1
|
Davies BK, Skelton AJ, Hopkinson M, Lumb S, Holdsworth G, Arnett TR, Orriss IR. Extracellular pH is a critical regulator of osteoclast fusion, size and activation. Bone 2025; 195:117466. [PMID: 40118261 DOI: 10.1016/j.bone.2025.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Osteoclast activity is regulated by extracellular pH, whereby bone resorption is near-maximally activated at pH 7.0 but limited at ≥pH 7.4. This study examined the effects of low pH on osteoclast fusion, multi-nucleation, resorption and cell transcriptome. Osteoclasts were cultured on dentine discs at pH 7.4 (control) or pH 7.0 (acidified) for 5-7 days. Osteoclast number and resorptive activity were 1.9-fold and 6.7-fold higher, respectively, in acidified cultures. However, acidified osteoclasts were smaller, with fewer nuclei than controls (53 μm diameter with 9 ± 1 nuclei/cell versus 100 μm with 24 ± 3 nuclei/cell). mRNA expression analysis revealed that osteoclast formation and resorption-associated genes were increased in acidified osteoclasts. Switching mature osteoclasts formed for 5 days at pH 7.4 to acidified conditions decreased cell size 30 % within 4 h, resulting in a 2-fold increase in osteoclast numbers after 24 h. Resorptive activity in cells switched to pH 7.0 was visible within 8 h, and by 24 h resorption area was comparable to continually acidified osteoclasts. MicroCT analysis of dentine discs revealed 24-fold and 6.4-fold increases in resorption pit number in pH-switched osteoclasts relative to control and acidified cultures, respectively. RNAseq showed changes in extracellular pH differentially regulated gene expression, particularly metabolic and cell cycle-associated genes. Our results reveal previously unknown effects of extracellular pH on osteoclasts. Specifically, they show pH is an important modulator of osteoclast fusion and size that regulates the transcriptome. Furthermore, small changes in pH can induce significant morphological changes in osteoclasts and act as on/off switch between formation and resorption in ≤4 h.
Collapse
Affiliation(s)
- Bethan K Davies
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK; Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | | | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | | | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| |
Collapse
|
2
|
Yoshimura A, Matsubara T, Kodama N, Kakuta Y, Yasuda K, Yoshida R, Kaminuma O, Hosomi S, Shinkawa H, Yuan Q, Kawamoto T, Kokabu S. Taste receptor type 1 member 3 in osteoclasts regulates osteoclastogenesis via detection of glucose. J Biol Chem 2025; 301:108273. [PMID: 39922492 PMCID: PMC11925095 DOI: 10.1016/j.jbc.2025.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
The taste system extends beyond the oral cavity, with various taste receptors found in extraoral organs. Mice deficient in the taste receptor type 1 (TAS1R) family member, TAS1R3, and fed a high-fat, high-sugar diet showed high bone mass without altering food consumption. However, the underlying mechanisms, including the cell types responsible for TAS1R3 expression, remain unclear. Here, we demonstrate the expression and function of TAS1R3 in osteoclasts, which are responsible for bone resorption. The expression of Tas1r3, but not Tas1r1 or Tas1r2, is evoked during osteoclast differentiation. Osteoclastogenesis-related genes were downregulated in TAS1R3-deficient mice, whereas the opposite phenotypes were elicited by TAS1R3 overexpression. Contrary to the common heterodimerization with TAS1R1 or TAS1R2, TAS1R3 formed a homodimer that functioned to detect glucose, enhance p38 phosphorylation, and induce osteoclastogenesis. These results provide novel insights into the role of TAS1R3 in bone metabolism and suggest that TAS1R3 may be a viable target for therapeutic agents in bone metabolic diseases.
