing conditions was positively correlated with MCP-4, CAIX, TWEAK, TNFRS12A, and PD-L2 levels. Individuals with COVID-19 demonstrated increased expression of several chemokines, most notably from the C-C and C-X-C family, as well as MCP-1 and MCP-3 early in the course of the disease. Similarly, deceased individuals had elevated MCP-1 and MCP-3 as well as Gal-9 serum levels. LAMP3, GZMB, and LAG3 at admission correlated with mortality. Only CX3CL13 and MCP-4 correlated positively with APACHE score and length of stay, while decorin, MUC-16 and TNFRSF21 with being admitted to the ICU. We also identified several organ-failure-specific immunological markers, including those for respiratory (IL-18, IL-15, Gal-9) or kidney failure (CD28, VEGF). Treatment with hydroxychloroquine, remdesivir, convalescent plasma, and steroids had a very limited effect on the serum variation of biomarkers. Our study identified several potential targets related to COVID-19 heterogeneity (MCP-1, MCP-3, MCP-4, TNFR superfamily members, and programmed death-ligand), suggesting a potential role of these molecules in the pathology of COVID-19.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, The University of Pennsylvania, Philadelphia, PA, United States
- Leonard Davis Institute for Healthcare Economics, The University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA, United States
| | - Hajj Jihane
- School of Nursing, Widener University, Philadelphia, PA, United States
| | - Brook Antalosky
- College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Danyal Ghani
- College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Uyen Phan
- College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Ruth Hernandez
- College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Tony Okeke
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States
| | - Junnan Wu
- Department of Genetics, The University of Pennsylvania, Philadelphia, PA, United States
- Department of Nephrology, The University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Rader
- Department of Genetics, The University of Pennsylvania, Philadelphia, PA, United States
- Department of Nephrology, The University of Pennsylvania, Philadelphia, PA, United States
| | - Katalin Susztak
- Department of Genetics, The University of Pennsylvania, Philadelphia, PA, United States
- Department of Nephrology, The University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol 2021; 17:315-332. [PMID: 33903743 PMCID: PMC8072739 DOI: 10.1038/s41584-021-00608-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 01/08/2023]
Abstract
Immune-related manifestations are increasingly recognized conditions in patients with COVID-19, with around 3,000 cases reported worldwide comprising more than 70 different systemic and organ-specific disorders. Although the inflammation caused by SARS-CoV-2 infection is predominantly centred on the respiratory system, some patients can develop an abnormal inflammatory reaction involving extrapulmonary tissues. The signs and symptoms associated with this excessive immune response are very diverse and can resemble some autoimmune or inflammatory diseases, with the clinical phenotype that is seemingly influenced by epidemiological factors such as age, sex or ethnicity. The severity of the manifestations is also very varied, ranging from benign and self-limiting features to life-threatening systemic syndromes. Little is known about the pathogenesis of these manifestations, and some tend to emerge within the first 2 weeks of SARS-CoV-2 infection, whereas others tend to appear in a late post-infectious stage or even in asymptomatic patients. As the body of evidence comprises predominantly case series and uncontrolled studies, diagnostic and therapeutic decision-making is unsurprisingly often based on the scarcely reported experience and expert opinion. Additional studies are required to learn about the mechanisms involved in the development of these manifestations and apply that knowledge to achieve early diagnosis and the most suitable therapy.
Collapse
Affiliation(s)
- Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD, Hospital Clínic, Barcelona, Spain.
- Department of Medicine, University of Barcelona, Barcelona, Spain.
| | - Pilar Brito-Zerón
- Department of Internal Medicine, Hospital CIMA-Sanitas, Barcelona, Spain
| | - Xavier Mariette
- Department of Rheumatology, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-Saclay, INSERM, Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| |
Collapse
|
24
|
Apostolidis SA, Sarkar A, Giannini HM, Goel RR, Mathew D, Suzuki A, Baxter AE, Greenplate AR, Alanio C, Abdel-Hakeem M, Oldridge DA, Giles J, Wu JE, Chen Z, Huang YJ, Pattekar A, Manne S, Kuthuru O, Dougherty J, Weiderhold B, Weisman AR, Ittner CAG, Gouma S, Dunbar D, Frank I, Huang AC, Vella LA, The UPenn COVID Processing Unit, Reilly JP, Hensley SE, Rauova L, Zhao L, Meyer NJ, Poncz M, Abrams CS, Wherry EJ. Signaling through FcγRIIA and the C5a-C5aR pathway mediates platelet hyperactivation in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.01.442279. [PMID: 33972943 PMCID: PMC8109205 DOI: 10.1101/2021.05.01.442279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibit higher basal levels of activation measured by P-selectin surface expression, and have a poor functional reserve upon in vitro stimulation. Correlating clinical features to the ability of plasma from COVID-19 patients to stimulate control platelets identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions, thus identifying these potentially actionable pathways as central for platelet activation and/or vascular complications in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect. These studies have implications for the role of platelet hyperactivation in complications associated with SARS-CoV-2 infection. COVER ILLUSTRATION ONE-SENTENCE SUMMARY The FcγRIIA and C5a-C5aR pathways mediate platelet hyperactivation in COVID-19.
