1
|
Long T, Besier TF, Fernandez J, Yeung T. Effect of morphology and cortical thickness variations on tibial strains in different movements. J Biomech 2025; 179:112486. [PMID: 39706028 DOI: 10.1016/j.jbiomech.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Morphology and cortical thickness of tibia bone influence the strength and strain distribution of bone and also influence fatigue fracture risk. However, current studies have not extensively explored the effect of morphology and cortical thickness on tibial strain distribution during different activities. This study aims to assess the effect of tibial morphology and cortical thickness on tibial strain during six different sports movements. The tibial surfaces were reconstructed from 40 males' CT data, with cortical thickness assessed at the outer surface. A statistical shape model captured main variations in tibial morphology and cortical thickness. Finite Element models were created by scaling the mean shape along the first four principal components. Muscle and joint forces from different activities were calculated using static optimization and joint reaction analysis and applied to the models, assessing strained volume and peak strain at middle and distal tibia. The first four principal components accounted for 87 % of the total cumulative variance. Perturbations in the second principal components resulted in the greatest relative differences in peak mid-tibia tensile (128 %) and distal-tibia compressive (160 %) strain during sidestep cutting, but perturbations in the first principal components resulted in the greatest relative differences during other activities (70 %∼118 %, 107 %∼129 %). Perturbations in the first four principal components resulted in the small relative differences in strained volume during walking (-9%∼5%). For runners, tibial size and cortical thickness are more related to tibial fatigue fracture risk, whereas for athletes with frequent directional changes, like basketball players, the tibial shaft size is more relevant.
Collapse
Affiliation(s)
- Ting Long
- Auckland Bioengineering Institute, University of Auckland, New Zealand.
| | - Thor F Besier
- Auckland Bioengineering Institute, University of Auckland, New Zealand; Department of Engineering Science & Biomedical Engineering, University of Auckland, New Zealand.
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, New Zealand; Department of Engineering Science & Biomedical Engineering, University of Auckland, New Zealand.
| | - Ted Yeung
- Auckland Bioengineering Institute, University of Auckland, New Zealand.
| |
Collapse
|
2
|
Golden AP, Hogan KK, Morris JB, Pickens BB. The Impact of Blood Flow Restriction Training on Tibial Bone Stress Injury Rehabilitation: An Exploratory Case Series. Int J Sports Phys Ther 2024; 19:1126-1137. [PMID: 39229454 PMCID: PMC11368450 DOI: 10.26603/001c.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Lower extremity bone stress injuries (BSI) are common injuries among athletes and military members. Typical management involves a period of restricted weightbearing which can have rapid detrimental effects upon both muscle and bone physiology. Few studies have investigated the effect of blood flow restriction (BFR) training on bone in the rehabilitative setting. Purpose The purpose of this study was to investigate the effects of lower extremity exercise with the addition of BFR upon bone mineral density, bone mineral content, and lean body mass in military members with tibial BSIs. Study Design Case series. Methods Twenty military members with MRI-confirmed tibial BSI were recruited to complete lower extremity exercise with the addition of BFR twice per week for four weeks. The BFR cuff was applied proximally to the participant's involved limb while they performed gluteal, thigh, and leg resistance exercises. Outcomes were assessed at baseline and four weeks. The primary outcomes were whole leg bone mineral density (BMD), bone mineral content (BMC), and lean body mass (LM) as measured by dual-energy x-ray absorptiometry. Secondary outcomes included thigh and leg circumference measures and patient-reported outcomes, including the Lower Extremity Functional Scale (LEFS), Patient-Reported Outcomes Measurement Information System 57 (PROMIS-57), and Global Rating of Change (GROC). Results No significant differences were found in BMD (p=0.720) or BMC (p=0.749) between limbs or within limbs over time. LM was generally less in the involved limb (p=0.019), however there were no significant differences between or within limbs over time (p=0.404). For thigh circumference, significant main effects were found for time (p=0.012) and limb (p=0.015), however there was no significant interaction effect (p=0.510). No significant differences were found for leg circumference (p=0.738). Participants showed significant mean changes in LEFS (15.15 points), PROMIS physical function (8.98 points), PROMIS social participation (7.60 points), PROMIS anxiety (3.26 points), and PROMIS pain interference (8.39 points) at four weeks. Conclusion The utilization of BFR in the early rehabilitative management of tibial BSI may help mitigate decrements in both bone and muscle tissue during periods of decreased physical loading. Level of Evidence 4.
Collapse
Affiliation(s)
- Andrew P Golden
- Army-Baylor University Doctoral Fellowship in Orthopaedic Manual Physical Therapy, Fort Sam Houston, TX 78234, USA
| | - Kathleen K Hogan
- Special Warfare Human Performance Squadron, San Antonio, TX 78236, USA
| | - Jamie B Morris
- Army-Baylor University Doctoral Fellowship in Division 1 Sports Physical Therapy, West Point, NY 10996, USA
| | - Bryan B Pickens
- Army-Baylor University Doctoral Program in Physical Therapy, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
3
|
Martin JA, Heiderscheit BC. A hierarchical clustering approach for examining the relationship between pelvis-proximal femur geometry and bone stress injury in runners. J Biomech 2023; 160:111782. [PMID: 37742386 DOI: 10.1016/j.jbiomech.2023.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Bone stress injury (BSI) risk in runners is multifactorial and not well understood. Unsupervised machine learning approaches can potentially elucidate risk factors for BSI by identifying groups of similar runners within a population which differ in BSI incidence. Here, a hierarchical clustering approach is used to identify groups of collegiate cross country runners based on 2-dimensional frontal plane pelvis and proximal femur geometry, which was extracted from dual-energy X-ray absorptiometry scans and dimensionally reduced by principal component analysis. Seven distinct groups were identified using the cluster tree, with the initial split being highly related to female-male differences. Visual inspection revealed clear differences between groups in pelvis and proximal femur geometry, and groups were found to differ in lower body BSI incidence during the subsequent academic year (Rand index = 0.53; adjusted Rand index = 0.07). Linear models showed between-cluster differences in visually identified geometric measures. Geometric measures were aggregated into a pelvis shape factor based on trends with BSI incidence, and the resulting shape factor was significantly different between clusters (p < 0.001). Lower shape factor values, corresponding with lower pelvis height and ischial span, and greater iliac span and trochanteric span, appeared to be related to increased BSI incidence. This trend was dominated by the effect observed across clusters of male runners, indicating that geometric effects may be more relevant to BSI risk in males, or that other factors masked the relationship in females. More broadly, this work outlines a methodological approach for distilling complex geometric differences into simple metrics that relate to injury risk.
Collapse
Affiliation(s)
- Jack A Martin
- Department of Mechanical Engineering, Department of Orthopedics and Rehabilitation, Badger Athletic Performance Program, University of Wisconsin-Madison, 3046 Mechanical Engineering Building, 1513 University Ave, Madison, WI 53703, United States.
| | - Bryan C Heiderscheit
- Department of Orthopedics and Rehabilitation, Badger Athletic Performance Program, Department of Biomedical Engineering, University of Wisconsin-Madison, United States
| |
Collapse
|
4
|
Redinger AL, Allen SMF, Buchanan SR, Black CD, Baker BS. Non-traditional HIIT-style ROTC training elicits positive bone quality and performance adaptations. J Sports Sci 2023; 41:1587-1595. [PMID: 38126323 DOI: 10.1080/02640414.2023.2283998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
Military personnel experience elevated bone injury incidence, partly due to arduous and repetitive training. Non-traditional High-Intensity Interval Training-style (HIIT) may benefit pre-enlisted Reserve Officer Training Corps (ROTC) cadet's musculoskeletal health and performance prior to military service. This study investigated 16 ROTC (n = 12 males; n = 4 females) and 15 physically active sex-, age-, and body mass-matched Controls' musculoskeletal health and performance from November to April. Total body, lumbar spine, and dual- hip dual-energy X-ray absorptiometry scans and 4%, 38%, 66% tibial peripheral quantitative computed tomography scans, blood draws (serum sclerostin and parathyroid hormone), and maximal muscle strength and aerobic capacity testing were completed. From November to April, ROTC improved bone density (DXA) of the dominant total hip and greater trochanter and non-dominant greater trochanter and 38% and 66% tibial total volumetric and cortical bone density (pQCT) similarly or more than Controls (all p ≤ 0.049). From November to April, ROTC also improved bench and leg press, and peak aerobic capacity (all p ≤ 0.013). From November to January, serum sclerostin increased (p ≤ 0.007) and remained elevated through April, while parathyroid hormone was unchanged. HIIT-style training induced positive musculoskeletal adaptations, suggesting it may be an excellent pre-service training modality for this injury prone group.
Collapse
Affiliation(s)
- Allen L Redinger
- Musculoskeletal Adaptations to Aging and eXercise (MAAX) Lab, Oklahoma State University, Stillwater, OK, USA
| | - Shawn M F Allen
- Musculoskeletal Adaptations to Aging and eXercise (MAAX) Lab, Oklahoma State University, Stillwater, OK, USA
| | - Samuel R Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Christopher D Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Breanne S Baker
- Musculoskeletal Adaptations to Aging and eXercise (MAAX) Lab, Oklahoma State University, Stillwater, OK, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
5
|
Dyches KD, Friedl KE, Greeves JP, Keller MF, McClung HL, McGurk MS, Popp KL, Teyhen DS. Physiology of Health and Performance: Enabling Success of Women in Combat Arms Roles. Mil Med 2023; 188:19-31. [PMID: 37490562 DOI: 10.1093/milmed/usac256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/28/2022] [Accepted: 08/16/2022] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION The modern female soldier has yet to be fully characterized as she steps up to fill new combat roles that have only recently been opened to women. Both U.S. and U.K. military operational research efforts are supporting a science-based evolution of physical training and standards for female warfighters. The increasing representation of women in all military occupations makes it possible to discover and document the limits of female physiological performance. METHOD An informal Delphi process was used to synthesize an integrated concept of current military female physiological research priorities and emerging findings using a panel of subject matter experts who presented their research and perspectives during the second Women in Combat Summit hosted by the TriService Nursing Research Program in February 2021. RESULTS The physical characteristics of the modern soldier are changing as women train for nontraditional military roles, and they are emerging as stronger and leaner. Capabilities and physique will likely continue to evolve in response to new Army standards and training programs designed around science-based sex-neutral requirements. Strong bones may be a feature of the female pioneers who successfully complete training and secure roles traditionally reserved for men. Injury risk can be reduced by smarter, targeted training and with attention directed to female-specific hormonal status, biomechanics, and musculoskeletal architecture. An "estrogen advantage" appears to metabolically support enhanced mental endurance in physically demanding high-stress field conditions; a healthy estrogen environment is also essential for musculoskeletal health. The performance of female soldiers can be further enhanced by attention to equipment that serves their needs with seemingly simple solutions such as a suitable sports bra and personal protective equipment that accommodates the female anatomy. CONCLUSIONS Female physiological limits and performance have yet to be adequately defined as women move into new roles that were previously developed and reserved for men. Emerging evidence indicates much greater physical capacity and physiological resilience than previously postulated.
Collapse
Affiliation(s)
- Karmon D Dyches
- Military Operational Medicine Research Program, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA
| | - Karl E Friedl
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Julie P Greeves
- Department of Army Health and Performance Research (AHPR), British Army, Andover, Hampshire SP11 8HT, UK
| | - Margaux F Keller
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Holly L McClung
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Michael S McGurk
- Research and Analysis Directorate, U.S. Army Center for Initial Military Training, Fort Eustis, VA 23604, USA
| | - Kristin L Popp
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Deydre S Teyhen
- Chief, U.S. Army Medical Specialist Corps, U.S. Army Medical Command, Falls Church, VA 22042, USA
| |
Collapse
|
6
|
Salamanna F, Contartese D, Borsari V, Pagani S, Sartori M, Tschon M, Griffoni C, Giavaresi G, Tedesco G, Barbanti Brodano G, Gasbarrini A, Fini M. Gender-Specific Differences in Human Vertebral Bone Marrow Clot. Int J Mol Sci 2023; 24:11856. [PMID: 37511617 PMCID: PMC10380734 DOI: 10.3390/ijms241411856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, our group described the application of vertebral bone marrow (vBMA) clot as a cell therapy strategy for spinal fusion. Its beneficial effects were confirmed in aging-associated processes, but the influence of gender is unknown. In this study, we compared the biological properties of vBMA clots and derived vertebral mesenchymal stem cells (MSCs) from female and male patients undergoing spinal fusion procedures and treated with vBMA clot. We analyzed the expression of growth factors (GFs) in vBMA clots and MSCs as well as morphology, viability, doubling time, markers expression, clonogenicity, differentiation ability, senescence factors, Klotho expression, and HOX and TALE gene profiles from female and male donors. Our findings indicate that vBMA clots and derived MSCs from males had higher expression of GFs and greater osteogenic and chondrogenic potential compared to female patients. Additionally, vBMA-clot-derived MSCs from female and male donors exhibited distinct levels of HOX and TALE gene expression. Specifically, HOXA1, HOXB8, HOXD9, HOXA11, and PBX1 genes were upregulated in MSCs derived from clotted vBMA from male donors. These results demonstrate that vBMA clots can be effectively used for spinal fusion procedures; however, gender-related differences should be taken into consideration when utilizing vBMA-clot-based studies to optimize the design and implementation of this cell therapy strategy in clinical trials.
