1
|
Horvat O, Kovačević Z. Human and Veterinary Medicine Collaboration: Synergistic Approach to Address Antimicrobial Resistance Through the Lens of Planetary Health. Antibiotics (Basel) 2025; 14:38. [PMID: 39858324 PMCID: PMC11762137 DOI: 10.3390/antibiotics14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a critical threat to human, animal, and environmental health, challenging global efforts to maintain sustainable ecosystems and public health systems. In this review, the complex, cross-disciplinary issues of AMR are explored within the framework of planetary health, emphasizing the interconnectedness of human and veterinary medicine with broader environmental and social systems. Specifically, it addresses the social, economic, environmental, and health dimensions of AMR under the planetary health framework. The social aspects consider how public awareness, education, and healthcare practices shape antimicrobial use (AMU) and resistance patterns. The economic impact evaluates the cost burdens of AMR, including healthcare costs, loss of productivity, and the implications for the livestock and food production industries. The environmental dimension highlights the role of pharmaceutical waste, agricultural runoff, and industrial pollution in contributing to the spread of antimicrobials and resistant pathogens in ecosystems. To illustrate these challenges, a comprehensive literature review using the PubMed and Web of Science databases was conducted, identifying 91 relevant articles on planetary health and AMR. In this review, the knowledge from these studies and additional references is integrated to provide a holistic overview of the AMR crisis. By applying the four pillars of planetary health-social, economic, environmental, and health knowledge-in this manuscript, the necessity is underscored of collaborative strategies across human and veterinary medicine to combat AMR. Ultimately, this synergistic approach aims to shape the policies and practices that safeguard public health, protect ecosystems, and promote a sustainable future by implementing antimicrobial stewardship programs and encouraging prudent AMU.
Collapse
Affiliation(s)
- Olga Horvat
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
| | - Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Sigudu TT, Oguttu JW, Qekwana DN. Antimicrobial Resistance of Staphylococcus spp. from Human Specimens Submitted to Diagnostic Laboratories in South Africa, 2012-2017. Microorganisms 2024; 12:1862. [PMID: 39338536 PMCID: PMC11433687 DOI: 10.3390/microorganisms12091862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide health challenge associated with prolonged illnesses, increased healthcare costs, and high mortality rates. The present study examined the patterns and predictors of AMR among human Staphylococcus isolates obtained from diagnostic laboratories in South Africa between 2012 and 2017. This study examined data from 404 217 isolates, assessing resistance rates across different characteristics such as age, sample origin, Staphylococcus species, and study period. The highest resistance was observed against cloxacillin (70.3%), while the lowest resistance was against Colistin (0.1%). A significant (p < 0.05) decreasing trend in AMR was observed over the study period, while a significant increasing temporal trend (p < 0.05) was observed for multidrug resistance (MDR) over the same period. A significant (p < 0.05) association was observed between specimen type, species of organism, and year of isolation with AMR outcome. Significant (p < 0.05) associations were observed between specimen type and season with MDR. The observed high levels of AMR and a growing trend in MDR are concerning for public health. Clinicians should take these findings into account when deciding on therapeutic options. Continued monitoring of AMR among Staphylococcus spp. and judicious use of antimicrobials in human medicine should be promoted.