Collapse
Affiliation(s)
- Anna Yoshimura
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan; Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - Nao Kodama
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuma Yasuda
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroji Shinkawa
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
3
|
Hessel E, Ghanta P, Winschel T, Melnyk L, Oyewumi MO. Fabrication of 3D-printed scaffolds loaded with gallium acetylacetonate for potential application in osteoclastic bone resorption. Pharm Dev Technol 2024; 29:339-352. [PMID: 38502579 DOI: 10.1080/10837450.2024.2332459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
We recently reported the potential of a new gallium compound, gallium acetylacetonate (GaAcAc) in combating osteoclastic bone resorption through inhibition of osteoclast differentiation and function. Herein, we focused on 3D-printed polylactic acid scaffolds that were loaded with GaAcAc and investigated the impact of scaffold pretreatment with polydopamine (PDA) or sodium hydroxide (NaOH). We observed a remarkable increase in scaffold hydrophilicity with PDA or NaOH pretreatment while biocompatibility and in vitro degradation were not affected. NaOH-pretreated scaffolds showed the highest amount of GaAcAc loading when compared to other scaffolds (p < 0.05). NaOH-pretreated scaffolds with GaAcAc loading showed effective reduction of osteoclast counts and size. The trend was supported by suppression of key osteoclast differentiation markers such as NFAT2, c-Fos, TRAF6, & TRAP. All GaAcAc-loaded scaffolds, regardless of surface pretreatment, were effective in inhibiting osteoclast function as evidenced by reduction in the number of resorptive pits in bovine cortical bone slices (p < 0.01). The suppression of osteoclast function according to the type of scaffold followed the ranking: GaAcAc loading without surface pretreatment > GaAcAc loading with NaOH pretreatment > GaAcAc loading with PDA pretreatment. Additional studies will be needed to fully elucidate the impact of surface pretreatment on the efficacy and safety of GaAcAc-loaded 3D-printed scaffolds.
Collapse
Affiliation(s)
- Evin Hessel
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Pratyusha Ghanta
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Timothy Winschel
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Larissa Melnyk
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Moses O Oyewumi
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
4
|
Remmers SJ, van der Heijden FC, Ito K, Hofmann S. The effects of seeding density and osteoclastic supplement concentration on osteoclastic differentiation and resorption. Bone Rep 2022; 18:101651. [PMID: 36588781 PMCID: PMC9800315 DOI: 10.1016/j.bonr.2022.101651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The bone resorbing osteoclasts are a complex type of cell essential for in vivo bone remodeling. There is no consensus on medium composition and seeding density for in vitro osteoclastogenesis, despite the importance thereof on osteoclastic differentiation and activity. The aim of this study was to investigate the relative effect of monocyte or peripheral blood mononuclear cell (PBMC) seeding density, osteoclastic supplement concentration and priming on the in vitro generation of functional osteoclasts, and to explore and evaluate the usefulness of commonly used markers for osteoclast cultures. Morphology and osteoclast formation were analyzed with fluorescence imaging for tartrate resistant acid phosphatase (TRAP) and integrin β3 (Iβ3). TRAP release was analyzed from supernatant samples, and resorption was analyzed from culture on Corning® Osteo Assay plates. In this study, we have shown that common non-standardized culturing conditions of monocyte or PBMCs had a significant effect on the in vitro generation of functional osteoclasts. We showed how increased osteoclastic supplement concentrations supported osteoclastic differentiation and resorption but not TRAP release, while priming resulted in increased TRAP release as well. Increased monocyte seeding densities resulted in more and large TRAP positive bi-nuclear cells, but not directly in more multinucleated osteoclasts, resorption or TRAP release. Increasing PBMC seeding densities resulted in more and larger osteoclasts and more resorption, although resorption was disproportionally low compared to the monocyte seeding density experiment. Exploration of commonly used markers for osteoclast cultures demonstrated that Iβ3 staining was an excellent and specific osteoclast marker in addition to TRAP staining, while supernatant TRAP measurements could not accurately predict osteoclastic resorptive activity. With improved understanding of the effect of seeding density and osteoclastic supplement concentration on osteoclasts, experiments yielding higher numbers of functional osteoclasts can ultimately improve our knowledge of osteoclasts, osteoclastogenesis, bone remodeling and bone diseases.