Collapse
Affiliation(s)
- Francesca Salamanna
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Deyanira Contartese
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Veronica Borsari
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefania Pagani
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Sartori
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Matilde Tschon
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cristiana Griffoni
- Spine Surgery Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Tedesco
- Spine Surgery Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | | | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
7
|
Popp KL, Outerleys J, Gehman S, Garrahan M, Rudolph S, Loranger E, Ackerman KE, Tenforde AS, Bouxsein ML, Davis IS. Impact loading in female runners with single and multiple bone stress injuries during fresh and exerted conditions. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:406-413. [PMID: 35218949 DOI: 10.1016/j.jshs.2022.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bone stress injuries (BSIs) are common in female runners, and recurrent BSI rates are high. Previous work suggests an association between higher impact loading during running and tibial BSI. However, it is unknown whether impact loading and fatigue-related loading changes discriminate women with a history of multiple BSIs. This study compared impact variables at the beginning of a treadmill run to exertion and the changes in those variables with exertion among female runners with no history of BSI as well as among those with a history of single or multiple BSIs. METHODS We enrolled 45 female runners (aged 18-40 years) for this cross-sectional study: having no history of diagnosed lower extremity BSI (N-BSI, n = 14); a history of 1 lower extremity BSI (1-BSI, n = 16); and diagnosed by imaging, or a history of multiple (≥3) lower extremity BSIs (M-BSI, n = 15). Participants completed a 5-km race speed run on an instrumented treadmill while wearing an Inertial Measurement Unit. The vertical average loading rate (VALR), vertical instantaneous loading rate (VILR), vertical stiffness during impact via instrumented treadmill, and tibial shock determined as the peak positive tibial acceleration via Inertial Measurement Unit were measured at the beginning and the end of the run. RESULTS There were no differences between groups in VALR, VILR, vertical stiffness, or tibial shock in a fresh or exerted condition. However, compared to N-BSI, women with M-BSI had greater increase with exertion in VALR (-1.8% vs. 6.1%, p = 0.01) and VILR (1.5% vs. 4.8%, p = 0.03). Similarly, compared to N-BSI, vertical stiffness increased more with exertion among women with M-BSI (-0.9% vs. 7.3%, p = 0.006) and 1-BSI (-0.9% vs. 1.8%, p = 0.05). Finally, compared to N-BSI, the increase in tibial shock from fresh to exerted condition was greater among women with M-BSI (0.9% vs. 5.5%, p = 0.03) and 1-BSI (0.9% vs. 11.2%, p = 0.02). CONCLUSION Women with 1-BSI or M-BSIs experience greater exertion-related increases in impact loading than women with N-BSI. These observations imply that exertion-related changes in gait biomechanics may contribute to risk of BSI.
Collapse
Affiliation(s)
- Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 , USA.
| | - Jereme Outerleys
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Cambridge, MA 02138, USA
| | - Sarah Gehman
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 , USA
| | - Margaret Garrahan
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 , USA
| | - Sara Rudolph
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 , USA
| | - Elizabeth Loranger
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 , USA
| | - Kathryn E Ackerman
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 , USA; Department of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam S Tenforde
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Cambridge, MA 02138, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 , USA; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Irene S Davis
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Greeves JP, Beck B, Nindl BC, O'Leary TJ. Current risks factors and emerging biomarkers for bone stress injuries in military personnel. J Sci Med Sport 2023:S1440-2440(23)00075-0. [PMID: 37188615 DOI: 10.1016/j.jsams.2023.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Bone stress injuries (BSIs) have plagued the military for over 150 years; they afflict around 5 to 10% of military recruits, more so in women, and continue to place a medical and financial burden on defence. While the tibia generally adapts to the rigours of basic military training, the putative mechanisms for bone maladaptation are still unclear. METHODS This paper provides a review of the published literature on current risk factors and emerging biomarkers for BSIs in military personnel; the potential for biochemical markers of bone metabolism to monitor the response to military training; and, the association of novel biochemical 'exerkines' with bone health. RESULTS The primary risk factor for BSI in military (and athletic) populations is too much training, too soon. Appropriate physical preparation before training will likely be most protective, but routine biomarkers will not yet identify those at risk. Nutritional interventions will support a bone anabolic response to training, but exposure to stress, sleep loss, and medication is likely harmful to bone. Monitoring physiology using wearables-ovulation, sleep and stress-offer potential to inform prevention strategies. CONCLUSIONS The risk factors for BSIs are well described, but their aetiology is very complex particularly in the multi-stressor military environment. Our understanding of the skeletal responses to military training is improving as technology advances, and potential biomarkers are constantly emerging, but sophisticated and integrated approaches to prevention of BSI are warranted.
Collapse
Affiliation(s)
- Julie P Greeves
- Army Health and Performance Research, Army HQ, Andover, United Kingdom; Norwich Medical School, University of East Anglia, United Kingdom; Division of Surgery and Interventional Science, UCL, United Kingdom.
| | - Belinda Beck
- School of Health Sciences and Social Work, Griffith University, Australia; The Bone Clinic, Australia.
| | - Bradley C Nindl
- School of Health and Rehabilitation Sciences, University of Pittsburgh, United States.
| | - Thomas J O'Leary
- Army Health and Performance Research, Army HQ, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, United Kingdom.
| |
Collapse
|
9
|
Redinger AL, Baker BS. Oral Contraceptives and Female Rowers' Skeletal Health. J Strength Cond Res 2023; 37:669-677. [PMID: 36165993 DOI: 10.1519/jsc.0000000000004308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Redinger, AL and Baker, BS. Oral contraceptives and female rowers' skeletal health. J Strength Cond Res 37(3): 669-677, 2023-Previous studies suggest that women using oral contraceptives (OC) experience fewer skeletal benefits from exercise compared with non-OC users. These findings may be especially important for athletes competing in weight-supported sports with a high prevalence of low bone mineral density and fracture, such as rowing. The purpose of this study was to examine skeletal health and bone injuries in collegiate female rowers. Forty-nine National Collegiate Athletic Association Division I female rowers completed general health, menstrual history, and bone physical activity questionnaire (BPAQ) surveys. Dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) scans were used to assess bone content, density, and geometry. Contraceptive (OC users n = 14, non-OC users n = 35) and self-reported stress fracture (SFx n = 11, None n = 38) groups were analyzed using analysis of covariance and independent t -tests. Additionally, effect sizes ( d ) were calculated and significance was set at p ≤ 0.05. Oral contraceptive users had reduced lumbar spine areal bone mineral density after adjustment for Total BPAQ ( d = 0.58; p = 0.041) compared with non-OC users, but all other total body and site-specific DXA measures of bone mineral content and density were similar between contraceptive and injury groups. When comparing bone geometry of the 4, 38, and 66% tibiae using pQCT, no significant differences were found after adjustment for either contraceptive or injury group (all p > 0.060). Our findings suggest that OC usage was not associated with reduced skeletal health in competitive female rowers as evidenced by all Z-scores being above -2.0 and similar bone indices of mineralized content, density, geometry, and estimated strength between the groups.
Collapse
Affiliation(s)
- Allen L Redinger
- Musculoskeletal Adaptations to Aging and exercise (MAAX) Lab, School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma
| | | |
Collapse
|
10
|
Keast M, Bonacci J, Fox A. Geometric variation of the human tibia-fibula: a public dataset of tibia-fibula surface meshes and statistical shape model. PeerJ 2023; 11:e14708. [PMID: 36811007 PMCID: PMC9939022 DOI: 10.7717/peerj.14708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023] Open
Abstract
Background Variation in tibia geometry is a risk factor for tibial stress fractures. Geometric variability in bones is often quantified using statistical shape modelling. Statistical shape models (SSM) offer a method to assess three-dimensional variation of structures and identify the source of variation. Although SSM have been used widely to assess long bones, there is limited open-source datasets of this kind. Overall, the creation of SSM can be an expensive process, that requires advanced skills. A publicly available tibia shape model would be beneficial as it enables researchers to improve skills. Further, it could benefit health, sport and medicine with the potential to assess geometries suitable for medical equipment, and aid in clinical diagnosis. This study aimed to: (i) quantify tibial geometry using a SSM; and (ii) provide the SSM and associated code as an open-source dataset. Methods Lower limb computed tomography (CT) scans from the right tibia-fibula of 30 cadavers (male n = 20, female n = 10) were obtained from the New Mexico Decedent Image Database. Tibias were segmented and reconstructed into both cortical and trabecular sections. Fibulas were segmented as a singular surface. The segmented bones were used to develop three SSM of the: (i) tibia; (ii) tibia-fibula; and (iii) cortical-trabecular. Principal component analysis was applied to obtain the three SSM, with the principal components that explained 95% of geometric variation retained. Results Overall size was the main source of variation in all three models accounting for 90.31%, 84.24% and 85.06%. Other sources of geometric variation in the tibia surface models included overall and midshaft thickness; prominence and size of the condyle plateau, tibial tuberosity, and anterior crest; and axial torsion of the tibial shaft. Further variations in the tibia-fibula model included midshaft thickness of the fibula; fibula head position relative to the tibia; tibia and fibula anterior-posterior curvature; fibula posterior curvature; tibia plateau rotation; and interosseous width. The main sources of variation in the cortical-trabecular model other than general size included variation in the medulla cavity diameter; cortical thickness; anterior-posterior shaft curvature; and the volume of trabecular bone in the proximal and distal ends of the bone. Conclusion Variations that could increase the risk of tibial stress injury were observed, these included general tibial thickness, midshaft thickness, tibial length and medulla cavity diameter (indicative of cortical thickness). Further research is needed to better understand the effect of these tibial-fibula shape characteristics on tibial stress and injury risk. This SSM, the associated code, and three use examples for the SSM have been provided in an open-source dataset. The developed tibial surface models and statistical shape model will be made available for use at: https://simtk.org/projects/ssm_tibia.
Collapse
|
11
|
Coombs CV, O'Leary TJ, Tang JCY, Fraser WD, Greeves JP. Hormonal contraceptive use, bone density and biochemical markers of bone metabolism in British Army recruits. BMJ Mil Health 2023; 169:9-16. [PMID: 33722817 DOI: 10.1136/bmjmilitary-2020-001745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Hormonal contraceptive use might impair bone health and increase the risk of stress fracture by decreasing endogenous oestrogen production, a central regulator of bone metabolism. This cross-sectional study investigated bone density and biochemical markers of bone metabolism in women taking hormonal contraceptives on entry to basic military training. METHODS Forty-five female British Army recruits had biochemical markers of bone metabolism, areal bone mineral density (aBMD) and tibial speed of sound (tSOS) measured at the start of basic military training. Participants were compared by their method of hormonal contraception: no hormonal contraception (NONE), combined contraceptive pill (CP) or depot-medroxyprogesterone acetate (DMPA) (20±2.8 years, 1.64±0.63 m, 61.7±6.2 kg). RESULTS aBMD was not different between groups (p≥0.204), but tSOS was higher in NONE (3%, p=0.014) when compared with DMPA users. Beta C-terminal telopeptide was higher in NONE (45%, p=0.037) and DMPA users (90%, p=0.003) compared with CP users. Procollagen type 1 N-terminal propeptide was higher in DMPA users compared with NONE (43%, p=0.045) and CP users (127%, p=0.001), and higher in NONE compared with CP users (59%, p=0.014). Bone alkaline phosphatase was higher in DMPA users compared with CP users (56%, p=0.044). CONCLUSIONS DMPA use was associated with increased bone turnover and decreased cortical bone integrity of the tibia. Lower cortical bone integrity in DMPA users was possibly mediated by increased intracortical remodelling, but trabecular bone was not affected by contraceptive use.
Collapse
Affiliation(s)
| | - T J O'Leary
- Army Health and Performance Research, British Army, Andover, UK
| | - J C Y Tang
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - W D Fraser
- Norwich Medical School, University of East Anglia, Norwich, UK.,Departments of Endocrinology and Clinical Biochemistry, Norfolk and Norwich University Hospital, Norwich, UK
| | - J P Greeves
- Army Health and Performance Research, British Army, Andover, UK .,Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Okunuki T, Magoshi H, Maemichi T, Liu Z, Tanaka H, Matsumoto M, Hoshiba T, Kumai T. The prevalence and effect of the sites of pain in female soccer players with medial shin pain. J Sports Med Phys Fitness 2023; 63:111-120. [PMID: 35333031 DOI: 10.23736/s0022-4707.22.13655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Female soccer players are often diagnosed with medial shin pain, which includes tibial stress fracture, medial tibial stress syndrome, and chronic exertional compartment syndrome. As the possibility of varied sites of pain affecting sports activities has not been fully researched, an urgent discussion and evidence is required. This study investigates the prevalence and effect of sites of pain on the sports activities of female soccer players with medial shin pain. METHODS A questionnaire survey was conducted for 196 female soccer players with medial shin pain to assess symptom duration, the effect of practice and performance, and sites of pain. The players were classified into three conditions (tibial stress fracture, medial tibial stress syndrome, or medial shin pain with neurological symptoms) and compared based on sites of pain. RESULTS We observed that medial tibial stress syndrome had a lower impact on performance compared to that of tibial stress fracture and medial shin pain with neurological symptoms. While participants with tibial stress fracture had to suspend practice sessions more frequently, the difference in symptom duration between the classified groups was not statistically significant. The effect of sites of pain on sports activities was not significantly different in participants with medial tibial stress syndrome. CONCLUSIONS Medial shin pain should be evaluated carefully to differentiate between medial tibial stress syndrome and medial shin pain with neurological symptoms. Restriction of sports activities may help improve the patient's condition early, regardless of the presentation.