Collapse
Affiliation(s)
- Themba Titus Sigudu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg 1710, South Africa;
- Department of Health and Society, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg 1710, South Africa;
| | - Daniel Nenene Qekwana
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa;
| |
Collapse
|
3
|
Arumugam M, Manikandan DB, Marimuthu SK, Muthusamy G, Kari ZA, Téllez-Isaías G, Ramasamy T. Evaluating Biofilm Inhibitory Potential in Fish Pathogen, Aeromonas hydrophila by Agricultural Waste Extracts and Assessment of Aerolysin Inhibitors Using In Silico Approach. Antibiotics (Basel) 2023; 12:antibiotics12050891. [PMID: 37237796 DOI: 10.3390/antibiotics12050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Aeromonas hydrophila, an opportunistic bacteria, causes several devastating diseases in humans and animals, particularly aquatic species. Antibiotics have been constrained by the rise of antibiotic resistance caused by drug overuse. Therefore, new strategies are required to prevent appropriate antibiotic inability from antibiotic-resistant strains. Aerolysin is essential for A. hydrophila pathogenesis and has been proposed as a potential target for inventing drugs with anti-virulence properties. It is a unique method of disease prevention in fish to block the quorum-sensing mechanism of A. hydrophila. In SEM analysis, the crude solvent extracts of both groundnut shells and black gram pods exhibited a reduction of aerolysin formation and biofilm matrix formation by blocking the QS in A. hydrophila. Morphological changes were identified in the extracts treated bacterial cells. Furthermore, in previous studies, 34 ligands were identified with potential antibacterial metabolites from agricultural wastes, groundnut shells, and black gram pods using a literature survey. Twelve potent metabolites showed interactions between aerolysin and metabolites during molecular docking analysis, in that H-Pyran-4-one-2,3 dihydro-3,5 dihydroxy-6-methyl (-5.3 kcal/mol) and 2-Hexyldecanoic acid (-5.2 kcal/mol) showed promising results with potential hydrogen bond interactions with aerolysin. These metabolites showed a better binding affinity with aerolysin for 100 ns in molecular simulation dynamics. These findings point to a novel strategy for developing drugs using metabolites from agricultural wastes that may be feasible pharmacological solutions for treating A. hydrophila infections for the betterment of aquaculture.
Collapse
Affiliation(s)
- Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Sathish Kumar Marimuthu
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli 620024, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
4
|
Antimicrobial Susceptibility Profile of Pathogenic and Commensal Bacteria Recovered from Cattle and Goat Farms. Antibiotics (Basel) 2023; 12:antibiotics12020420. [PMID: 36830330 PMCID: PMC9952079 DOI: 10.3390/antibiotics12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The use of antibiotics in food animals results to antimicrobial resistant bacteria that complicates the ability to treat infections. The purpose of this study was to investigate the prevalence of pathogenic and commensal bacteria in soil, water, manure, and milk from cattle and goat farms. A total of 285 environmental and 81 milk samples were analyzed for Enterobacteriaceae by using biochemical and PCR techniques. Susceptibility to antibiotics was determined by the Kirby-Bauer disk diffusion technique. A total of 15 different Enterobacteriaceae species were identified from goat and cattle farms. Manure had significantly higher (p < 0.05) Enterobacteriaceae (52.0%) than soil (37.2%), trough water (5.4%), and runoff water (5.4%). There was a significant difference (p < 0.05) in Enterobacteriaceae in goat milk (53.9%) and cow milk (46.2%). Enterobacteriaceae from environment showed 100% resistance to novobiocin, erythromycin, and vancomycin E. coli O157:H7, Salmonella spp., Enterococcus spp., and Listeria monocytogenes displayed three, five, six, and ten. AMR patterns, respectively. NOV-TET-ERY-VAN was the most common phenotype observed in all isolates. Our study suggest that cattle and goat farms are reservoirs of multidrug-resistant bacteria. Food animal producers should be informed on the prudent use of antimicrobials, good agricultural practices, and biosecurity measures.