Collapse
Affiliation(s)
| | | | | | - Sandra Hofmann
- Corresponding author at: Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Kim SC, Kim HJ, Park GE, Lee CW, Synytsya A, Capek P, Park YI. Sulfated Glucuronorhamnoxylan from Capsosiphon fulvescens Ameliorates Osteoporotic Bone Resorption via Inhibition of Osteoclastic Cell Differentiation and Function In Vitro and In Vivo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:690-705. [PMID: 35796894 DOI: 10.1007/s10126-022-10136-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Excessive osteoclast differentiation and/or bone resorptive function causes a gradual loss of bone, leading to the pathogenesis of bone diseases such as osteoporosis (OP). In this study, a sulfated glucuronorhamnoxylan polysaccharide (designated SPS-CF) of the green alga Capsosiphon fulvescens was evaluated for anti-osteoporotic activity using osteoclastic cells differentiated from RAW264.7 macrophages by receptor activator of NF-κB ligand (RANKL) treatment and ovariectomized (OVX) female mice as a postmenopausal OP model. With negligible cytotoxicity, SPS-CF (50 μg/mL) significantly suppressed tartrate-resistant acid phosphatase (TRAP) activity, actin ring formation, and expression of matrix metalloproteinase 9 (MMP-9), cathepsin K, TRAF6, p-Pyk2, c-Cbl, c-Src, gelsolin, carbonic anhydrase II (CA II), and integrin β3, indicating that SPS-CF inhibits the differentiation and bone resorptive function of osteoclasts. Removal of sulfate groups from SPS-CF abolished its anti-osteoclastogenic activities, demonstrating that sulfate groups are critical for its activity. Oral administration of SPS-CF (400 mg/kg/day) to OVX mice significantly augmented the bone mineral density (BMD) and serum osteoprotegerin (OPG)/RANKL ratio. These results demonstrated that SPS-CF exerts significant anti-osteoporotic activity by dampening osteoclastogenesis and bone resorption via downregulation of TRAF6-c-Src-Pyk2-c-Cbl-gelsolin signaling and augmentation of serum OPG/RANKL ratios in OVX mice, suggesting that SPS-CF can be a novel anti-osteoporotic compound for treating postmenopausal OP.
Collapse
Affiliation(s)
- Seong Cheol Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Hyeon Jeong Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Gi Eun Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Chang Won Lee
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Andriy Synytsya
- Department of Carbohydrate Chemistry and Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague, 6, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Yong Il Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
6
|
de Wildt BWM, Ito K, Hofmann S. Human Platelet Lysate as Alternative of Fetal Bovine Serum for Enhanced Human In Vitro Bone Resorption and Remodeling. Front Immunol 2022; 13:915277. [PMID: 35795685 PMCID: PMC9251547 DOI: 10.3389/fimmu.2022.915277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction To study human physiological and pathological bone remodeling while addressing the principle of replacement, reduction and refinement of animal experiments (3Rs), human in vitro bone remodeling models are being developed. Despite increasing safety-, scientific-, and ethical concerns, fetal bovine serum (FBS), a nutritional medium supplement, is still routinely used in these models. To comply with the 3Rs and to improve the reproducibility of such in vitro models, xenogeneic-free medium supplements should be investigated. Human platelet lysate (hPL) might be a good alternative as it has been shown to accelerate osteogenic differentiation of mesenchymal stromal cells (MSCs) and improve subsequent mineralization. However, for a human in vitro bone model, hPL should also be able to adequately support osteoclastic differentiation and subsequent bone resorption. In addition, optimizing co-culture medium conditions in mono-cultures might lead to unequal stimulation of co-cultured cells. Methods We compared supplementation with 10% FBS vs. 10%, 5%, and 2.5% hPL for osteoclast formation and resorption by human monocytes (MCs) in mono-culture and in co-culture with (osteogenically stimulated) human MSCs. Results and Discussion Supplementation of hPL can lead to a less donor-dependent and more homogeneous osteoclastic differentiation of MCs when compared to supplementation with 10% FBS. In co-cultures, osteoclastic differentiation and resorption in the 10% FBS group was almost completely inhibited by MSCs, while the supplementation with hPL still allowed for resorption, mostly at low concentrations. The addition of hPL to osteogenically stimulated MSC mono- and MC-MSC co-cultures resulted in osteogenic differentiation and bone-like matrix formation, mostly at high concentrations. Conclusion We conclude that hPL could support both osteoclastic differentiation of human MCs and osteogenic differentiation of human MSCs in mono- and in co-culture, and that this can be balanced by the hPL concentration. Thus, the use of hPL could limit the need for FBS, which is currently commonly accepted for in vitro bone remodeling models.