Collapse
Affiliation(s)
- Takumi Okunuki
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirohisa Magoshi
- Department of Rehabilitation, Hachioji Sports Orthopedic Clinic, Tokyo, Japan
| | | | - Zijian Liu
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Hirofumi Tanaka
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan.,Hyakutake Orthopedic and Sports Clinic, Saga, Japan
| | - Masatomo Matsumoto
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan.,Kuwana City Medical Center, Mie, Japan
| | - Takuma Hoshiba
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
| | - Tsukasa Kumai
- Faculty of Sport Sciences, Waseda University, Saitama, Japan -
| |
Collapse
|
13
|
Guerriere KI, Castellani CM, Popp KL, Bouxsein ML, Hughes JM. Unraveling the physiologic paradoxes that underlie exercise prescription for stress fracture prevention. Exp Biol Med (Maywood) 2022; 247:1833-1839. [PMID: 35983839 PMCID: PMC9679355 DOI: 10.1177/15353702221112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effects of exercise on stress fracture risk are paradoxical. Exercise can promote both bone formation and resorption, which in turn, can reduce and increase risk of stress fractures, respectively. We review classic and current literature that suggests that the processes that underlie these responses to exercise are distinct. Bone remodeling involves osteoclastic resorption of fatigue-damaged bone, coupled with subsequent bone deposition to replace the damaged tissue. Bone modeling involves the independent action of osteoblasts and osteoclasts forming or resorbing bone, respectively, on a surface. In the formation mode, modeling results in increased bone stiffness, strength, and resistance to fatigue. Both the remodeling and modeling responses to exercise require significant time for newly deposited bone to fully mineralize. We propose that recognizing these two distinct physiologic pathways and their related time courses reveals the theoretical basis to guide exercise prescription to promote bone health during periods of heightened stress fracture risk. Such guidance may include minimizing rapid increases in the duration of repetitive exercises that may cause fatigue damage accrual, such as long-distance running and marching. Rather, limiting initial exercise characteristics to those known to stimulate bone formation, such as short-duration, moderate-to-high impact, dynamic, and multidirectional activities with rest insertion, may increase the fatigue resistance of bone and consequently minimize stress fracture risk.
Collapse
Affiliation(s)
- Katelyn I Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Colleen M Castellani
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA,Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Mary L Bouxsein
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA,Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02210, USA,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA,Julie M Hughes.
| |
Collapse
|
14
|
Alway P, Peirce N, Johnson W, King M, Kerslake R, Brooke-Wavell K. Activity specific areal bone mineral density is reduced in athletes with stress fracture and requires profound recovery time: A study of lumbar stress fracture in elite cricket fast bowlers. J Sci Med Sport 2022; 25:828-833. [PMID: 36064501 DOI: 10.1016/j.jsams.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aims of this study were to determine whether lumbar areal bone mineral density differed between cricket fast bowlers with and without lumbar stress fracture, and whether bone mineral density trajectories differed between groups during rehabilitation. DESIGN Cross-sectional and cohort. METHODS 29 elite male fast bowlers received a post-season anteroposterior lumbar dual-energy X-ray absorptiometry scan and a lumbar magnetic resonance imaging scan to determine stress fracture status. Participants were invited for three additional scans across the 59 weeks post baseline or diagnosis of injury. Bone mineral density was measured at L1 - L4 and ipsilateral and contralateral L3 and L4 sites. Independent-sample t-tests determined baseline differences in bone mineral density and multilevel models were used to examine differences in bone mineral density trajectories over time between injured and uninjured participants. RESULTS 17 participants with lumbar stress fracture had lower baseline bone mineral density at L1 - L4 (7.6 %, p = 0.034) and contralateral sites (8.8-10.4 %, p = 0.038-0.058) than uninjured participants. Bone mineral density at all sites decreased 1.9-3.0 % by 20-24 weeks before increasing to above baseline levels by 52 weeks post injury. CONCLUSIONS Injured fast bowlers had lower lumbar bone mineral density at diagnosis that decreased following injury and did not return to baseline until up to a year post-diagnosis. Localised maladaptation of bone mineral density may contribute to lumbar stress fracture. Bone mineral density loss following injury may increase risk of recurrence, therefore fast bowlers require careful management when returning to play.
Collapse
Affiliation(s)
- Peter Alway
- School of Sport, Exercise and Health Sciences, Loughborough University, United Kingdom; Department of Science and Medicine, England and Wales Cricket Board, United Kingdom.
| | - Nicholas Peirce
- Department of Science and Medicine, England and Wales Cricket Board, United Kingdom
| | - William Johnson
- School of Sport, Exercise and Health Sciences, Loughborough University, United Kingdom
| | - Mark King
- School of Sport, Exercise and Health Sciences, Loughborough University, United Kingdom
| | | | | |
Collapse
|
15
|
Uniyal P, Sharma A, Kumar N. Investigation on the sensitivity of indentation devices for detection of fatigue loading induced damage in bovine cortical bone. J Biomech 2022; 143:111274. [PMID: 36049386 DOI: 10.1016/j.jbiomech.2022.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Daily physiological activities subject our skeletal system to cyclic loading with varying frequencies and magnitudes. These loadings interact with the microstructure of bone and create microdamage, which can cause stress-induced injuries if not repaired on the time. The early detection is required to prevent the complications associated with these fractures. In the present study, to examine fatigue loading-induced damage in cortical bone, the sensitivity of four different indentation devices was investigated. For this, cortical bone samples were fatigued in four-point bending configuration at 0.5 Hz, 2 Hz and 4 Hz frequencies. Following the fatigue loading, cyclic reference point indentation (cRPI), impact reference point indentation (iRPI), Vickers microhardness and nanoindentation tests were performed on the bone samples. Results show that indentation devices are sensitive to detect fatigue loading induced damage only in 0.5 Hz group samples on compressive region. On the other hand, the sensitivity of indentation devices for tensile stress-induced damage is not clear. Also, histological examination of fatigued bone samples shows a significant increase in the crack density and crack length with fatigue loading only for the 0.5 Hz group samples. The present study provides insight into the sensitivity of different indentation devices to fatigue loading induced damage, which could be helpful in the development of new devices for the early diagnosis of stress induced injuries.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department of Biomedical Engineering, IIT Ropar, India
| | - Akshay Sharma
- Department of Mechanical Engineering, IIT Ropar, India
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
16
|
Hoenig T, Ackerman KE, Beck BR, Bouxsein ML, Burr DB, Hollander K, Popp KL, Rolvien T, Tenforde AS, Warden SJ. Bone stress injuries. Nat Rev Dis Primers 2022; 8:26. [PMID: 35484131 DOI: 10.1038/s41572-022-00352-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 01/11/2023]
Abstract
Bone stress injuries, including stress fractures, are overuse injuries that lead to substantial morbidity in active individuals. These injuries occur when excessive repetitive loads are introduced to a generally normal skeleton. Although the precise mechanisms for bone stress injuries are not completely understood, the prevailing theory is that an imbalance in bone metabolism favours microdamage accumulation over its removal and replacement with new bone via targeted remodelling. Diagnosis is achieved by a combination of patient history and physical examination, with imaging used for confirmation. Management of bone stress injuries is guided by their location and consequent risk of healing complications. Bone stress injuries at low-risk sites typically heal with activity modification followed by progressive loading and return to activity. Additional treatment approaches include non-weight-bearing immobilization, medications or surgery, but these approaches are usually limited to managing bone stress injuries that occur at high-risk sites. A comprehensive strategy that integrates anatomical, biomechanical and biological risk factors has the potential to improve the understanding of these injuries and aid in their prevention and management.
Collapse
Affiliation(s)
- Tim Hoenig
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Boston Children's Hospital, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Belinda R Beck
- School of Health Sciences & Social Work, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.,The Bone Clinic, Brisbane, Queensland, Australia
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School and Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David B Burr
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam S Tenforde
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.
| | - Stuart J Warden
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA. .,Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN, USA. .,La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
17
|
Paul E, Pant A, George S, Willson J, Meardon S, Vahdati A. In silicomodeling of tibial fatigue life in physically active males and females during different exercise protocols. Biomed Phys Eng Express 2022; 8. [PMID: 35393943 DOI: 10.1088/2057-1976/ac62ff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Preventing bone stress injuries (BSI) requires a deep understanding of the condition's underlying causes and risk factors. Subject-specific computer modeling studies of gait mechanics, including the effect of changes in running speed, stride length, and landing patterns on tibial stress injury formation can provide essential insights into BSI prevention. This study aimed to computationally examine the effect of different exercise protocols on tibial fatigue life in male and female runners during prolonged walking and running at three different speeds. To achieve these aims, we combined subject-specific magnetic resonance imaging (MRI), gait data, finite element analysis, and a fatigue life prediction algorithm, including repair and adaptation's influence. The algorithm predicted a steep increase in the likelihood of developing a BSI within the first 40 days of activity. In five of the six subjects simulated, faster running speeds corresponded with higher tibial strains and higher probability of failure. Our simulations also showed that female subjects had a higher mean peak probability of failure in all four gait conditions than the male subjects studied. The approach used in this study could lay the groundwork for studies in larger populations and patient-specific clinical tools and decision support systems to reduce BSIs in athletes, military personnel, and other active individuals.
Collapse
Affiliation(s)
- Elliot Paul
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, United States of America
| | - Anup Pant
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, United States of America
| | - Stephanie George
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, United States of America
| | - John Willson
- Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States of America
| | - Stacey Meardon
- Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States of America
| | - Ali Vahdati
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
18
|
Middleton K, Vickery-Howe D, Dascombe B, Clarke A, Wheat J, McClelland J, Drain J. Mechanical Differences between Men and Women during Overground Load Carriage at Self-Selected Walking Speeds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3927. [PMID: 35409609 PMCID: PMC8997774 DOI: 10.3390/ijerph19073927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Few studies have directly compared physical responses to relative loading strategies between men and women during overground walking. This study aimed to compare gait mechanics of men and women during overground load carriage. A total of 30 participants (15 male, 15 female) completed three 10-min walking trials while carrying external loads of 0%, 20% and 40% of body mass at a self-selected walking speed. Lower-body motion and ground reaction forces were collected using a three-dimensional motion capture system and force plates, respectively. Female participants walked with a higher cadence (p = 0.002) and spent less absolute time in stance (p = 0.010) but had similar self-selected walking speed (p = 0.750), which was likely due to the female participants being shorter than the male participants. Except for ankle plantarflexion moments, there were no sex differences in spatiotemporal, kinematic, or kinetic variables (p > 0.05). Increasing loads resulted in significantly lower self-selected walking speed, greater stance time, and changes in all joint kinematics and kinetics across the gait cycle (p < 0.05). In conclusion, there were few differences between sexes in walking mechanics during overground load carriage. The changes identified in this study may inform training programs to increase load carriage performance.
Collapse
Affiliation(s)
- Kane Middleton
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Danielle Vickery-Howe
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Ben Dascombe
- Applied Sport Science and Exercise Testing Laboratory, School of Life and Environmental Sciences, University of Newcastle, Ourimbah 2258, Australia;
| | - Anthea Clarke
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Jon Wheat
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK;
| | - Jodie McClelland
- Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia;
| | - Jace Drain
- Land Division, Defence Science and Technology Group, Fishermans Bend 3207, Australia;
| |
Collapse
|
19
|
Kale NN, Wang CX, Wu VJ, Miskimin C, Mulcahey MK. Age and Female Sex Are Important Risk Factors for Stress Fractures: A Nationwide Database Analysis. Sports Health 2022; 14:805-811. [PMID: 35243941 PMCID: PMC9631038 DOI: 10.1177/19417381221080440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Stress fractures are caused by micro-trauma due to repetitive stress on bone, common in active individuals and athletes. Previous studies demonstrate that the weightbearing bones of the lower extremities incur stress fractures most often, especially in women and older adults. HYPOTHESIS Prior literature does not quantify the difference in frequency of stress fractures among different genders, age groups, or body mass indices (BMIs). We hypothesized that older female patients would have higher rates of lower extremity stress fractures than male patients. STUDY DESIGN Epidemiological research. LEVEL OF EVIDENCE Level 3. METHODS Records of female and male patients with lower extremity stress fractures from 2010 to 2018 were identified from the PearlDiver administrative claims database using the International Classification of Diseases (ICD)-9/ICD-10 codes. Stress fractures were classified by ICD-10 diagnosis codes to the tibial bone, proximal femur, phalanges, and other foot bones. Comorbidities were incorporated into a regression analysis. RESULTS Of 41,257 stress fractures identified, 30,555 (70.1%) were in women and 10,702 (25.9%) were in men. Our sample was older (>60 years old) (37.3%) and not obese (BMI <30 kg/m2, 37.1%). A greater proportion of female patients with stress fracture were older (P < 0.001) and had foot stress fractures (P < 0.001), while a greater proportion of male patients with stress fracture were younger than 19 years (P < 0.001) and had metatarsal (P < 0.001), hip (P = 0.002), and tibia stress fractures (P < 0.001). CONCLUSION Stress fractures commonly occur in women and older adults with low BMIs. Metatarsal and tibia stress fractures were the most common, and a greater proportion of women had foot stress fractures. CLINICAL RELEVANCE Our study examined the large-scale prevalence of different lower extremity stress fractures among a wide patient population sample of varying ages and BMIs. These findings can help clinicians identify active populations at greater risk for stress fracture injuries.