Collapse
|
5
|
Corona-Gómez L, Hernández-Andrade L, Mendoza-Elvira S, Suazo FM, Ricardo-González DI, Quintanar-Guerrero D. In vitro antimicrobial effect of essential tea tree oil( Melaleuca alternifolia), thymol, and carvacrol on microorganisms isolated from cases of bovine clinical mastitis. Int J Vet Sci Med 2022; 10:72-79. [PMID: 36259046 PMCID: PMC9543160 DOI: 10.1080/23144599.2022.2123082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both Gram-negative and Gram-positive bacteria have recently developed antibiotic resistance to treatments for bovine mastitis, creating a serious concern for public and animal health. The objective of this study was to analyse in vitro microbicidal activity of tea tree oil, thymol and carvacrol (composed of oregano and thyme essential oils) on bacteria isolated from clinical mastitis. Field isolates and ATCC strains of the Staphylococcus spp, Streptococcus spp, Escherichia coli, Klebsiella pneumoniae, and Candida albicans genera were analysed. The agar diffusion technique was used to test bactericidal susceptibility and plate microdilution was utilized to determine the minimum inhibitory, bactericidal, and fractional inhibitory concentrations. Thymol alone and the combinations of thymol-carvacrol and thymol-TTO obtained the highest inhibition diameters for Gram-negative bacteria, while for Gram-positive bacteria and C. albicans, thymol and the combination thymol-carvacrol obtained the highest indices. TTO, thymol, and carvacrol had MIC values of 1.56–25 mg/ml, 0.05–0.4 mg/ml, and 0.02–0.2 mg/ml, respectively. CMB results for the Gram-negative and gram-positive groups were 0.39–0.78 mg/ml, and for C. albicans, 0.78–1.56 mg/ml. Results for the fractional inhibitory concentrations show that the TTO+thymol and thymol+carvacrol combinations had additive activity against groups of Gram-negative bacteria and C. albicans. These natural components, evaluated individually and in combinations, have an effectiveness above 70%.
Collapse
Affiliation(s)
- Lysett Corona-Gómez
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| | - Laura Hernández-Andrade
- Departamento de Bacteriología del Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa de Morelos, Cuautitlán Izcalli, México
| | - Susana Mendoza-Elvira
- Laboratorio de Microbiología y Virología de las Enfermedades Respiratorias del Cerdo, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli
| | | | - Daniel Israel Ricardo-González
- Departamento de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| |
Collapse
|
6
|
Distribution and Characterization of Antimicrobial Resistant Pathogens in a Pig Farm, Slaughterhouse, Meat Processing Plant, and in Retail Stores. Microorganisms 2022; 10:microorganisms10112252. [DOI: 10.3390/microorganisms10112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of antibiotic resistance in foodborne pathogens isolated from meat pro-ducts and their producing environment has been an increasing and leading threat to public health. The aim of the study was to identify pathogens and their antimicrobial resistance isolated from pig production to pork meat distribution phases. Through this study, food spoilage and foodborne or clinical pathogenic bacteria were isolated and identified from pork (belly and neck) meat product and its related environmental samples that include pig swabs, diets, feces, liquid manure, workers’ gloves, dust fan swabs, carcass swabs, floor swabs, and drain water in the affiliated farm, slaughterhouse, meat processing plant, and in retail stores. All carcasses at the slaughterhouse and meat products at the meat processing plant were tracked from pigs at a targeted farm. Nine different selective media agars were used to effectively isolate various pathogenic bacteria. A total of 283 presumptive pathogenic bacteria isolated from 126 samples were selected and identified using MALDI-ToF MS. Twenty-three important foodborne pathogens were identified, and some of them, Shiga-toxin-producing E. coli (STEC), Listeria monocytogenes, Staphylococcus aureus, and Yersinia enterocolitica, were further confirmed using PCR. The PFGE patterns of 12 STEC isolates were grouped by sample source or site. All the foodborne pathogens used in the study were not resistant to amoxicillin/clavulanate, ciprofloxacin, and gentamicin, whereas some of the STEC, L. monocytogenes, and S. aureus isolates were resistant to various antibiotics, including ampicillin, erythromycin, tetracycline, and vancomycin. The most common antimicrobial resistance pattern in the pathogenic STEC isolates was AMP-KAN-STR-SXT-TET. Consequently, this study provides valuable information for the distribution of antimicrobial-resistant pathogens along the pork meat production chain and can assist farmers and stakeholders to develop a systematic strategy for reducing the current emergence and spread of antimicrobial resistance in the different phases of pig production and distribution.