Collapse
|
7
|
Eckert D, Rapp F, Tsedeke AT, Kraft D, Wente I, Molendowska J, Basheer S, Langhans M, Meckel T, Friedrich T, Donaubauer AJ, Becker I, Frey B, Fournier C. Modulation of Differentiation and Bone Resorbing Activity of Human (Pre-) Osteoclasts After X-Ray Exposure. Front Immunol 2022; 13:817281. [PMID: 35603191 PMCID: PMC9116137 DOI: 10.3389/fimmu.2022.817281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Low-dose radiotherapy (LD-RT) is a local treatment option for patients with chronic degenerative and inflammatory diseases, in particular musculoskeletal diseases. Despite reported analgesic and anti-inflammatory effects, cellular and molecular mechanisms related to osteoimmunological effects are still elusive. Here we test the hypothesis that X-irradiation inhibits the differentiation of precursor osteoclasts into mature osteoclasts (mOC) and their bone resorbing activity. Circulating monocytes from healthy donors were isolated and irradiated after attachment with single or fractionated X-ray doses, comparable to an LD-RT treatment scheme. Then monocytes underwent ex vivo differentiation into OC during cultivation up to 21 days, under conditions mimicking the physiological microenvironment of OC on bone. After irradiation, apoptotic frequencies were low, but the total number of OC precursors and mOC decreased up to the end of the cultivation period. On top, we observed an impairment of terminal differentiation, i.e. a smaller fraction of mOC, reduced resorbing activity on bone, and release of collagen fragments. We further analyzed the effect of X-irradiation on multinucleation, resulting from the fusion of precursor OC, which occurs late during OC differentiation. At 21 days after exposure, the observation of smaller cellular areas and a reduced number of nuclei per mOC suggest an impaired fusion of OC precursors to form mOC. Before, at 14 days, the nuclear translocation of Nuclear Factor Of Activated T Cells 1 (NFATc1), a master regulator of osteoclast differentiation and fusion, was decreased. In first results, obtained in the frame of a longitudinal LD-RT study, we previously reported a pain-relieving effect in patients. However, in a subgroup of patients suffering from Calcaneodynia or Achillodynia, we did not observe a consistent decrease of established blood markers for resorption and formation of bone, or modified T cell subtypes involved in regulating these processes. To assess the relevance of changes in bone metabolism for other diseases treated with LD-RT will be subject of further studies. Taken together, we observed that in vitro X-irradiation of monocytes results in an inhibition of the differentiation into bone-resorbing OC and a concomitant reduction of resorbing activity. The detected reduced NFATc1 signaling could be one underlying mechanism.
Collapse
Affiliation(s)
- Denise Eckert
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ayele Taddese Tsedeke
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Daniela Kraft
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Isabell Wente
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Jessica Molendowska
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Sidra Basheer
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Markus Langhans
- Department of Macromolecular and Paper Chemistry and Membrane Dynamics, Technical University Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Macromolecular and Paper Chemistry and Membrane Dynamics, Technical University Darmstadt, Darmstadt, Germany
| | - Thomas Friedrich
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ina Becker
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudia Fournier
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
8
|
IL-1β promotes osteoclastogenesis by increasing the expression of IGF2 and chemokines in non-osteoclastic cells. J Pharmacol Sci 2022; 151:1-8. [DOI: 10.1016/j.jphs.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
|
9
|
Alder KD, Lee I, Munger AM, Kwon HK, Morris MT, Cahill SV, Back J, Yu KE, Lee FY. Intracellular Staphylococcus aureus in bone and joint infections: A mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 2020; 141:115568. [PMID: 32745687 DOI: 10.1016/j.bone.2020.115568] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Bone and joint infections are devastating afflictions. Although medical interventions and advents have improved their care, bone and joint infections still portend dismal outcomes. Indeed, bone and joint infections are associated with extremely high mortality and morbidity rates and, generally, occur secondary to the aggressive pathogen Staphylococcus aureus. The consequences of bone and joint infections are further compounded by the fact that although they are aggressively treated, they frequently recur and result in massive bone and articular cartilage loss. Here, we review the literature and chronicle the fact that the fundamental cellular components of the musculoskeletal system can be internally infected with Staphylococcus aureus, which explains the ready recurrence of bone and joint infections even after extensive administration of antibiotic therapy and debridement and offer potential treatment solutions for further study. Moreover, we review the ramifications of intracellular infection and expound that the massive bone and articular cartilage loss is caused by the sustained proinflammatory state induced by infection and offer potential combination therapies for further study to protect bone and cartilage.