Collapse
Affiliation(s)
- Nisha N. Kale
- Tulane University School of Medicine,
New Orleans, Louisiana
| | - Cindy X. Wang
- Tulane University School of Medicine,
New Orleans, Louisiana
| | - Victor. J. Wu
- Department of Orthopedic Surgery,
McGovern Medical School, Houston, Texas
| | - Cadence Miskimin
- Department of Orthopaedic Surgery,
Tulane University School of Medicine, New Orleans, Louisiana
| | - Mary K. Mulcahey
- Department of Orthopaedic Surgery,
Tulane University School of Medicine, New Orleans, Louisiana,Mary K. Mulcahey, MD,
Department of Orthopaedic Surgery, Tulane University School of Medicine, 1430
Tulane Avenue, 8632, New Orleans, LA 70112 (
) (Twitter: @marykmulcaheymd)
| |
Collapse
|
20
|
Koltun KJ, Sekel NM, Bird MB, Lovalekar M, Mi Q, Martin BJ, Nindl BC. Tibial Bone Geometry Is Associated With Bone Stress Injury During Military Training in Men and Women. Front Physiol 2022; 13:803219. [PMID: 35222074 PMCID: PMC8874318 DOI: 10.3389/fphys.2022.803219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Bone stress injuries (BSI) are a common musculoskeletal condition among exercising and military populations and present a major burden to military readiness. The purpose of this investigation was to determine whether baseline measures of bone density, geometry, and strength, as assessed via peripheral quantitative computed tomography (pQCT), are predictive of tibial BSI during Marine Officer Candidates School training. Tibial pQCT scans were conducted prior to the start of physical training (n = 504; Male n = 382; Female n = 122) to measure volumetric bone mineral density (vBMD), geometry, robustness, and estimates of bone strength. Bone parameters were assessed at three tibial sites including the distal metaphysis (4% of tibial length measured from the distal endplate), mid-diaphysis (38% of tibial length measured from the distal endplate), and proximal diaphysis (66% of tibial length measured from the distal endplate). Injury surveillance data was collected throughout training. Four percent (n = 21) of the sample were diagnosed with a BSI at any anatomical site during training, 10 injuries were of the tibia. Baseline bone parameters were then tested for associations with the development of a tibial BSI during training and it was determined that cortical bone measures at diaphyseal (38 and 66%) sites were significant predictors of a prospective tibial BSI. At the mid-diaphysis (38% site), in a simple model and after adjusting for sex, age, and body size, total area [Odds Ratio (OR): 0.987, 0.983], endosteal circumference (OR: 0.853, 0.857), periosteal circumference (OR: 0.863, 0.824), and estimated bending strength (SSI; OR: 0.998, 0.997) were significant predictors of a BSI during training, respectively, such that lower values were associated with an increased likelihood of injury. Similarly, at the proximal diaphysis (66% site), total area (OR: 0.989, 0.985), endosteal circumference (OR: 0.855, 0.854), periosteal circumference (OR: 0.867, 0.823), robustness (OR: 0.007, 0.003), and SSI (OR: 0.998, 0.998) were also significant predictors of BSI in the simple and adjusted models, respectively, such that lower values were associated with an increased likelihood of injury. Results from this investigation support that narrower bones, with reduced circumference, lower total area, and lower estimated strength are associated with increased risk for tibial BSI during military training.
Collapse
Affiliation(s)
- Kristen J. Koltun
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Li N, Zhang Y, Hou S. Stress exposure status and associated factors among Chinese People's Armed Police personnel: A cross-sectional study. Front Psychiatry 2022; 13:1000981. [PMID: 36405900 PMCID: PMC9669384 DOI: 10.3389/fpsyt.2022.1000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND MG (Mass gathering) deployment is one of the primary duties of Chinese People's Armed Police (PAP) personnel. Due to prolonged and repeated deployments in difficult conditions and harsh climates, military personnel are exposed to multiple stressors. OBJECTIVES This study aims to understand the stress exposure status of armed police personnel during MG deployment and to explore its influencing factors. METHODS A cross-sectional study was conducted among PAP in 2021. We used a cluster random sampling to select 960 PAP personnel. Binary logistic regression was used to examine whether the stress exposure status was associated with factors such as demographics, health service utilization, and MG deployment. RESULTS Among 960 PAP personnel,83% of PAP personnel participated in MG in the past month, and 23.1% of PAP personnel suffered stress. The chi-square test showed that there were significant differences in MG'cycle time (p < 0.05). The binary logistic regression results showed that satisfaction with medical skills (p = 0.008), satisfaction with health environment (p = 0.031), satisfaction with medicine (OR = 0.640, 95%CI:0.436,0.938), and seeking health services (OR = 5.36, 95%CI:2.316,12.402) were associated with stress exposure status. However, age, and length of military service did not have any association with the stress exposure status of PAP personnel in this study. CONCLUSION This study demonstrated that stress exposure status among PAP personnel was associated with MG deployment, and health service utilization. These findings can help policy-makers and clinicians to relieve the stress of the armed police personnel, as well as provide a basis for developing military health service security plans.
Collapse
Affiliation(s)
- Nan Li
- College of Management and Economics, Tianjin University, Tianjin, China
| | - Yongzhong Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
22
|
Lennox GM, Wood PM, Schram B, Canetti EFD, Simas V, Pope R, Orr R. Non-Modifiable Risk Factors for Stress Fractures in Military Personnel Undergoing Training: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:422. [PMID: 35010681 PMCID: PMC8744653 DOI: 10.3390/ijerph19010422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
A fracture, being an acquired rupture or break of the bone, is a significant and debilitating injury commonly seen among athletes and military personnel. Stress fractures, which have a repetitive stress aetiology, are highly prevalent among military populations, especially those undergoing training. The primary aim of this review is to identify non-modifiable risk factors for stress fractures in military personnel undergoing training. A systematic search was conducted of three major databases to identify studies that explored risk factors for stress fractures in military trainees. Critical appraisal, data extraction, and a narrative synthesis were conducted. Sixteen articles met the eligibility criteria for the study. Key non-modifiable risk factors identified were prior stress fracture and menstrual dysfunction, while advancing age and race other than black race may be a risk factor. To reduce the incidence of stress fractures in military trainees, mitigating modifiable risk factors among individuals with non-modifiable risk factors (e.g., optimising conditioning for older trainees) or better accommodating non-modifiable factors (for example, extending training periods and reducing intensity to facilitate recovery and adaptation) are suggested, with focus on groups at increased risk identified in this review.
Collapse
Affiliation(s)
- Grace M. Lennox
- Doctor of Physiotherapy Program, Bond University, Gold Coast, QLD 4226, Australia; (G.M.L.); (P.M.W.); (E.F.D.C.); (R.P.); (R.O.)
| | - Patrick M. Wood
- Doctor of Physiotherapy Program, Bond University, Gold Coast, QLD 4226, Australia; (G.M.L.); (P.M.W.); (E.F.D.C.); (R.P.); (R.O.)
| | - Ben Schram
- Doctor of Physiotherapy Program, Bond University, Gold Coast, QLD 4226, Australia; (G.M.L.); (P.M.W.); (E.F.D.C.); (R.P.); (R.O.)
- Tactical Research Unit, Bond University, Gold Coast, QLD 4226, Australia;
| | - Elisa F. D. Canetti
- Doctor of Physiotherapy Program, Bond University, Gold Coast, QLD 4226, Australia; (G.M.L.); (P.M.W.); (E.F.D.C.); (R.P.); (R.O.)
- Tactical Research Unit, Bond University, Gold Coast, QLD 4226, Australia;
| | - Vini Simas
- Tactical Research Unit, Bond University, Gold Coast, QLD 4226, Australia;
| | - Rodney Pope
- Doctor of Physiotherapy Program, Bond University, Gold Coast, QLD 4226, Australia; (G.M.L.); (P.M.W.); (E.F.D.C.); (R.P.); (R.O.)
- Tactical Research Unit, Bond University, Gold Coast, QLD 4226, Australia;
- School of Community Health, Charles Sturt University, Albury-Wodonga, NSW 2640, Australia
| | - Robin Orr
- Doctor of Physiotherapy Program, Bond University, Gold Coast, QLD 4226, Australia; (G.M.L.); (P.M.W.); (E.F.D.C.); (R.P.); (R.O.)
- Tactical Research Unit, Bond University, Gold Coast, QLD 4226, Australia;
| |
Collapse
|
23
|
Giersch GEW, Charkoudian N, McClung HL. The Rise of the Female Warfighter: Physiology, Performance, and Future Directions. Med Sci Sports Exerc 2021; 54:683-691. [PMID: 34939610 DOI: 10.1249/mss.0000000000002840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Since 1948, the United States military has been open to both men and women as permanent party service members. However, in the majority of the time since, there have been a subset of military occupational specialties (MOS), or job descriptions, open only to men. In particular, jobs requiring more intense physical and/or environmental strain were considered to be beyond the physiological capabilities of women. In the present analysis, we review the literature regarding neuromuscular, physical performance, and environmental physiology in women, to highlight that women have no inherent limitation in their capacity to participate in relevant roles and jobs within the military, within accepted guidelines to promote risk mitigation across sexes. First, we discuss performance and injury risk: both neuromuscular function and physical capabilities. Second, physiological responses to environmental stress. Third, we discuss risk as it relates to reproductive health and nutritional considerations. We conclude with a summary of current physiological, performance and injury risk data in men and women that support our overarching purpose, as well as suggestions for future directions.
Collapse
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, MA Biophysical and Biomedical Modeling Division, United States Army Research Institute of Environmental Medicine, Natick, MA Oak Ridge Institute for Science and Technology, Oak Ridge, TN
| | | | | |
Collapse
|
24
|
Sammito S, Hadzic V, Karakolis T, Kelly KR, Proctor SP, Stepens A, White G, Zimmermann WO. Risk factors for musculoskeletal injuries in the military: a qualitative systematic review of the literature from the past two decades and a new prioritizing injury model. Mil Med Res 2021; 8:66. [PMID: 34886915 PMCID: PMC8662851 DOI: 10.1186/s40779-021-00357-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Musculoskeletal injuries (MSkIs) are a leading cause of health care utilization, as well as limited duty and disability in the US military and other armed forces. MSkIs affect members of the military during initial training, operational training, and deployment and have a direct negative impact on overall troop readiness. Currently, a systematic overview of all risk factors for MSkIs in the military is not available. METHODS A systematic literature search was carried out using the PubMed, Ovid/Medline, and Web of Science databases from January 1, 2000 to September 10, 2019. Additionally, a reference list scan was performed (using the "snowball method"). Thereafter, an international, multidisciplinary expert panel scored the level of evidence per risk factor, and a classification of modifiable/non-modifiable was made. RESULTS In total, 176 original papers and 3 meta-analyses were included in the review. A list of 57 reported potential risk factors was formed. For 21 risk factors, the level of evidence was considered moderate or strong. Based on this literature review and an in-depth analysis, the expert panel developed a model to display the most relevant risk factors identified, introducing the idea of the "order of importance" and including concepts that are modifiable/non-modifiable, as well as extrinsic/intrinsic risk factors. CONCLUSIONS This is the qualitative systematic review of studies on risk factors for MSkIs in the military that has attempted to be all-inclusive. A total of 57 different potential risk factors were identified, and a new, prioritizing injury model was developed. This model may help us to understand risk factors that can be addressed, and in which order they should be prioritized when planning intervention strategies within military groups.
Collapse
Affiliation(s)
- Stefan Sammito
- Section Experimental Aerospace Medicine Research, German Air Force Centre of Aerospace Medicine, Flughafenstraße 1, 51147 Cologne, Germany
- Occupational Medicine, Faculty of Medicine, Otto-Von-Guericke-University of Magdeburg, 39120 Magdeburg, Germany
| | - Vedran Hadzic
- Faculty of Sport, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Thomas Karakolis
- Defence Research and Development Canada, Toronto, ON M3K 2C9 Canada
| | - Karen R. Kelly
- Warfighter Performance, Naval Health Research Center, San Diego, CA 92106-3599 USA
| | - Susan P. Proctor
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA 01760 USA
- Research Service, VA Boston Healthcare System, Boston, MA 02130 USA
| | - Ainars Stepens
- Centre for Military Medicine Research, Riga Stradins University, Riga, 1007 Latvia
| | - Graham White
- Human and Social Sciences Group, Defense Science and Technology Laboratory, Portsdown Hill Road, Fareham, PO17 6AD UK
| | - Wes O. Zimmermann
- Department of Military Sports Medicine, Royal Netherlands Army, 3584 AB Utrecht, The Netherlands
- Department of Military/Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| |
Collapse
|
25
|
Crawford KL, Finnane A, Greer RM, Barnes TS, Phillips CJC, Woldeyohannes SM, Bishop EL, Perkins NR, Ahern BJ. Survival Analysis of Training Methodologies and Other Risk Factors for Musculoskeletal Injury in 2-Year-Old Thoroughbred Racehorses in Queensland, Australia. Front Vet Sci 2021; 8:698298. [PMID: 34796223 PMCID: PMC8593238 DOI: 10.3389/fvets.2021.698298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Musculoskeletal injuries remain a global problem for the Thoroughbred racing industry and there is conflicting evidence regarding the effect of age on the incidence of injuries. The ideal time to commence race training is strongly debated, with limited supporting literature. There is also conflicting evidence regarding the effect of high-speed exercise on musculoskeletal injuries. There is a strong interest in developing training and management strategies to reduce the frequency of injuries. The types of musculoskeletal injuries vary between 2-year-old and older horses, with dorsal metacarpal disease the most common injury in 2-year-old horses. It is likely that risk factors for injury in 2-year-old horses are different than those for older horses. It is also likely that the risk factors may vary between types of injury. This study aimed to determine the risk factors for musculoskeletal injuries and dorsal metacarpal disease. We report the findings of a large scale, prospective observational study of 2-year-old horses in Queensland, Australia. Data were collected weekly for 56-weeks, from 26 trainers, involving 535 2-year-old Thoroughbred racehorses, 1, 258 training preparations and 7, 512-weeks of exercise data. A causal approach was used to develop our statistical models, to build on the existing literature surrounding injury risk, by incorporating the previously established causal links into our analyses. Where previous data were not available, industry experts were consulted. Survival analyses were performed using Cox proportional hazards or Weibull regression models. Analysis of musculoskeletal injuries overall revealed the hazard was reduced with increased exposure to high-speed exercise [Hazard ratio (HR) 0.89, 95% Confidence Interval (CI) 0.84, 0.94, p < 0.001], increased number of training preparations (HR 0.58, 95% CI 0.50, 0.67, p < 0.001), increased rest before the training preparation (HR 0.89, 95% CI 0.83, 0.96, p = 0.003) and increased dam parity (HR 0.86, 95% CI 0.77, 0.97, p = 0.01). The hazard of injury was increased with increasing age that training commenced (HR 1.13, 95% CI 1.06, 1.19, p < 0.001). Analyses were then repeated with the outcome of interest dorsal metacarpal disease. Factors that were protective against dorsal metacarpal disease and musculoskeletal injuries overall included: increased total cumulative distance (HR 0.89, 95% CI 0.82, 0.97, p = 0.001) and total cumulative days exercised as a gallop (HR 0.96, 95% CI 0.92, 0.99, p = 0.03), the number of the training preparations (HR 0.43, 95% CI 0.30, 0.61, p < 0.001). The age that training commenced was harmful for both dorsal metacarpal disease (HR 1.17, 95% CI 1.07, 1.28, p < 0.001 and overall musculoskeletal injuries.). The use of non-ridden training modalities was protective for dorsal metacarpal disease (HR 0.89, 95% CI 0.81, 0.97, p = 0.008), but not musculoskeletal injuries overall. The male sex increased the hazard of DMD compared to females (HR 2.58, 95% CI 1.20, 5.56, p = 0.02), but not MSI overall. In summary, the hazard of musculoskeletal injury is greatest for 2-year-old horses that are born from uniparous mares, commence training at a later age, are in their first training preparation, have undertaken little high-speed exercise or had limited rest before their training preparation. The hazard of dorsal metacarpal disease is greatest for 2-year-old horses that are males, commence training at a later age, are in their first training preparation, have undertaken little high-speed exercise or had limited use of non-ridden training modalities. Close monitoring of these high-risk horses during their training program could substantially reduce the impact of MSI. Furthermore, an understanding of how training methodologies affect the hazard of MSI facilitates modification of training programs to mitigate the risk impact of injury. The strengths of this study include a large sample size, a well-defined study protocol and direct trainer interviews. The main limitation is the inherent susceptibility to survival bias.