Collapse
|
7
|
Agustono B, Lokapirnasari WP, Yunita MN, Kinanti RN, Cesa AE, Windria S. Efficacy of dietary supplementary probiotics as substitutes for antibiotic growth promoters during the starter period on growth performances, carcass traits, and immune organs of male layer chicken. Vet World 2022; 15:324-330. [PMID: 35400938 PMCID: PMC8980395 DOI: 10.14202/vetworld.2022.324-330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Aim With the increased concerns about global protein supply, chicken meat, especially from male layer chicken, constitutes an alternative in terms of quality and carcass traits. Probiotics have been proposed for replacing antibiotic growth promoters (AGPs), which have been prohibited as poultry supplement feeds. The present study aimed to determine the efficacy of dietary supplementary probiotics during the starter period on growth performances, carcass traits, and immune organs of male layer chicken. Materials and Methods In this study, one hundred and eighty 1-day-old male chicks from the strain ISA brown were used. They were divided into six groups according to the feed: 100% basal feed (T0), basal feed+2.5 g AGP/kg feed (T1), basal feed+probiotics 1 mL/kg feed (T2), basal feed+probiotics 3 mL/kg feed (T3), basal feed+probiotics 4 mL/kg feed (T4), and basal feed+probiotics 5 mL/kg feed (T5). Probiotics (Lactobacillus acidophilus, Lactobacillus plantarum, and Bifidobacterium spp.) were given at a concentration of 1.2×109 colony-forming unit/mL. Virginiamycin was used as AGP. ISA brown layer chicken was treated for 21 days. Growth performances (body weight, feed consumption, and feed conversion ratio [FCR]), carcass traits (weight at slaughter, weight of the carcass, breast muscles, liver, lungs, kidneys, and heart), immune organs (spleen, thymus, and bursa of Fabricius), and non-edible organs (head, legs, and wings) were analyzed. Results Probiotic supplementation at 4 and 5 mL/kg feed (T4 and T5) during the starter phase improved the body weight, FCR, and feed consumption. The weight at slaughter, weight of the carcass, breast muscles, and liver from the T4 and T5 groups were significantly greater than those in the other treatment groups. In addition, the weight of the heart, lungs, and kidneys was increased in the T1, T2, T3, T4, and T5 groups compared with that measured in the T0 group. Furthermore, there were significant differences regarding the immune organs between the T0 and the other treatment groups. The weight of the head, legs, and wings was also greater in the probiotic and AGP supplementation groups (T1, T2, T3, T4, and T5) than that in the basal feed group (T0). Conclusion Probiotic (L. acidophilus, L. plantarum, and Bifidobacterium spp.) supplementation at 4 and 5 mL/kg feed during the starter period can be used to improve the growth, carcass traits, and weight of immune organs in male layer chicken.
Collapse
Affiliation(s)
- B Agustono
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - W P Lokapirnasari
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - M N Yunita
- Department of Veterinary Science, Division of Pathology Veteriner, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - R N Kinanti
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - A E Cesa
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - S Windria
- Department of Biomedical Sciences, Division of Microbiology, Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
8
|
Zhang X, Ma T, Cheng C, Lv J, Bai H, Jiang X, Zhang Y, Xin H. Effects of waste milk on growth performance, immunity, and gut health of dairy calves. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Wu L, Xie X, Li Y, Liang T, Zhong H, Ma J, Yang L, Yang J, Li L, Xi Y, Li H, Zhang J, Chen X, Ding Y, Wu Q. Metagenomics-Based Analysis of the Age-Related Cumulative Effect of Antibiotic Resistance Genes in Gut Microbiota. Antibiotics (Basel) 2021; 10:1006. [PMID: 34439056 PMCID: PMC8388928 DOI: 10.3390/antibiotics10081006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance in bacteria has become a major global health problem. One of the main reservoirs of antibiotic resistance genes is the human gut microbiota. To characterise these genes, a metagenomic approach was used. In this study, a comprehensive antibiotic resistome catalog was established using fecal samples from 246 healthy individuals from world's longevity township in Jiaoling, China. In total, 606 antibiotic resistance genes were detected. Our results indicated that antibiotic resistance genes in the human gut microbiota accumulate and become more complex with age as older groups harbour the highest abundance of these genes. Tetracycline resistance gene type tetQ was the most abundant group of antibiotic resistance genes in gut microbiota, and the main carrier of antibiotic resistance genes was Bacteroides. Antibiotic efflux, inactivation, and target alteration were found to be the dominant antimicrobial resistance mechanisms. This research may help to establish a comprehensive antibiotic resistance catalog that includes extremely long-lived healthy people such as centenarians, and may provide potential recommendations for controlling the use of antibiotics.