Collapse
Affiliation(s)
- Kareme D Alder
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Inkyu Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Department of Life Science, Chung-Ang University, Seoul, Republic of Korea; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Alana M Munger
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Hyuk-Kwon Kwon
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Montana T Morris
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Sean V Cahill
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - JungHo Back
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Kristin E Yu
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Francis Y Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| |
Collapse
|
10
|
The Influence of Radiation on Bone and Bone Cells-Differential Effects on Osteoclasts and Osteoblasts. Int J Mol Sci 2020; 21:ijms21176377. [PMID: 32887421 PMCID: PMC7504528 DOI: 10.3390/ijms21176377] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The bone is a complex organ that is dependent on a tight regulation between bone formation by osteoblasts (OBs) and bone resorption by osteoclasts (OCs). These processes can be influenced by environmental factors such as ionizing radiation (IR). In cancer therapy, IR is applied in high doses, leading to detrimental effects on bone, whereas radiation therapy with low doses of IR is applied for chronic degenerative and inflammatory diseases, with a positive impact especially on bone homeostasis. Moreover, the effects of IR are of particular interest in space travel, as astronauts suffer from bone loss due to space radiation and microgravity. This review summarizes the current state of knowledge on the effects of IR on bone with a special focus on the influence on OCs and OBs, as these cells are essential in bone remodeling. In addition, the influence of IR on the bone microenvironment is discussed. In summary, the effects of IR on bone and bone remodeling cells strongly depend on the applied radiation dose, as differential results are provided from in vivo as well as in vitro studies with varying doses of IR. Furthermore, the isolated effects of IR on a single cell type are difficult to determine, as the bone cells and bone microenvironment are building a tightly regulated network, influencing on one another. Therefore, future research is necessary in order to elucidate the influence of different bone cells on the overall radiation-induced effects on bone.
Collapse
|
11
|
Endogenous Collagenases Regulate Osteoclast Fusion. Biomolecules 2020; 10:biom10050705. [PMID: 32370054 PMCID: PMC7277558 DOI: 10.3390/biom10050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
The precise regulation of osteoclast differentiation and function is crucial for the maintenance of healthy bone. Despite several reports of collagenase expression in bone tissues, the precise isoform expression as well as the role in osteoclasts are still unclear. In the present report, the expression of matrix metalloprotease (MMP)8 and MMP13 was confirmed in mouse bone marrow macrophage osteoclast precursors. The mRNA and protein expressions of both collagenases were significantly reduced by receptor activator of nuclear factor κB ligand (RANKL) stimulation. Notably, either inhibition of MMP expression by siRNA or treatment of cells with collagenase inhibitor Ro 32-3555 significantly augmented osteoclast fusion and resorption activity without affecting the osteoclast number. The inhibition of collagenase by Ro 32-3555 increased the expression of osteoclast fusion genes, Atp6v0d2 and Dcstamp, without affecting nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) protein expression. The enhanced osteoclast fusion by collagenase inhibition appears to be mediated through an extracellular signal regulated kinase (ERK)-dependent pathway. Collectively, these data provide novel information on the regulation of osteoclast fusion process.