Collapse
Affiliation(s)
- Kylie L Crawford
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,School of Public Health, The University of Queensland, Herston, QLD, Australia
| | - Anna Finnane
- School of Public Health, The University of Queensland, Herston, QLD, Australia
| | - Ristan M Greer
- Torus Research, Bridgeman Downs, QLD, Australia.,Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tamsin S Barnes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, Australia
| | - Clive J C Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA, Australia
| | | | - Emma L Bishop
- Garrards Equine Veterinary Practice, Albion, QLD, Australia
| | - Nigel R Perkins
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Benjamin J Ahern
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
26
|
Ueno M, Zhang N, Hirata H, Barati D, Utsunomiya T, Shen H, Lin T, Maruyama M, Huang E, Yao Z, Wu JY, Zwingenberger S, Yang F, Goodman SB. Sex Differences in Mesenchymal Stem Cell Therapy With Gelatin-Based Microribbon Hydrogels in a Murine Long Bone Critical-Size Defect Model. Front Bioeng Biotechnol 2021; 9:755964. [PMID: 34738008 PMCID: PMC8560789 DOI: 10.3389/fbioe.2021.755964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy and novel biomaterials are promising strategies for healing of long bone critical size defects. Interleukin-4 (IL-4) over-expressing MSCs within a gelatin microribbon (µRB) scaffold was previously shown to enhance the bridging of bone within a critical size femoral bone defect in male Balb/c mice. Whether sex differences affect the healing of this bone defect in conjunction with different treatments is unknown. In this study, we generated 2-mm critical-sized femoral diaphyseal bone defects in 10–12-week-old female and male Balb/c mice. Scaffolds without cells and with unmodified MSCs were implanted immediately after the primary surgery that created the bone defect; scaffolds with IL-4 over-expressing MSCs were implanted 3 days after the primary surgery, to avoid the adverse effects of IL-4 on the initial inflammatory phase of fracture healing. Mice were euthanized 6 weeks after the primary surgery and femurs were collected. MicroCT (µCT), histochemical and immunohistochemical analyses were subsequently performed of the defect site. µRB scaffolds with IL-4 over-expressing MSCs enhanced bone healing in both female and male mice. Male mice showed higher measures of bone bridging and increased alkaline phosphatase (ALP) positive areas, total macrophages and M2 macrophages compared with female mice after receiving scaffolds with IL-4 over-expressing MSCs. Female mice showed higher Tartrate-Resistant Acid Phosphatase (TRAP) positive osteoclast numbers compared with male mice. These results demonstrated that sex differences should be considered during the application of MSC-based studies of bone healing.
Collapse
Affiliation(s)
- Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Danial Barati
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Joy Y Wu
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
27
|
Barbeau P, Michaud A, Hamel C, Rice D, Skidmore B, Hutton B, Garritty C, da Silva DF, Semeniuk K, Adamo KB. Musculoskeletal Injuries Among Females in the Military: A Scoping Review. Mil Med 2021; 186:e903-e931. [PMID: 33367692 DOI: 10.1093/milmed/usaa555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Musculoskeletal injuries (MSKi) are a common challenge for those in military careers. Compared to their male peers, reports indicate that female military members and recruits are at greater risk of suffering MSKi during training and deployment. The objectives of this study were to identify the types and causes of MSKi among female military personnel and to explore the various risk factors associated with MSKi. MATERIALS AND METHODS A scoping review was conducted over a 4-month time frame of English language, peer-reviewed studies published from 1946 to 2019. Search strategies for major biomedical databases (e.g., MEDLINE; Embase Classic + Embase; and the following EBM Reviews-Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Health Technology Assessment, and the NHS Economic Evaluation Database) were developed by a senior medical information specialist and included 2,891 titles/abstracts. Study selection and data collection were designed according to the Population, Concept, and Context framework. Studies were included if the study population provided stratified data for females in a military context. RESULTS From a total of 2,287 citations captured from the literature searches, 168 peer-reviewed publications (144 unique studies) were eligible for inclusion. Studies were identified from across 10 countries and published between 1977 and 2019. Study designs were primarily prospective and retrospective cohorts. Most studies assessed both prevalence/incidence and risk factors for MSKi (62.50%), with few studies assessing cause (13.69%). For MSKi of female recruits compared to active female members, the prevalence was higher (19.7%-58.3% vs. 5.5%-56.6%), but the incidence (0.02%-57.7% vs. 13.5%-71.9%) was lower. The incidence of stress fractures was found to be much higher in female recruits than in active members (1.6%-23.9% vs. 2.7%). For anthropometric risk factors, increased body fat was a predictor of MSKi, but not stress fractures. For physiological risk factors for both female military groups, being less physically fit, later menarche, and having no/irregular menses were predictors of MSKi and stress fractures. For biomechanical risk factors, among female recruits, longer tibial length and femoral neck diameter increased the risk of stress fractures, and low foot arch increased risk of an ankle sprain. For female active military members, differences in shoulder rotation and bone strength were associated with risk of MSKi. For biological sex, being female compared to male was associated with an increased risk of MSKi, stress fractures, and general injuries. The consequences of experiencing MSKi for active military included limited duties, time off, and discharge. For recruits, these included missed training days, limited duty days, and release. CONCLUSIONS This scoping review provides insight into the current state of the evidence regarding the types and causes of MSKi, as well as the factors that influence MSKi among females in the military. Future research endeavors should focus on randomized controlled trials examining training paradigms to see if women are more susceptible. The data presented in the scoping review could potentially be used to develop training strategies to mitigate some of the identified barriers that negatively impact women from pursuing careers in the military.
Collapse
Affiliation(s)
- Pauline Barbeau
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Alan Michaud
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Candyce Hamel
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Danielle Rice
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Becky Skidmore
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Brian Hutton
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Chantelle Garritty
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Danilo F da Silva
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevin Semeniuk
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
28
|
Baker BS, Buchanan SR, Black CD, Bemben MG, Bemben DA. Bone, Biomarker, Body Composition, and Performance Responses to 8 Weeks of ROTC Training. J Athl Train 2021; 57:571-580. [PMID: 34279654 DOI: 10.4085/1062-6050-0634.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Military personnel engage in vigorous exercise, often resulting in higher bone mineral density; however, lower leg bone injuries are common in this population. Predictors of change in tibial bone quality and strength need to be characterized in this high-risk population. OBJECTIVE This study aimed to examine the effects of an eight-week military training intervention on total body and site-specific bone density and tibial bone quality, serum biomarkers (parathyroid hormone and sclerostin), body composition, and physical performance. Additionally, we sought to investigate what outcome variables (biomarkers, body composition, physical performance) would be predictive of estimated tibial bone strength in college-aged Reserve Officers' Training Corps (ROTC) members. DESIGN Prospective Cohort Study. SETTING XXX University. Patients of Other Participants: ROTC (n=14 male; n=4 female) were matched for sex, age, and body mass to physically active Controls (n=14 male; n=4 female). ROTC engaged in an eight-week training intervention, while physically active Controls made no changes to their exercise routines. MAIN OUTCOME MEASURES Pre general health questionnaires and pre, mid, and post intervention bone scans (DXA, pQCT), serum blood draws (parathyroid hormone and sclerostin), and physical performance measures (muscle strength and aerobic capacity) were tested. RESULTS ROTC participants exhibited significantly increased hip bone density and content (all p≤0.03) after the eight-week intervention. Sclerostin, not PTH, was a significant positive correlate and predictor in all ROTC models for estimated bone strength at the fracture prone 38% tibial site. Both groups decreased total body and regional fat mass and ROTC increased aerobic capacity (all p≤0.05). CONCLUSIONS All bone, body composition, and performance measures either improved or were maintained in response to ROTC training and sclerostin should be further investigated as a potential early indicator of changes in estimated tibial bone strength in military cohorts.
Collapse
Affiliation(s)
- Breanne S Baker
- Department of Orthopaedic Surgery, Missouri Orthopaedic Institute, University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, Office: 573-882-3038, , Twitter @DrBreeBaker-Also affiliated with the Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Samuel R Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, 78539. -Also affiliated with the Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Christopher D Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071, Twitter @ChrisBlack_PhD
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Debra A Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| |
Collapse
|
29
|
Hughes JM, O'Leary TJ, Koltun KJ, Greeves JP. Promoting adaptive bone formation to prevent stress fractures in military personnel. Eur J Sport Sci 2021; 22:4-15. [PMID: 34269162 DOI: 10.1080/17461391.2021.1949637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mechanical loading leads to adaptive bone formation - the formation of new bone on existing skeletal surfaces - which increases bone strength and fatigue resistance. The same mechanical loading can also cause microdamage to bone and development of a stress fracture through targeted remodelling. Stress fractures are common in military recruits and cause significant morbidity, lost training time, and discharge from military service. This narrative review proposes strategies to promote adaptive bone formation as a novel approach to mitigate the risk of stress fracture injuries during arduous military training. Exercise that is unaccustomed, dynamic, high-impact, multidirectional, intermittent, and includes extended rest periods to restore bone mechanosensitivity, is most osteogenic. New bone formation can take up to one year to mineralize, and so new exercise training programmes should be initiated well in advance of military activities with high risk of stress fracture. Bone mechanosensitivity is highest in adolescence, before puberty, and so increasing physical activity in youth is likely to protect skeletal health in later life, including for those in the military. Recent data show that adaptive bone formation takes place during initial military training. Adaptive bone formation can also be supported with adequate sleep, vitamin D, calcium, and energy availability. Further evidence on how strategies to promote adaptive bone formation affect stress fracture risk are required. Adaptive bone formation can be optimized with a range of training and nutritional strategies to help create a resilient skeleton, which may protect against stress fracture throughout military service.
Collapse
Affiliation(s)
- Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Kristen J Koltun
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PN, USA
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, UK.,Division of Surgery and Interventional Science, University College London, London, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
30
|
Warden SJ, Edwards WB, Willy RW. Preventing Bone Stress Injuries in Runners with Optimal Workload. Curr Osteoporos Rep 2021; 19:298-307. [PMID: 33635519 PMCID: PMC8316280 DOI: 10.1007/s11914-021-00666-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Bone stress injuries (BSIs) occur at inopportune times to invariably interrupt training. All BSIs in runners occur due to an "error" in workload wherein the interaction between the number and magnitude of bone tissue loading cycles exceeds the ability of the tissue to resist the repetitive loads. There is not a single optimal bone workload, rather a range which is influenced by the prevailing scenario. In prepubertal athletes, optimal bone workload consists of low-repetitions of fast, high-magnitude, multidirectional loads introduced a few times per day to induce bone adaptation. Premature sports specialization should be avoided so as to develop a robust skeleton that is structurally optimized to withstand multidirectional loading. In the mature skeleton, optimal workload enables gains in running performance but minimizes bone damage accumulation by sensibly progressing training, particularly training intensity. When indicated (e.g., following repeated BSIs), attempts to reduce bone loading magnitude should be considered, such as increasing running cadence. Determining the optimal bone workload for an individual athlete to prevent and manage BSIs requires consistent monitoring. In the future, it may be possible to clinically determine bone loads at the tissue level to facilitate workload progressions and prescriptions.
Collapse
Affiliation(s)
- Stuart J Warden
- Department of Physical Therapy, School of Health & Human Sciences, Indiana University, 1140 W. Michigan St., CF-124, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA.
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia.
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Richard W Willy
- School of Physical Therapy & Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
31
|
O'Leary TJ, Rice HM, Greeves JP. Biomechanical Basis of Predicting and Preventing Lower Limb Stress Fractures During Arduous Training. Curr Osteoporos Rep 2021; 19:308-317. [PMID: 33635518 DOI: 10.1007/s11914-021-00671-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Stress fractures at weight-bearing sites, particularly the tibia, are common in military recruits and athletes. This review presents recent findings from human imaging and biomechanics studies aimed at predicting and preventing stress fractures. RECENT FINDINGS Peripheral quantitative computed tomography (pQCT) provides evidence that cortical bone geometry (tibial width and area) is associated with tibial stress fracture risk during weight-bearing exercise. The contribution of bone trabecular microarchitecture, cortical porosity, and bone material properties in the pathophysiology of stress fractures is less clear, but high-resolution pQCT and new techniques such as impact microindentation may improve our understanding of the role of microarchitecture and material properties in stress fracture prediction. Military studies demonstrate osteogenic outcomes from high impact, repetitive tibial loading during training. Kinetic and kinematic characteristics may influence stress fracture risk, but there is no evidence that interventions to modify biomechanics can reduce the incidence of stress fracture. Strategies to promote adaptive bone formation, in combination with improved techniques to assess bone strength, present exciting opportunities for future research to prevent stress fractures.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | - Hannah M Rice
- Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK.