Collapse
Affiliation(s)
- Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haojie Zhong
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China;
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Juan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| |
Collapse
|
10
|
Mehat JW, van Vliet AHM, La Ragione RM. The Avian Pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. Avian Pathol 2021; 50:402-416. [PMID: 34047644 DOI: 10.1080/03079457.2021.1915960] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Avian Pathogenic E. coli (APEC) is the causative agent of avian colibacillosis, resulting in economic losses to the poultry industry through morbidity, mortality and carcass condemnation, and impacts the welfare of poultry. Colibacillosis remains a complex disease to manage, hampered by diagnostic and classification strategies for E. coli that are inadequate for defining APEC. However, increased accessibility of whole genome sequencing (WGS) technology has enabled phylogenetic approaches to be applied to the classification of E. coli and genomic characterization of the most common APEC serotypes associated with colibacillosis O1, O2 and O78. These approaches have demonstrated that the O78 serotype is representative of two distinct APEC lineages, ST-23 in phylogroup C and ST-117 in phylogroup G. The O1 and O2 serotypes belong to a third lineage comprised of three sub-populations in phylogroup B2; ST-95, ST-140 and ST-428/ST-429. The frequency with which these genotypes are associated with colibacillosis implicates them as the predominant APEC populations and distinct from those causing incidental or opportunistic infections. The fact that these are disparate clusters from multiple phylogroups suggests that these lineages may have become adapted to the poultry niche independently. WGS studies have highlighted the limitations of traditional APEC classification and can now provide a path towards a robust and more meaningful definition of the APEC pathotype. Future studies should focus on characterizing individual APEC populations in detail and using this information to develop improved diagnostics and interventions.
Collapse
Affiliation(s)
- Jai W Mehat
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
ZHAO P, ZHANG Y, DENG H, MENG Y. Antibacterial mechanism of apple phloretin on physiological and morphological properties of Listeria monocytogenes. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.55120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Pengtao ZHAO
- Shaanxi Normal University, China; Shaanxi Normal University, China; Shaanxi Normal University, China
| | | | - Hong DENG
- Shaanxi Normal University, China; Shaanxi Normal University, China; Shaanxi Normal University, China
| | - Yonghong MENG
- Shaanxi Normal University, China; Shaanxi Normal University, China; Shaanxi Normal University, China
| |
Collapse
|
12
|
Li Y, Fernández R, Durán I, Molina-López RA, Darwich L. Antimicrobial Resistance in Bacteria Isolated From Cats and Dogs From the Iberian Peninsula. Front Microbiol 2021; 11:621597. [PMID: 33584590 PMCID: PMC7874003 DOI: 10.3389/fmicb.2020.621597] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pet animals are assumed to be potential reservoirs in transferring antimicrobial resistance (AMR) to humans due to the extensively applied broad-spectrum antimicrobial agents and their close contact with humans. In this study, microbiological data and antimicrobial susceptibility results of dog (n = 5,086) and cat (n = 789) clinical samples from a private Laboratory of Diagnosis in Barcelona were analyzed. Samples came from different counties of the Iberian Peninsula during 2016–2018. In dogs, clinical samples were most commonly from otitis, and in cats from wounds, respiratory tract infections and conjunctivitis. In both pet groups, Staphylococcus spp. (31% in dogs vs 30% in cats), Streptococcus spp. (19% vs 17%), Pseudomonas