Collapse
Affiliation(s)
- Sokratis A. Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amrita Sarkar
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heather M. Giannini
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aae Suzuki
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Amy E. Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cécile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mohamed Abdel-Hakeem
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek A. Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jennifer E. Wu
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zeyu Chen
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brittany Weiderhold
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ariel R. Weisman
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caroline A. G. Ittner
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Debora Dunbar
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C. Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A. Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - John P. Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E. Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lubica Rauova
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
25
|
Agirbasli M, Tanrıkulu A. Testing the efficacy of tocilizumab in patients with COVID-19 pneumonia. J Comp Eff Res 2021; 10:625-627. [PMID: 33887951 PMCID: PMC8098652 DOI: 10.2217/cer-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mehmet Agirbasli
- Department of Cardiology, Medeniyet University Medical School, Istanbul, Turkey
| | - Azra Tanrıkulu
- Department of Cardiology, Maltepe State Hospital, Istanbul, Turkey
| |
Collapse
|
26
|
Sefik E, Israelow B, Zhao J, Qu R, Song E, Mirza H, Kaffe E, Halene S, Meffre E, Kluger Y, Nussenzweig M, Wilen CB, Iwasaki A, Flavell RA. A humanized mouse model of chronic COVID-19 to evaluate disease mechanisms and treatment options. RESEARCH SQUARE 2021:rs.3.rs-279341. [PMID: 33758831 PMCID: PMC7987100 DOI: 10.21203/rs.3.rs-279341/v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coronavirus-associated acute respiratory disease, called coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 90 million people have been infected with SARS-CoV-2 and more than 2 million people have died of complications due to COVID-19 worldwide. COVID-19, in its severe form, presents with an uncontrolled, hyperactive immune response and severe immunological injury or organ damage that accounts for morbidity and mortality. Even in the absence of complications, COVID-19 can last for several months with lingering effects of an overactive immune system. Dysregulated myeloid and lymphocyte compartments have been implicated in lung immunopathology. Currently, there are limited clinically-tested treatments of COVID-19 with disparities in the apparent efficacy in patients. Accurate model systems are essential to rapidly evaluate promising discoveries but most currently available in mice, ferrets and hamsters do not recapitulate sustained immunopathology described in COVID19 patients. Here, we present a comprehensively humanized mouse COVID-19 model that faithfully recapitulates the innate and adaptive human immune responses during infection with SARS-CoV-2 by adapting recombinant adeno-associated virus (AAV)-driven gene therapy to deliver human ACE2 to the lungs 1 of MISTRG6 mice. Our unique model allows for the first time the study of chronic disease due to infection with SARS-CoV-2 in the context of patient-derived antibodies to characterize in real time the potential culprits of the observed human driving immunopathology; most importantly this model provides a live view into the aberrant macrophage response that is thought to be the effector of disease morbidity and ARDS in patients. Application of therapeutics such as patient-derived antibodies and steroids to our model allowed separation of the two aspects of the immune response, infectious viral clearance and immunopathology. Inflammatory cells seeded early in infection drove immune-patholgy later, but this very same early anti-viral response was also crucial to contain infection.
Collapse
Affiliation(s)
- Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ben Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jun Zhao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Haris Mirza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT,USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Kumar S, Saxena SK. Structural and molecular perspectives of SARS-CoV-2. Methods 2021; 195:23-28. [PMID: 33737214 PMCID: PMC7959701 DOI: 10.1016/j.ymeth.2021.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Recent emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transpired into pandemic coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been rapidly transmitted across the globe within a short period of time, with more than 106 million cases and 2.3 million deaths. The continuous rise in worldwide cases of COVID-19, transmission dynamics of SARS-CoV-2 including re-infections and enormous case-fatality rates emphasizes the urgent need of potential preventive and therapeutic measures. The development of effective therapeutic and preventive measures relies on understanding the molecular and cellular mechanism of replication exhibited by SARS-CoV-2. The structure of SARS-CoV-2 is ranging from 90–120 nm that comprises surface viral proteins including spike, envelope, membrane which are attached in host lipid bilayer containing the helical nucleocapsid comprising viral RNA. Spike (S) glycoprotein initiates the attachment of SARS-CoV-2 with a widely expressed cellular receptor angiotensin-converting enzyme 2 (ACE2), and subsequent S glycoprotein priming via serine protease TMPRSS2. Prominently, comprehensive analysis of structural insights into the crucial SARS-CoV-2 proteins may lead us to design effective therapeutics molecules. The present article, emphasizes the molecular and structural perspective of SARS-CoV-2 including mechanistic insights in its replication.
Collapse
Affiliation(s)
- Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India.
| |
Collapse
|