- Division of Surgery and Interventional Science, UCL, London, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
32
|
Effects of Low Energy Availability on Bone Health in Endurance Athletes and High-Impact Exercise as A Potential Countermeasure: A Narrative Review. Sports Med 2021; 51:391-403. [PMID: 33346900 PMCID: PMC7900047 DOI: 10.1007/s40279-020-01396-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endurance athletes expend large amounts of energy in prolonged high-intensity exercise and, due to the weight-sensitive nature of most endurance sports, often practice periods of dietary restriction. The Female Athlete Triad and Relative Energy Deficiency in Sport models consider endurance athletes at high-risk for suffering from low energy availability and associated health complications, including an increased chance of bone stress injury. Several studies have examined the effects of low energy availability on various parameters of bone structure and markers of bone (re)modelling; however, there are differences in findings and research methods and critical summaries are lacking. It is difficult for athletes to reduce energy expenditure or increase energy intake (to restore energy availability) in an environment where performance is a priority. Development of an alternative tool to help protect bone health would be beneficial. High-impact exercise can be highly osteogenic and energy efficient; however, at present, it is rarely utilized to promote bone health in endurance athletes. Therefore, with a view to reducing the prevalence of bone stress injury, the objectives of this review are to evaluate the effects of low energy availability on bone health in endurance athletes and explore whether a high-impact exercise intervention may help to prevent those effects from occurring.
Collapse
|
33
|
Conkright WR, O'Leary TJ, Wardle SL, Greeves JP, Beckner ME, Nindl BC. SEX DIFFERENCES IN THE PHYSICAL PERFORMANCE, PHYSIOLOGICAL, AND PSYCHO-COGNITIVE RESPONSES TO MILITARY OPERATIONAL STRESS. Eur J Sport Sci 2021; 22:99-111. [PMID: 33840352 DOI: 10.1080/17461391.2021.1916082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combat roles are physically demanding and expose service personnel to operational stressors such as high levels of physical activity, restricted nutrient intake, sleep loss, psychological stress, and environmental extremes. Women have recently integrated into combat roles, but our knowledge of the physical, physiological, and psycho-cognitive responses to these operational stressors in women is limited. The aim of this narrative review was to evaluate the evidence for sex-specific physical, physiological, and psycho-cognitive responses to real, and simulated, military operational stress. Studies examining physical and cognitive performance, body composition, metabolism, hypothalamic-pituitary-gonadal axis, and psychological health outcomes were evaluated. These studies report that women expend less energy and lose less body mass and fat-free mass, but not fat mass, than men. Despite having similar physical performance decrements as men during operational stress, women experience greater physiological strain than men completing the same physical tasks, but this may be attributed to differences in fitness. From limited data, military operational stress suppresses hypothalamic-pituitary-gonadal, but not hypothalamic-pituitary-adrenal, axis function in both sexes. Men and women demonstrate different psychological and cognitive responses to operational stress, including disturbances in mood, with women having a higher risk of post-traumatic stress symptoms compared with men. Based on current evidence, separate strategies to maximize selection and combat training are not warranted until further data directly comparing men and women are available. However, targeted exercise training programs may be advisable to offset the physical performance gap between sexes and optimize performance prior to inevitable declines caused by intense military operations.
Collapse
Affiliation(s)
- William R Conkright
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory & Warrior Human Performance Research Center, University of Pittsburgh, United States
| | - Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Meaghan E Beckner
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory & Warrior Human Performance Research Center, University of Pittsburgh, United States
| | - Bradley C Nindl
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory & Warrior Human Performance Research Center, University of Pittsburgh, United States
| |
Collapse
|
34
|
Rudolph SE, Caksa S, Gehman S, Garrahan M, Hughes JM, Tenforde AS, Ackerman KE, Bouxsein ML, Popp KL. Physical Activity, Menstrual History, and Bone Microarchitecture in Female Athletes with Multiple Bone Stress Injuries. Med Sci Sports Exerc 2021; 53:2182-2189. [PMID: 33831898 PMCID: PMC8440446 DOI: 10.1249/mss.0000000000002676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone stress injuries (BSIs) occur in up to 20% of runners and military recruits and those with a history of BSI have a 5-fold higher risk for a subsequent BSI. Yet, little is known about prior training, menstrual status and bone structure in runners who experience multiple BSIs. PURPOSE To determine differences in health and physical activity history, bone density, microarchitecture, and strength among female athletes with a history of multiple BSI, athletes with ≤1 BSI, and non-athletes. METHODS We enrolled 101 women (ages 18-32 years) for this cross-sectional study: non-athlete controls (n=17) and athletes with a history of ≥ 3 BSIs (n=21) or ≤1 BSI (n=63). We collected subjects' health and training history and measured bone microarchitecture of the distal tibia via high-resolution peripheral quantitative computed tomography (HR-pQCT) and areal bone mineral density (aBMD) of the hip and spine by dual-energy X-ray absorptiometry (DXA). RESULTS Groups did not differ according to age, BMI, age at menarche, aBMD, or tibial bone microarchitecture. Women with multiple BSIs had a higher prevalence of primary and secondary amenorrhea (p<0.01) compared to other groups. Total hours of physical activity in middle school were similar across groups; however, women with multiple BSIs performed more total hours of physical activity in high school (p=0.05), more hours of uniaxial loading in both middle school and high school (p=0.004, p=0.02) and a smaller proportion of multiaxial loading activity compared to other groups. CONCLUSION These observations suggest that participation in sports with multiaxial loading and maintaining normal menstrual status during adolescence and young adulthood may reduce the risk of multiple bone stress injuries.
Collapse
Affiliation(s)
- Sara E Rudolph
- Massachusetts General Hospital, Boston, MA United States Army Research Institute of Environmental Medicine, Natick MA Harvard Medical School, Boston MA Spaulding Rehabilitation Hospital, Cambridge MA Boston Children's Hospital, Boston MA Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
High Cortico-Trabecular Transitional Zone Porosity and Reduced Trabecular Density in Men and Women with Stress Fractures. J Clin Med 2021; 10:jcm10051123. [PMID: 33800284 PMCID: PMC7962637 DOI: 10.3390/jcm10051123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
To determine whether stress fractures are associated with bone microstructural deterioration we quantified distal radial and the unfractured distal tibia using high resolution peripheral quantitative computed tomography in 26 cases with lower limb stress fractures (15 males, 11 females; mean age 37.1 ± 3.1 years) and 62 age-matched healthy controls (24 males, 38 females; mean age 35.0 ± 1.6 years). Relative to controls, in men, at the distal radius, cases had smaller cortical cross sectional area (CSA) (p = 0.012), higher porosity of the outer transitional zone (OTZ) (p = 0.006), inner transitional zone (ITZ) (p = 0.043) and the compact-appearing cortex (CC) (p = 0.023) while trabecular vBMD was lower (p = 0.002). At the distal tibia, cases also had a smaller cortical CSA (p = 0.008). Cortical porosity was not higher, but trabecular vBMD was lower (p = 0.001). Relative to controls, in women, cases had higher distal radial porosity of the OTZ (p = 0.028), ITZ (p = 0.030) not CC (p = 0.054). Trabecular vBMD was lower (p = 0.041). Distal tibial porosity was higher in the OTZ (p = 0.035), ITZ (p = 0.009), not CC. Stress fractures are associated with compromised cortical and trabecular microstructure.
Collapse
|
36
|
Staab JS, Kolb AL, Tomlinson RE, Pajevic PD, Matheny RW, Hughes JM. Emerging evidence that adaptive bone formation inhibition by non-steroidal anti-inflammatory drugs increases stress fracture risk. Exp Biol Med (Maywood) 2021; 246:1104-1111. [PMID: 33641442 DOI: 10.1177/1535370221993098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is mounting evidence suggesting that the commonly used analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), may inhibit new bone formation with physical training and increase risk of stress fractures in physically active populations. Stress fractures are thought to occur when bones are subjected to repetitive mechanical loading, which can lead to a cycle of tissue microdamage, repair, and continued mechanical loading until fracture. Adaptive bone formation, particularly on the periosteal surface of long bones, is a concurrent adaptive response of bone to heightened mechanical loading that can improve the fatigue resistance of the skeletal structure, and therefore may play a critical role in offsetting the risk of stress fracture. Reports from animal studies suggest that NSAID administration may suppress this important adaptive response to mechanical loading. These observations have implications for populations such as endurance athletes and military recruits who are at risk of stress fracture and whose use of NSAIDs is widespread. However, results from human trials evaluating exercise and bone adaptation with NSAID consumption have been less conclusive. In this review, we identify knowledge gaps that must be addressed to further support NSAID-related guidelines intended for at-risk populations and individuals.
Collapse
Affiliation(s)
- Jeffery S Staab
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Alexander L Kolb
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Ronald W Matheny
- Military Operational Medicine Research Program, Fort Detrick, MD 21702, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| |
Collapse
|
37
|
Crawford KL, Finnane A, Phillips CJC, Greer RM, Woldeyohannes SM, Perkins NR, Kidd LJ, Ahern BJ. The Risk Factors for Musculoskeletal Injuries in Thoroughbred Racehorses in Queensland, Australia: How These Vary for Two-Year-Old and Older Horses and with Type of Injury. Animals (Basel) 2021; 11:ani11020270. [PMID: 33494508 PMCID: PMC7910838 DOI: 10.3390/ani11020270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Musculoskeletal injuries (MSI) continue to affect Thoroughbred racehorses internationally, despite over thirty years of research into this problem. Studies of risk factors for musculoskeletal injuries report inconsistent findings. Consequently, developing training strategies to mitigate the risk of MSI is difficult. We identified factors associated with particularly high odds of injury in this population of racehorses. Two-year-old horses from primiparous mares (first foals born) are at increased odds of MSI, particularly dorsal metacarpal disease (“shinsoreness”). Two-year-old horses that have had a total preparation length of between 10 and 14 weeks also have increased odds of injury. Horses of all ages that travelled a total distance of 2.4–3.8 km (12–19 furlongs) at a gallop (faster than 15 m/s; 13 s/furlong; 900 m/min; 55 km/h) in the last four weeks and horses three years and older that travelled 3.0–4.8 km (15–24 furlongs) at three-quarter pace and above (faster than 13 m/s; 15 s/furlong; 800 m/min; 48 km/h) also have increased odds of injury. We recommend that these horses should be monitored closely for impending signs of injury. We also observed a non-linear relationship between high-speed exercise and musculoskeletal injuries. This highlights the importance of high-speed exercise to enable tissue adaptation to training. Finally, in some situations, increasing the number of days worked at a slow pace may be more effective for preventing MSI, if horses are perceived at a higher risk, than resting the horse altogether. Early identification of horses at increased risk of injury and appropriate intervention could substantially reduce the impact of musculoskeletal injuries in Thoroughbred racehorses. Abstract Musculoskeletal injuries (MSI) continue to affect Thoroughbred racehorses internationally. There is a strong interest in developing training and management strategies to reduce their impact, however, studies of risk factors report inconsistent findings. Furthermore, many injuries and fatalities occur during training rather than during racing, yet most studies report racing data only. By combining racing and training data a larger exposure to risk factors and a larger number of musculoskeletal injuries are captured and the true effect of risk factors may be more accurately represented. Furthermore, modifications to reduce the impact of MSI are more readily implemented at the training level. Our study aimed to: (1) determine the risk factors for musculoskeletal injuries and whether these are different for two-year-old and older horses and (2) determine whether risk factors vary with type of injury. This was performed by repeating analyses by age category and injury type. Data from 202 cases and 202 matched controls were collected through weekly interviews with trainers and analysed using conditional logistic regression. Increasing dam parity significantly reduced the odds of injury in horses of all age groups because of the effect in two-year-old horses (odds ratio (OR) 0.08; 95% confidence interval (CI) 0.02, 0.36; p < 0.001). Increasing total preparation length is associated with higher odds of injury in horses of all ages (OR 5.56; 95% CI 1.59, 19.46; p = 0.01), but particularly in two-year-old horses (OR 8.05; 95% CI 1.92, 33.76; p = 0.004). Increasing number of days exercised at a slow pace decreased the odds of injury in horses of all ages (OR 0.09; 95% CI 0.03, 0.28; p < 0.001). The distance travelled at three-quarter pace and above (faster than 13 m/s; 15 s/furlong; 800 m/min; 48 km/h) and the total distance travelled at a gallop (faster than 15 m/s; 13 s/furlong; 900 m/min; 55 km/h) in the past four weeks significantly affected the odds of injury. There was a non-linear association between high-speed exercise and injury whereby the odds of injury initially increased and subsequently decreased as accumulated high-speed exercise distance increased. None of the racing career and performance indices affected the odds of injury. We identified horses in this population that have particularly high odds of injury. Two-year-old horses from primiparous mares are at increased odds of injury, particularly dorsal metacarpal disease. Two-year-old horses that have had a total preparation length of between 10 and 14 weeks also have increased odds of injury. Horses of all ages that travelled a total distance of 2.4–3.8 km (12–19 furlongs) at a gallop in the last four weeks and horses three years and older that travelled 3.0–4.8 km (15–24 furlongs) at three-quarter pace and above also have increased odds of injury. We recommend that these horses should be monitored closely for impending signs of injury. Increasing the number of days worked at a slow pace may be more effective for preventing injury, if horses are perceived at a higher risk, than resting the horse altogether. Early identification of horses at increased risk and appropriate intervention could substantially reduce the impact of musculoskeletal injuries in Thoroughbred racehorses.