spp. (16% vs 10%), Escherichia coli (8% vs 5.6%), and Enterococcus spp. (5.5% vs 6.8%) were shown as the most predominant bacteria. However, higher frequencies of P. aeruginosa, P. canis, and S. pseudintermedius were found in dogs, while S. aureus and P. multocida were more prevalent in cats. The antimicrobial susceptibility testing demonstrated that Enterococcus spp. and Pseudomonas spp. presented the highest levels of AMR in both dogs and cats. Within the Enterobacteriaceae, E. coli showed low levels of AMR compared to Klebsiella, Proteus, or Enterobacter spp. Respiratory tract infections caused by K. pneumoniae presented higher AMR in cats. By contrast, Pasteurella isolates from the respiratory tract were highly sensitive to all the antimicrobials in cats and dogs. Data from this study could be used to guide empirical antimicrobial selection in companion animal veterinary practices in the Iberian Peninsula.
Collapse
Affiliation(s)
- Yanli Li
- Departament de Sanitat i Anatomia Animal, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rubén Fernández
- Departament de Sanitat i Anatomia Animal, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Inma Durán
- Departamento Veterinaria de Laboratorios Echevarne, Barcelona, Spain
| | - Rafael A Molina-López
- Catalan Wildlife Service, Centre de Fauna Salvatge de Torreferrussa, Barcelona, Spain
| | - Laila Darwich
- Departament de Sanitat i Anatomia Animal, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Lunha K, Leangapichart T, Jiwakanon J, Angkititrakul S, Sunde M, Järhult JD, Ström Hallenberg G, Hickman RA, Van Boeckel T, Magnusson U. Antimicrobial Resistance in Fecal Escherichia coli from Humans and Pigs at Farms at Different Levels of Intensification. Antibiotics (Basel) 2020; 9:E662. [PMID: 33008077 PMCID: PMC7650604 DOI: 10.3390/antibiotics9100662] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/02/2022] Open
Abstract
The overall aim of the current study was to test the hypotheses that (i) antibiotic resistance in bacteria were more frequent in clinically health pigs in intensified company owned, medium-scale farms (MSFs) (100-500 sows) than in pigs in family-owned, small-scale farms (SSFs) (1-50 sows) and (ii) that farmers working at the MSFs were more prone to attain antibiotic resistant bacteria than farmers working at SSFs. The study was conducted in North-Eastern Thailand, comprising fecal Escherichia coli isolates from pigs, farmers working with the pigs (contact humans) and persons living in the same household as the farmer (non-contact humans) at 51 MSFs and 113 SSFs. Samples from all farms were also screened for methicillin-resistant staphylococcus aureus (MRSA), which was not detected in pig samples, but was found in one human sample. Susceptibility was tested by disc-diffusion for seven antibiotics commonly used in the study area. Resistance in pig isolates from MSFs were more frequent for chloramphenicol which (P < 0.001), trimethoprim/sulfamethoxazole (P < 0.001) and gentamicin (P < 0.05) compared with isolates from SSFs, whereas the opposite was true for tetracycline (P < 0.01). Resistance in the human isolates was lower than those in the isolates from pigs for tetracycline, trimethoprim/sulfamethoxazole and chloramphenicol (P < 0.001). The frequency of resistance in the contact human samples from SSFs and MSFs did not differ. There was no difference between isolates from contact and non-contact humans for any of the tested antibiotics. Multidrug resistance in isolates from pigs was 26%, significantly higher (P < 0.01) than the 13% from humans. The data indicate that (i) resistance to antibiotics, including those critical and highly important for human medicine, were more common in fecal E. coli from pigs at the MSFs than at the SSFs, whereas (ii) the resistance in fecal E. coli from pig farmers seemed not to be influenced by the level of intensification of the farm they were working at.