Collapse
|
12
|
Interaction of Brucella abortus with Osteoclasts: a Step toward Understanding Osteoarticular Brucellosis and Vaccine Safety. Infect Immun 2020; 88:IAI.00822-19. [PMID: 31932325 DOI: 10.1128/iai.00822-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarticular disease is a frequent complication of human brucellosis. Vaccination remains a critical component of brucellosis control, but there are currently no vaccines for use in humans, and no in vitro models for assessing the safety of candidate vaccines in reference to the development of bone lesions currently exist. While the effect of Brucella infection on osteoblasts has been extensively evaluated, little is known about the consequences of osteoclast infection. Murine bone marrow-derived macrophages were derived into mature osteoclasts and infected with B. abortus 2308, the vaccine strain S19, and attenuated mutants S19vjbR and B. abortus ΔvirB2 While B. abortus 2308 and S19 replicated inside mature osteoclasts, the attenuated mutants were progressively killed, behavior that mimics infection kinetics in macrophages. Interestingly, B. abortus 2308 impaired the growth of osteoclasts without reducing resorptive activity, while osteoclasts infected with B. abortus S19 and S19vjbR were significantly larger and exhibited enhanced resorption. None of the Brucella strains induced apoptosis or stimulated nitric oxide or lactose dehydrogenase production in mature osteoclasts. Finally, infection of macrophages or osteoclast precursors with B. abortus 2308 resulted in generation of smaller osteoclasts with decreased resorptive activity. Overall, Brucella exhibits similar growth characteristics in mature osteoclasts compared to the primary target cell, the macrophage, but is able to impair the maturation and alter the resorptive capacity of these cells. These results suggest that osteoclasts play an important role in osteoarticular brucellosis and could serve as a useful in vitro model for both analyzing host-pathogen interactions and assessing vaccine safety.
Collapse
|
13
|
Choi MH, Lee K, Kim MY, Shin HI, Jeong D. Pisidium coreanum Inhibits Multinucleated Osteoclast Formation and Prevents Estrogen-Deficient Osteoporosis. Int J Mol Sci 2019; 20:ijms20236076. [PMID: 31810213 PMCID: PMC6929078 DOI: 10.3390/ijms20236076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023] Open
Abstract
Mollusks have served as important sources of human food and medicine for a long time. Raw Pisidium coreanum, a freshwater bivalve of the phylum Mollusca, is used in traditional therapies in parts of Asia. However, the therapeutic effects of Pisidium coreanum on bone diseases are not known. We investigated the functional roles of Pisidium coreanum in osteoporotic bone diseases. Pisidium coreanum inhibited the differentiation of bone marrow-derived monocytic cells into mature osteoclasts in vitro. The ovariectomized mice that received oral administration of Pisidium coreanum showed improvements in both trabecular and cortical bones. This preventive activity of Pisidium coreanum against bone loss was due to limited osteoclast maturation with reduced osteoclast surface extent in trabecular bone tissue. The formation of large multinucleated osteoclasts in vitro was significantly decreased in response to Pisidium coreanum, consistent with the reduced expression levels of osteoclast markers and fusion-related genes, such as NFATc1, p65, integrinαvβ3, DC-STAMP, OC-STAMP, Atp6v0d2, FAK, CD44, and MFR. These data suggest that Pisidium coreanum inhibits osteoclast differentiation by negatively regulating the fusion of mononuclear osteoclast precursors. Thus, our data demonstrate the ability of Pisidium coreanum to effectively prevent estrogen-deficient osteoporosis through inhibition of multinucleated osteoclast formation.
Collapse
Affiliation(s)
- Mun Hwan Choi
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea; (M.H.C.); (K.L.); (M.Y.K.)
| | - Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea; (M.H.C.); (K.L.); (M.Y.K.)
| | - Mi Yeong Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea; (M.H.C.); (K.L.); (M.Y.K.)
| | - Hong-In Shin
- Department of Oral Pathology, Institute for Hard Tissue and Bio-Tooth Regeneration, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea; (M.H.C.); (K.L.); (M.Y.K.)