Collapse
Affiliation(s)
- Kylie L. Crawford
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia; (S.M.W.); (N.R.P.); (L.J.K.); (B.J.A.)
- School of Public Health, The University of Queensland, Herston 4006, Australia;
- Correspondence:
| | - Anna Finnane
- School of Public Health, The University of Queensland, Herston 4006, Australia;
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth 6845, Australia;
| | - Ristan M. Greer
- Torus Research, Bridgeman Downs 4035, Australia;
- School of Medicine, The University of Queensland, Herston 4006, Australia
| | - Solomon M. Woldeyohannes
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia; (S.M.W.); (N.R.P.); (L.J.K.); (B.J.A.)
| | - Nigel R. Perkins
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia; (S.M.W.); (N.R.P.); (L.J.K.); (B.J.A.)
| | - Lisa J. Kidd
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia; (S.M.W.); (N.R.P.); (L.J.K.); (B.J.A.)
| | - Benjamin J. Ahern
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia; (S.M.W.); (N.R.P.); (L.J.K.); (B.J.A.)
| |
Collapse
|
38
|
Incident Musculoskeletal Conditions Among Men and Women Veterans Returning From Deployment. Med Care 2021; 58:1082-1090. [PMID: 32925458 DOI: 10.1097/mlr.0000000000001403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Military service confers an increased risk for musculoskeletal (MSK) injury among women and men Veterans. OBJECTIVE The objective of this study was to determine the prevalence of MSK conditions at first visit to Veterans Affairs (VA), and the incidence rates of new MSK conditions in women and men Veterans with and without a baseline MSK condition. DESIGN A cohort study including Veterans whose end of last deployment was between October 1, 2001 and October 1, 2015. SUBJECTS A total of 765,465 Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn Veterans. MAIN OUTCOME MEASURES Prevalent and incident MSK conditions identified through the International Classification of Diseases, ninth Revision, Clinical Modification diagnostic codes. RESULTS Twenty-six percent of women and 29% of men present to the VA with a MSK condition. In those without an MSK diagnosis at baseline, the unadjusted rate of developing at least 1 MSK condition was 168 and 180 per 1000 person-year [hazard ratio (HR)=0.94; 95% confidence interval (CI)=0.92-0.95] in women and men. Women were more likely to develop newly diagnosed MSK conditions of the hip (HR=1.9; 95% CI=1.83-1.98) or the ankle/foot (HR=1.17; 95% CI=1.15-1.20) and less likely to develop MSK conditions of the upper extremity (HR=0.75; 95% CI=0.73-0.78), knee (HR=0.87; 95% CI=0.86-0.89), and spine (HR=0.94; 95% CI=0.93-0.96). In those with prevalent MSK conditions at baseline, the rate of developing a second MSK condition was higher in women than men (151 and 133/1000 person-year; HR=1.13; 95% CI=1.11-1.15). CONCLUSIONS A high proportion of Veterans present to the VA with MSK conditions. Women are less likely to develop conditions related to the upper extremities, spine or knee, and more likely to have conditions of the hip or ankle/foot.
Collapse
|
39
|
Popp KL, Ackerman KE, Rudolph SE, Johannesdottir F, Hughes JM, Tenforde AS, Bredella MA, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML. Changes in Volumetric Bone Mineral Density Over 12 Months After a Tibial Bone Stress Injury Diagnosis: Implications for Return to Sports and Military Duty. Am J Sports Med 2021; 49:226-235. [PMID: 33259223 DOI: 10.1177/0363546520971782] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone stress injuries (BSIs) occur in up to 20% of runners and military personnel. Typically, after a period of unloading and gradual return to weightbearing activities, athletes return to unrestricted sports participation or military duty approximately 4 to 14 weeks after a BSI diagnosis, depending on the injury location and severity. However, the time course of the recovery of the bone's mechanical competence is not well-characterized, and reinjury rates are high. PURPOSE To assess the bone microarchitecture and volumetric bone mineral density (vBMD) over 12 months after a tibial BSI diagnosis. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS We enrolled 30 female athletes from the local community (aged 18-35 years) with a tibial BSI (grade ≥2 of 4 on magnetic resonance imaging) for this prospective observational study. Participants completed a baseline visit within 3 weeks of the diagnosis. At baseline and 6, 12, 24, and 52 weeks after the BSI diagnosis, we collected high-resolution peripheral quantitative computed tomography scans of the ultradistal tibia (4% of tibial length) of the injured and uninjured legs as well as pain and physical activity assessment findings. RESULTS From baseline to 12 weeks after the diagnosis, total, trabecular, and cortical vBMD declined by 0.58% to 0.94% (P < .05 for all) in the injured leg. Total and trabecular vBMD also declined by 0.61% and 0.67%, respectively, in the uninjured leg (P < .05 for both). At 24 weeks, mean values for all bone parameters were nearly equivalent to baseline values, and by 52 weeks, several mean values had surpassed baseline values. Of the 30 participants, 10 incurred a subsequent BSI during the course of the study, and 1 of these 10 incurred 2 subsequent BSIs. Participants who suffered an additional BSI were younger and had a later age of menarche, a greater incidence of previous fractures, and lower serum parathyroid hormone levels (P < .05 for all). CONCLUSION Bone density declined in both the injured and the uninjured legs and, on average, did not return to baseline for 3 to 6 months after a tibial BSI diagnosis. The observed time to the recovery of baseline vBMD, coupled with the high rate of recurrent BSIs, suggests that improved return-to-sports and military duty guidelines may be in order.
Collapse
Affiliation(s)
- Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Kathryn E Ackerman
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sara E Rudolph
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fjola Johannesdottir
- Harvard Medical School, Boston, Massachusetts, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Adam S Tenforde
- Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chun Xu
- Biotechnology High Performance Computing Software Applications Institute, Department of Defense, Frederick, Maryland, USA
| | - Ginu Unnikrishnan
- Biotechnology High Performance Computing Software Applications Institute, Department of Defense, Frederick, Maryland, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Department of Defense, Frederick, Maryland, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Yan C, Moshage SG, Kersh ME. Play During Growth: the Effect of Sports on Bone Adaptation. Curr Osteoporos Rep 2020; 18:684-695. [PMID: 33084999 DOI: 10.1007/s11914-020-00632-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The development of exercise interventions for bone health requires an understanding of normative growth trends. Here, we summarize changes in bone during growth and the effect of participating in sports on structural and compositional measures in different bones in males and females. RECENT FINDINGS Growing females and males have similar normalized density and bone area fraction until age 16, after which males continue increasing at a faster rate than females. All metrics for both sexes tend to plateau or decline in the early 20s. Areal BMD measures indicate significant heterogeneity in adaptation to sport between regions of the body. High-resolution CT data indicate changes in structure are more readily apparent than changes in density. While adaptation to sport is spatially heterogeneous, participation in weight-bearing activities that involve dynamic muscle contractions tends to result in increased bone adaptation.
Collapse
Affiliation(s)
- Chenxi Yan
- Tissue Biomechanics Lab, Department of Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sara G Moshage
- Tissue Biomechanics Lab, Department of Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mariana E Kersh
- Tissue Biomechanics Lab, Department of Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
41
|
Ficek K, Cyganik P, Rajca J, Racut A, Kiełtyka A, Grzywocz J, Hajduk G. Stress fractures in uncommon location: Six case reports and review of the literature. World J Clin Cases 2020; 8:4135-4150. [PMID: 33024772 PMCID: PMC7520796 DOI: 10.12998/wjcc.v8.i18.4135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Individuals' interest in sports activities has been increasing, contributing to more stress fracture occurrences in uncommon locations on the skeleton. In this study, several cases of stress fractures in atypical locations are presented, and the possibility of combining diagnostic methods to make accurate and quick diagnoses is explored. Additionally, different causes of stress fractures, as well as various modalities of treatment, are highlighted. Other potential factors of stress fractures were identified by a literature review. CASE SUMMARY Six cases of stress fractures in the calcaneus, intermediate cuneiform bone, sacrum, tibia (bilateral), navicular bone and femoral neck are presented, with different types of diagnostic imaging and treatments. All of the cases were associated with an aspect of mobility because all of the patients were physically active in various sport disciplines. CONCLUSION The type of therapeutic procedure selected should depend on the specific clinical case, i.e., the patient's condition and level of physical activity.
Collapse
Affiliation(s)
- Krzysztof Ficek
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun 43-150, Poland
- Department of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
| | - Paulina Cyganik
- Industry Cooperation Department, University of Silesia, Katowice 40-007, Poland
| | - Jolanta Rajca
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun 43-150, Poland
| | - Agnieszka Racut
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun 43-150, Poland
| | - Aleksandra Kiełtyka
- Diagnostic Imaging Department, Helimed Diagnostic Imaging, Katowice 40-760, Poland
| | - Jerzy Grzywocz
- Department of Spine Surgery, District Hospital of Orthopedics and Trauma Surgery, Piekary Śląskie 41-940, Poland
| | - Grzegorz Hajduk
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun 43-150, Poland
| |
Collapse
|
42
|
Husain E, Angioi M, Mehta R, Barnett DN, Okholm Kryger K. A systematic review of plantar pressure values obtained from male and female football and the test methodologies applied. FOOTWEAR SCIENCE 2020. [DOI: 10.1080/19424280.2020.1791977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Elham Husain
- Sports and Exercise Medicine, Queen Mary University of London, London, UK
| | - Manuela Angioi
- Sports and Exercise Medicine, Queen Mary University of London, London, UK
| | - Ritan Mehta
- The English Football Association, St. George’s Park, Burton-Upon-Trent, UK
| | | | | |
Collapse
|
43
|
Rice HM, Kenny M, Ellison MA, Fulford J, Meardon SA, Derrick TR, Hamill J. Tibial stress during running following a repeated calf-raise protocol. Scand J Med Sci Sports 2020; 30:2382-2389. [PMID: 32757284 DOI: 10.1111/sms.13794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Tibial stress fractures are a problematic injury among runners. Increased loading of the tibia has been observed following prolonged weight-bearing activity and is suggested to be the result of reduced activity of the plantar flexor muscles. The musculature that spans the tibia contributes to bending of the bone and influences the magnitude of stress on the tibia during running. Participant-specific models of the tibia can be used as a non-invasive estimate of tibial stress. This study aimed to quantify tibial stress during running using participant-specific bone geometry and to compare tibial stress before and after a protocol of repeated muscular contractions of the plantar flexor muscle group. Fourteen participants who run recreationally were included in the final analysis of the study. Synchronized force and kinematic data were collected during overground running before and after an exhaustive, weighted calf-raise protocol. Bending moments and stress at the distal third of the tibia were estimated using beam theory combined with inverse dynamics and musculoskeletal modeling. Bone geometry was obtained from magnetic resonance images. There was no difference in stress at the anterior, posterior, medial, or lateral peripheries of the tibia after the calf-raise protocol compared with before. These findings suggest that an exhaustive, repeated calf-raise protocol did not alter tibial stress during running.
Collapse
Affiliation(s)
- Hannah M Rice
- Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Megan Kenny
- Sport and Health Sciences, University of Exeter, Exeter, UK
| | | | - Jon Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Stacey A Meardon
- Department of Physical Therapy, East Carolina University, Greenville, NC, USA
| | | | - Joseph Hamill
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
44
|
Mauntel TC, Marshall SW, Hackney AC, Pietrosimone BG, Cameron KL, Peck KY, Trump JR, Padua DA. Trunk and Lower Extremity Movement Patterns, Stress Fracture Risk Factors, and Biomarkers of Bone Turnover in Military Trainees. J Athl Train 2020; 55:724-732. [PMID: 32702112 PMCID: PMC7384468 DOI: 10.4085/1062-6050-134-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Military service members commonly sustain lower extremity stress fractures (SFx). How SFx risk factors influence bone metabolism is unknown. Understanding how SFx risk factors influence bone metabolism may help to optimize risk-mitigation strategies. OBJECTIVE To determine how SFx risk factors influence bone metabolism. DESIGN Cross-sectional study. SETTING Military service academy. PATIENTS OR OTHER PARTICIPANTS Forty-five men (agepre = 18.56 ± 1.39 years, heightpre = 176.95 ± 7.29 cm, masspre = 77.20 ± 9.40 kg; body mass indexpre = 24.68 ± 2.87) who completed Cadet Basic Training (CBT). Individuals with neurologic or metabolic disorders were excluded. INTERVENTION(S) We assessed SFx risk factors (independent variables) with (1) the Landing Error Scoring System (LESS), (2) self-reported injury and physical activity questionnaires, and (3) physical fitness tests. We assessed bone biomarkers (dependent variables; procollagen type I amino-terminal propeptide [PINP] and cross-linked collagen telopeptide [CTx-1]) via serum. MAIN OUTCOME MEASURE(S) A markerless motion-capture system was used to analyze trunk and lower extremity biomechanics via the LESS. Serum samples were collected post-CBT; enzyme-linked immunosorbent assays determined PINP and CTx-1 concentrations, and PINP : CTx-1 ratios were calculated. Linear regression models demonstrated associations between SFx risk factors and PINP and CTx-1 concentrations and PINP : CTx-1 ratio. Biomarker concentration mean differences with 95% confidence intervals were calculated. Significance was set a priori using α ≤ .10 for simple and α ≤ .05 for multiple regression analyses. RESULTS The multiple regression models incorporating LESS and SFx risk factor data predicted the PINP concentration (R2 = 0.47, P = .02) and PINP : CTx-1 ratio (R2 = 0.66, P = .01). The PINP concentration was increased by foot internal rotation, trunk flexion, CBT injury, sit-up score, and pre- to post-CBT mass changes. The CTx-1 concentration was increased by heel-to-toe landing and post-CBT mass. The PINP : CTx-1 ratio was increased by foot internal rotation, lower extremity sagittal-plane displacement (inversely), CBT injury, sit-up score, and pre- to post-CBT mass changes. CONCLUSIONS Stress fracture risk factors accounted for 66% of the PINP : CTx-1 ratio variability, a potential surrogate for bone health. Our findings provide insight into how SFx risk factors influence bone health. This information can help guide SFx risk-mitigation strategies.