Collapse
Affiliation(s)
- Kamonwan Lunha
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (K.L.); (G.S.H.)
| | - Thongpan Leangapichart
- Section for Food Safety and AMR, Norwegian Veterinary Institute, N-0106 Oslo, Norway; (T.L.); (M.S.)
| | - Jatesada Jiwakanon
- Research Group for Animal Health Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (S.A.)
| | - Sunpetch Angkititrakul
- Research Group for Animal Health Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (S.A.)
| | - Marianne Sunde
- Section for Food Safety and AMR, Norwegian Veterinary Institute, N-0106 Oslo, Norway; (T.L.); (M.S.)
| | - Josef D. Järhult
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden;
| | - Gunilla Ström Hallenberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (K.L.); (G.S.H.)
| | - Rachel A. Hickman
- Department of Biomedical Chemistry and Microbiology, Uppsala University, SE-752 37 Uppsala, Sweden;
| | - Thomas Van Boeckel
- Institute for Environmental Decisions, ETH, 8092 Zurich, Switzerland;
- Center for Diseases Dynamics Economics and Policy, Washington, DC 20005, USA
| | - Ulf Magnusson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (K.L.); (G.S.H.)
| |
Collapse
|
14
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 2020; 46:578-599. [PMID: 32954887 DOI: 10.1080/1040841x.2020.1813687] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).
Collapse
Affiliation(s)
- Syeda Fatima Nadeem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Syed Fahad Tahir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | | | - Pikunthong Nukthamna
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,College of Research Methodology and Cognitive Science, Burapha University, Chonburi, Thailand
| | - Ali Muhammed Moula Ali
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Salvatore Massa
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
15
|
Ambrosio CMS, Contreras-Castillo CJ, Da Gloria EM. In vitro mechanism of antibacterial action of a citrus essential oil on an enterotoxigenic Escherichia coli and Lactobacillus rhamnosus. J Appl Microbiol 2020; 129:541-553. [PMID: 32271977 DOI: 10.1111/jam.14660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023]
Abstract
AIM This study investigated the in vitro mechanism of action of a commercial citrus EO, Brazilian orange terpenes (BOT), on an enterotoxigenic Escherichia coli (ETEC) isolated from pig gut and on Lactobacillus rhamnosus. METHODS AND RESULTS Firstly, bacteria were exposed sequentially to BOT every 3 h (three times) at sub-minimal inhibitory concentrations and results showed that sequential exposure to BOT provoked a higher reduction of bacteria viability than a single exposure and the reduction of ETEC viability was higher compared to that of L. rhamnosus. Then, evaluation of the BOT effects on the cell membrane permeability and integrity, indicated that BOT increased the membrane permeability and caused disruptive effects on the integrity of bacterial cells as reflected by an increase of the relative electric conductivity and the release of essential cell constituents. Interestingly, BOT effects were more pronounced on the ETEC than on L. rhamnosus. This was ratified by scanning electron microscopy, which showed more noticeable morphological damages and disturbances on ETEC cells than on the L. rhamnosus cells. Limonene was detected as the major compound in BOT by polar/nonpolar GC-MS (78·65%/79·38%). CONCLUSIONS Results revealed that the probable mechanism of the selective antibacterial action of the citrus EO, BOT, can be described as altering more remarkable the permeability and integrity of the cytoplasmic membrane as well as the external structure of ETEC cells than L. rhamnosus cells. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides information about the mechanism of antibacterial action displayed by a citrus EO, a by-product of the citrus processing industry, as a natural alternative to antibiotics used in pig production sector to combat pathogens such as ETECs.