- Correspondence: ; Tel.: +82-53-640-6944; Fax: +82-53-657-6869
| |
Collapse
|
14
|
Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2019; 82:507-529. [PMID: 31553686 DOI: 10.1146/annurev-physiol-021119-034425] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
15
|
Plasma deposited poly-oxazoline nanotextured surfaces dictate osteoimmunomodulation towards ameliorative osteogenesis. Acta Biomater 2019; 96:568-581. [PMID: 31271882 DOI: 10.1016/j.actbio.2019.06.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
Developing "osteoimmune-smart" bone substitute materials have become the forefront of research in bone regeneration. Biocompatible polymer coatings are applied widely to improve the bioactivity of bone substitute materials. In this context, polyoxazolines (Pox) have attracted substantial attention recently due to properties such as biocompatibility, stability, and low biofouling. In view of these useful properties, it is interesting to explore the capacity of Pox as an osteoimmunomodulatory agent to generate a favorable osteoimmune environment for osteogenesis. We applied a technique called plasma polymerization and succeeded in preparing Pox-like coatings (Ppox) and engineered their nanotopography at the nanoscale. We found that Ppox switched macrophages towards M2 extreme, thus inhibiting the release of inflammatory cytokines. The underlying mechanism may be related to the suppression of TLR pathway. The generated osteoimmune environment improved osteogenesis while inhibited osteoclastogenesis. This may be related to the release of osteogenic factors, especially Wnt10b from macrophages. The addition of nanotopography (16 nm, 38 nm, 68 nm) can tune the Ppox-mediated inhibition on inflammation and osteoclastic activities, while no significant effects were observed within the tested nano sizes on the Ppox-mediated osteogenesis. These results collectively suggest that Ppox can be useful as an effective osteoiumunomodulatory agent to endow bone substitute materials with favourable osteoimmunomodulatory property. STATEMENT OF SIGNIFICANCE: In this study, we succeeded in preparing plasma deposited Pox-like nano-coatings (Ppox) via plasma polymerization and found that Ppox nanotopographies are useful osteoimmunomodulatory tools. Their osteoimmunodolatory effects and underlying mechanisms are unveiled. It is the first investigation into the feasibility of applying poly-oxazoline as an osteoimmunomodulatory agent. This expand the application of poly-oxazoline into the forefront in bone regeneration area for the development of advanced "osteoimmune-smart" bone substitute materials.
Collapse
|
16
|
Ng AYH, Li Z, Jones MM, Yang S, Li C, Fu C, Tu C, Oursler MJ, Qu J, Yang S. Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species. eLife 2019; 8:e42951. [PMID: 31490121 PMCID: PMC6731062 DOI: 10.7554/elife.42951] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
Regulators of G-protein Signaling are a conserved family of proteins required in various biological processes including cell differentiation. We previously demonstrated that Rgs12 is essential for osteoclast differentiation and its deletion in vivo protected mice against pathological bone loss. To characterize its mechanism in osteoclastogenesis, we selectively deleted Rgs12 in C57BL/6J mice targeting osteoclast precursors using LyzM-driven Cre mice or overexpressed Rgs12 in RAW264.7 cells. Rgs12 deletion in vivo led to an osteopetrotic phenotype evidenced by increased trabecular bone, decreased osteoclast number and activity but no change in osteoblast number and bone formation. Rgs12 overexpression increased osteoclast number and size, and bone resorption activity. Proteomics analysis of Rgs12-depleted osteoclasts identified an upregulation of antioxidant enzymes under the transcriptional regulation of Nrf2, the master regulator of oxidative stress. We confirmed an increase of Nrf2 activity and impaired reactive oxygen species production in Rgs12-deficient cells. Conversely, Rgs12 overexpression suppressed Nrf2 through a mechanism dependent on the 26S proteasome, and promoted RANKL-induced phosphorylation of ERK1/2 and NFκB, which was abrogated by antioxidant treatment. Our study therefore identified a novel role of Rgs12 in regulating Nrf2, thereby controlling cellular redox state and osteoclast differentiation.