Collapse
Affiliation(s)
- Timothy C. Mauntel
- DoD-VA Extremity Trauma & Amputation Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
| | - Stephen W. Marshall
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | - Anthony C. Hackney
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | - Brian G. Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | | | - Karen Y. Peck
- Human Research Protection Program, Academic Research Division, United States Military Academy, West Point, NY
| | | | - Darin A. Padua
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| |
Collapse
|
45
|
Becerra Sandoval JC, Ventura Huamán L, De La Cruz-Vargas JA. [Factors associated with stress fracture: A case-control study in a Peruvian navy medical center]. Medwave 2020; 20:e7936. [PMID: 32885796 DOI: 10.5867/medwave.2020.05.7936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 06/06/2020] [Indexed: 11/27/2022] Open
Abstract
Introduction Stress fractures are injuries produced by the overuse of certain extremities, generating repetitive fatigue in the bone with insufficient rest periods and hormonal disorders, among others. High osteoclastic activity and lower activity of the osteoblasts at the cortical level occurs. Objective To determine the factors associated with a stress fracture in a single medical center of the Peruvian navy. Methods We conducted an observational, analytical case-control study. The dependent variable was stress fracture confirmed by magnetic resonance imaging of the patients; the independent variables were age, sex, calcemia, socioeconomic status, and time of daily physical activity. All data were extracted from the medical records. Crude and adjusted odds ratios were calculated with 95% confidence intervals. Results The sample was comprised of 238 patients (119 cases and 119 controls), of which 79.8% were male, and 20.2% were female; the average age was 20.25. In the bivariate analysis, stress fractures were associated with male sex (odds ratio 3.00; 95% confidence interval 1.51 to 5.95), hypocalcemia (2.83; 2.32 to 3.44), more than two hours of daily physical activity (24.7; 12.51 to 48.95) and socioeconomic level C (6.66; 2.82 to 15.74). Time dedicated to physical activity (adjusted odds ratio 44.46; 95% confidence interval 17.93 to 110.22) and socioeconomic level C (adjusted odds ratio 22.57; 95% confidence interval 7.03 to 72.74) were associated in the multivariate analysis. Conclusion We found that stress fractures were associated with physical activity time and a lower socioeconomic level. Further studies are needed to evaluate the relationship with other factors in the military population of Peru.
Collapse
Affiliation(s)
- John C Becerra Sandoval
- Centro Médico Naval Cirujano Mayor Santiago Távara, Lima, Perú. Adress: Mz. C Lt 5 Urb. 7 de Agosto 2do programa, Callao, Lima, Perú. . ORCID: 0000-0002-0743-5555
| | | | - Jhony A De La Cruz-Vargas
- Instituto de Investigación en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú. ORCID: 0000-0002-5592-0504
| |
Collapse
|
46
|
Geometric and "True" Densitometric Characteristics of Bones in Athletes with Stress Fracture and Menstrual Disturbances: A Systematic Review. Sports Med 2020; 49:1059-1078. [PMID: 31041601 DOI: 10.1007/s40279-019-01109-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Stress fractures can lead to short- and long-term consequences, impacting participation in sport and general health. Recognizing which skeletal characteristics render bones susceptible to stress fracture may aid stress-fracture prevention. Menstrual disturbances among exercising women are a known risk factor for stress fracture; therefore, assessing skeletal commonalities between women with stress fractures and women with menstrual disturbances may increase our understanding of why menstrual disturbances put athletes at greater risk for stress fracture. Three-dimensional (3D) bone imaging tools provide detailed information about volumetric bone mineral density (vBMD) and bone structure that cannot be obtained using traditional two-dimensional (2D) techniques. OBJECTIVES This systematic review serves to: (1) evaluate the current literature available on vBMD, bone geometry, and bone structure in exercising women with menstrual disturbances and exercising women with stress fractures, and (2) assess the common skeletal characteristics between both conditions. Our aim is to reveal bone properties beyond 2D areal BMD that may indicate increased susceptibility to stress fracture among exercising women with menstrual disturbances. SEARCH METHODS A search of the PubMed/Medline database was completed in May 2018. ELIGIBILITY CRITERIA Eligible articles included those that reported vBMD, bone geometry, or bone structure obtained from 3D imaging techniques or estimated from 2D imaging techniques. Only studies conducted in premenopausal exercising women and girls who had a stress fracture, a menstrual disturbance, or both were included. RESULTS Twenty-four articles met the inclusion criteria. Bone area and cortical thickness at the tibia were identified as altered both in women with menstrual disturbances and in women with stress fractures; however, there was inconsistency in the results observed for all bone parameters. The majority of skeletal parameters of the lower extremities were not significantly different between exercising women with and without stress fractures and between those with and without menstrual disturbances. DISCUSSION Most studies were moderate or low quality based on study design, and only one article combined both conditions to explore vBMD and bone geometry in athletes with menstrual disturbances and a history of stress fracture. These findings highlight the need for more skeletal research on the intersection of these health conditions in exercising women. The lack of observed differences in skeletal parameters suggests that risk factors other than bone geometry and structure may be the primary causes of stress fracture in these women.
Collapse
|
47
|
Johnston TE, Close J, Jamora P, Wainwright SF. Perceptions of risk for stress fractures: A qualitative study of female runners with and without stress fracture histories. Phys Ther Sport 2020; 43:143-150. [PMID: 32200259 DOI: 10.1016/j.ptsp.2020.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To gain insight into perceived factors related to bone health and stress fracture (SF) prevention for female runners and to understand their experiences within the medical community. DESIGN Cohort qualitative study. SETTING University health system. PARTICIPANTS Forty female runners, 20 who had SF histories and 20 age-and-running-distance matched women without SF. MAIN OUTCOME MEASURES Women participated in audiotaped qualitative semi-structured interviews. For women with a SF history, questions sought their perspectives on factors that they felt contributed to SF, experiences with the medical community, and changes made post SF. For women without a SF history, questions sought perspectives on factors felt important to perceived running-related bone health. RESULTS Six themes emerged; 1) Previous/Recurrent Musculoskeletal Injuries, 2) Activity Patterns and Training Regimens, 3) Nutrition, 4) Prevention and Intervention, 5) Pain, and 6) Mindset. Within these themes, between group differences are characterized by differences in knowledge and/or application of knowledge for health and wellness. Compared to women without SF, women with SF histories increased training load more quickly, had poorer nutrition, performed less cross-training, and kept running despite pain. CONCLUSIONS More education is needed for female runners to decrease risks for SF.
Collapse
Affiliation(s)
- Therese E Johnston
- Thomas Jefferson University, Jefferson College of Rehabilitation Sciences, Department of Physical Therapy, 901 Walnut St, Philadelphia, PA, 19107, USA.
| | - Jeremy Close
- Thomas Jefferson University, Sidney Kimmel Medical College, Department of Family and Community Medicine, 833 Chestnut St, Philadelphia, PA, 19107, USA.
| | - Phil Jamora
- Thomas Jefferson University, Jefferson College of Rehabilitation Sciences, Department of Physical Therapy, 901 Walnut St, Philadelphia, PA, 19107, USA.
| | - Susan F Wainwright
- Thomas Jefferson University, Jefferson College of Rehabilitation Sciences, Department of Physical Therapy, 901 Walnut St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
48
|
Popp KL, Frye AC, Stovitz SD, Hughes JM. Bone geometry and lower extremity bone stress injuries in male runners. J Sci Med Sport 2019; 23:145-150. [PMID: 31594711 DOI: 10.1016/j.jsams.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
Bone stress injuries (BSI) are common among distance runners and research investigations examining risk factors for BSI among men are limited. Therefore, investigations are needed to determine if men with a history of BSI have skeletal properties that may heighten BSI incidence. OBJECTIVES To analyze differences in bone density, bone geometry, and estimates of bone strength in male runners with and without a BSI history. DESIGN Cross-sectional. METHODS We recruited 36 male distance runners ages 18-41 for this study. We used peripheral quantitative computed tomography (pQCT) to assess volumetric bone mineral density (vBMD, mg/mm3), bone geometry (total and cortical bone area, mm2), tibia robustness (total area/tibia length, mm) and estimates of bone strength (section modulus and polar strength-strain index, mm3) at 5 tibial sites. RESULTS After adjusting for age, the BSI group had more slender tibias (9%), lower stress strain indices (-16%), lower section moduli (-17%) and smaller total cross-sectional (-11%) and cortical areas (-12%) at the 66% site of the tibia compared with controls (P < 0.05 for all). Similar differences were found at all other measurement sites. After adjusting for body size, differences in bone outcomes remained significant at the 66% site. CONCLUSIONS These results indicate that men with a history of BSI have lower estimated bending strength compared to controls because of narrower tibias. However, differences are largely attenuated in the distal ½ of the tibia after adjusting for body size. Thus, smaller tibia size, particularly at the mid-diaphysis, may be an important indicator for BSI incidence.
Collapse
Affiliation(s)
- Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental, USA; Endocrine Unit, Massachusetts General Hospital, USA; Department of Medicine, Harvard Medical School, USA.
| | - Adam C Frye
- Laboratory of Musculoskeletal Health, School of Kinesiology, University of Minnesota, USA
| | | | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental, USA
| |
Collapse
|
49
|
Loundagin LL, Schmidt TA, Edwards WB. Mechanical Fatigue of Bovine Cortical Bone Using Ground Reaction Force Waveforms in Running. J Biomech Eng 2019; 140:2661240. [PMID: 29080303 DOI: 10.1115/1.4038288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 11/08/2022]
Abstract
Stress fractures are a common overuse injury among runners associated with the mechanical fatigue of bone. Several in vivo biomechanical studies have investigated specific characteristics of the vertical ground reaction force (vGRF) in heel-toe running and have observed an association between increased loading rate during impact and individuals with a history of stress fracture. The purpose of this study was to examine the fatigue behavior of cortical bone using vGRF-like loading profiles, including those that had been decomposed into their respective impact and active phase components. Thirty-eight cylindrical cortical bone samples were extracted from bovine tibiae and femora. Hydrated samples were fatigue tested at room temperature in zero compression under load control using either a raw (n = 10), active (n = 10), low impact (n = 10), or high impact (n = 8) vGRF profile. The number of cycles to failure was quantified and the test was terminated if the sample survived 105 cycles. Fatigue life was significantly greater for both impact groups compared to the active (p < 0.001) and raw (p < 0.001) groups, with all low impact samples and 6 of 8 high impact samples surviving 105 cycles. The mean (± SD) number of cycles to failure for the active and raw groups was 12,133±11,704 and 16,552±29,612, respectively. The results suggest that loading rates associated with the impact phase of a typical vGRF in running have little influence on the mechanical fatigue behavior of bone relative to loading magnitude, warranting further investigation of the mechanism by which increased loading rates are associated with stress fracture.
Collapse
Affiliation(s)
- Lindsay L Loundagin
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Kinesiology Block B 221, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada e-mail:
| | - Tannin A Schmidt
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Schulich School of Engineering, University of Calgary, Kinesiology Block B 426, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada e-mail:
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Kinesiology Block B 418, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada e-mail:
| |
Collapse
|
50
|
Schwartz O, Malka I, Olsen CH, Dudkiewicz I, Bader T. Overuse Injuries Among Female Combat Warriors in the Israeli Defense Forces: A Cross-sectional Study. Mil Med 2019; 183:e610-e616. [PMID: 29548016 DOI: 10.1093/milmed/usx238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022] Open
Abstract
Introduction Integration of females in combat units poses a unique challenge for army commanders around the world. The purpose of this study is to provide a detailed up-to-date situation report regarding overuse injuries among combat female warriors in the IDF (Israeli Defense Forces) in order to enable evidence-based decision-making, prevention policy, and further research of this highly significant military public health issue. Methods A cross-sectional descriptive study was conducted including 2,519 females recruited to combat duties during the year of 2013. The main data source was the IDF's computerized medical consultation records package (CPR). Descriptive statistics was performed and some results were compared with males using data from other reports and studies of the IDF. Results The overall injury rate was 28.3%. Of all injuries, 86% were in the ankle and calf (41%), the lower back (23%), and the knee (22%) regions. The average lost training days was 11 d for females as compared with 8 d for males. The overall rates of stress fractures and the rates of femur and femoral neck stress fractures were significantly higher among females as compared with males (11.2% vs. 2.5%, p = 0.0032, and 7.8% vs. 1.6% p = 0.00001, respectively). Conclusions The overuse injury rates among females in the IDF are high and may be considered a significant military public health problem. In order to reduce the numbers of overuse injuries, which is expected to significantly increase after the IDF's policy change regarding to combat duties open for females, we recommend planning and implementation of policies and intervention programs and further research regarding to overuse injuries among female combat warriors with special focus on the calf and ankle, lower back, and knee regions and femoral stress fractures.
Collapse
Affiliation(s)
- Oren Schwartz
- Injury Prevention and Rehabilitation Center, IDF Medical Forces Headquarters, 1Aharon Kazir st., Ramat-Gan, Israel
| | - Itzik Malka
- Physicians Hospital Unit, IDF Medical Forces Headquarters, 1 Aharon Kazir st., Ramat-Gan, Israel
| | - Cara H Olsen
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD
| | - Israel Dudkiewicz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Depertment of Rehabilitation, Tel Aviv Souraskey Medical Center, 6 Weizmann St., Tel Aviv, Israel
| | - Tarif Bader
- General Surgeon Headquarters, IDF Medical Forces Headquarters, 1 Aharon Kazir st., Ramat-Gan, Israel
| |
Collapse
|