Collapse
Affiliation(s)
- C M S Ambrosio
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - C J Contreras-Castillo
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - E M Da Gloria
- Department of Biological Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Hijazi K, Joshi C, Gould IM. Challenges and opportunities for antimicrobial stewardship in resource-rich and resource-limited countries. Expert Rev Anti Infect Ther 2019; 17:621-634. [PMID: 31282277 DOI: 10.1080/14787210.2019.1640602] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Inappropriate prescription practices, patient and provider knowledge and attitudes, variable availability of diagnostic and surveillance systems, and the unrestricted use of antimicrobials in animals and plants are contributory factors to the global crisis of antimicrobial resistance (AMR). Areas covered: Notwithstanding that interventions to revert AMR should be tailored to the socio-politico-economic landscape, there is a global consensus for the implementation and enhancement of antimicrobial stewardship strategies. Yet the implementation of Antimicrobial Stewardship Programs (ASPs) remains relatively limited within healthcare settings and faces complex challenges in resource-limited countries. The current review summarizes the limitations of current ASPs, translation challenges in resource-limited countries, and potential solutions. Expert opinion: Suboptimal ASP implementation in hospitals is multifactorial. Restriction of antimicrobial use should be informed by risk-benefit analyses, including the potential for substitute prescribing, and displacement of selection pressures. Thresholds in population use of antibiotics above which AMR increases may provide quantitative targets for ASPs. Horizontal and vertical collaborations involving policymakers and the general public are of paramount importance. While impactful prescribing changes require sustained engagement of the public and health-care professionals, we warn against over-estimating the benefits of behavioral interventions. We advocate for population-level stewardship interventions in addition to investment in structural factors that will aid ASP implementation.
Collapse
Affiliation(s)
- Karolin Hijazi
- a Institute of Dentistry, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen , Aberdeen , UK
| | - Chaitanya Joshi
- b Department of Medical Microbiology, Aberdeen Royal Infirmary , Aberdeen , UK
| | - Ian M Gould
- b Department of Medical Microbiology, Aberdeen Royal Infirmary , Aberdeen , UK
| |
Collapse
|
17
|
Edwards SE, Morel CM, Busse R, Harbarth S. Combatting Antibiotic Resistance Together: How Can We Enlist the Help of Industry? Antibiotics (Basel) 2018; 7:antibiotics7040111. [PMID: 30567308 PMCID: PMC6315850 DOI: 10.3390/antibiotics7040111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022] Open
Abstract
The development of antibiotics needs to be supported through new financial stimuli, including help from the public sector. In exchange for public support, industry should be asked to do what is in their power to help curb the inappropriate use of antibiotics. This work discusses key areas through which industry has an important influence on antibiotic consumption and where agreements can be made alongside financial incentives, even those intended to stimulate very early research. As long as the traditional unit sale-based business model for antibiotics remains in place, profit-making incentives will likely undermine efforts to sell and utilize antibiotics in a sustainable manner. In the short-term, while we try to come to a consensus on how best to fix the market, we need measures to prevent major over-selling and inappropriate promotion—especially for new, badly needed antibiotics that reach the market. This paper explores ways in which the pharmaceutical industry could help buttress sustainable antibiotic use while we search for more long-term, constructive, mutually-beneficial ways to organize the market.
Collapse
Affiliation(s)
- Suzanne E Edwards
- Department of Health Care Management, Berlin University of Technology, Straße des 17. Juni 135, 10623 Berlin, Germany.
- Infection Control Programme, WHO Collaborating Centre, University of Geneva Hospitals and Faculty of Medicine, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | - Chantal M Morel
- Infection Control Programme, WHO Collaborating Centre, University of Geneva Hospitals and Faculty of Medicine, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
- LSE Health, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK.
| | - Reinhard Busse
- Department of Health Care Management, Berlin University of Technology, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Stephan Harbarth
- Infection Control Programme, WHO Collaborating Centre, University of Geneva Hospitals and Faculty of Medicine, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|