Collapse
Affiliation(s)
- Andrew Ying Hui Ng
- Department of Anatomy and Cell BiologySchool of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Oral BiologySchool of Dental Medicine, University at BuffaloBuffaloUnited States
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Ziqing Li
- Department of Anatomy and Cell BiologySchool of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Megan M Jones
- Department of Oral BiologySchool of Dental Medicine, University at BuffaloBuffaloUnited States
| | - Shuting Yang
- Department of Anatomy and Cell BiologySchool of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Chunyi Li
- Department of Oral BiologySchool of Dental Medicine, University at BuffaloBuffaloUnited States
| | - Chuanyun Fu
- Department of StomatologyShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| | - Chengjian Tu
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloBuffaloUnited States
| | - Merry Jo Oursler
- Division of Endocrinology, Metabolism, Nutrition & DiabetesMayo ClinicRochesterUnited States
| | - Jun Qu
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloBuffaloUnited States
| | - Shuying Yang
- Department of Anatomy and Cell BiologySchool of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
- The Penn Center for Musculoskeletal DisordersSchool of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
17
|
Human macrophages and osteoclasts resorb β-tricalcium phosphate in vitro but not mouse macrophages. Micron 2019; 125:102730. [PMID: 31415983 DOI: 10.1016/j.micron.2019.102730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/12/2019] [Accepted: 07/29/2019] [Indexed: 11/22/2022]
Abstract
β-TCP is a resorbable bony biomaterial but its biodegradation mechanisms in vivo remains unclear. Osteoclast can resorb β-TCP but a role for macrophages has also been suggested by in vivo studies. However no in vitro study has clearly evidenced the action of macrophages in the resorption process. We prepared flat β-TCP tablets with a smooth surface to investigate the in vitro capability of murine (RAW 264.7) and human macrophage cells (PBMCs) to resorb the biomaterial. In parallel, these cells were differentiated into multinucleated osteoclasts with M-CSF and RANK-L. The action of these cells was evaluated by scanning electron microscopy and Raman microspectroscopy after a 21 day culture on the tablets. Human macrophages and osteoclasts derived from PBMCs appeared able to resorb β-TCP by forming resorption pits at the surface of the flat tablets. RAW macrophages were unable to resorb β-TCP but they exhibited this possibility when they have been differentiated into osteoclasts. These cells can engulf β-TCP grains in their cytoplasm as evidenced by light and TEM microscopy with production of carbonic anhydrase (revealed by the immunogold technique in TEM). The resorbed areas were characterized by severe degradation of the grains showing speckled and stick-like aspects indicating a chemical corrosion. The effect was maximal at the grain boundaries which have a slightly different chemical composition. Changes in the Raman spectrum were observed between the resorbed and un-resorbed β-TCP suggesting crystal modifications. In contrast, un-differentiated murine macrophages were not able to chemically attack β-TCP and no resorption pit was observed. RAW cell is not a representative model of the macrophage-biomaterial interactions that occur in human. This in vitro study evidences that both human osteoclasts and macrophages represent active cell populations capable to resorb β-TCP.
Collapse
|
18
|
Wang Y, Galli M, Shade Silver A, Lee W, Song Y, Mei Y, Bachus C, Glogauer M, McCulloch CA. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis. J Cell Sci 2018; 131:jcs.213967. [PMID: 29724913 DOI: 10.1242/jcs.213967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Adseverin is an actin-binding protein involved in osteoclastogenesis, but its role in inflammation-induced bone loss is not well-defined. Here, we examined whether IL1β and TNFα regulate adseverin expression to control osteoclastogenesis in mouse primary monocytes and RAW264.7 cells. Adseverin was colocalized with subcortical actin filaments and was enriched in the fusopods of fusing cells. In precursor cells, adseverin overexpression boosted the formation of RANKL-induced multinucleated cells. Both IL1β and TNFα enhanced RANKL-dependent TRAcP activity by 1.6-fold and multinucleated cell formation (cells with ≥3 nuclei) by 2.6- and 3.3-fold, respectively. However, IL1β and TNFα did not enhance osteoclast formation in adseverin-knockdown cells. RANKL-dependent adseverin expression in bone marrow cells was increased by both IL1β (5.4-fold) and TNFα (3.3-fold). Luciferase assays demonstrated that this expression involved transcriptional regulation of the adseverin promoter. Activation of the promoter was restricted to a 1118 bp sequence containing an NF-κB binding site, upstream of the transcription start site. TNFα also promoted RANKL-induced osteoclast precursor cell migration. We conclude that IL1β and TNFα enhance RANKL-dependent expression of adseverin, which contributes to fusion processes in osteoclastogenesis.
Collapse
Affiliation(s)
- Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Matthew Galli
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Alexandra Shade Silver
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Wilson Lee
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yushan Song
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yixue Mei
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Carly Bachus
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| |
Collapse
|
19
|
Abstract
Cell-cell fusion is a key stage in development and maintenance of multinucleated cells that resorb bones and form our skeletal muscles and placenta. Here, we focus on osteoclast formation to suggest new ways of unbiased presentation of cell fusion at given conditions that combine empirical cumulative distribution function for the sizes of multinucleated cells with the total number of cell-cell fusion events, which generate these cells.
Collapse
|
20
|
Menéndez-Gutiérrez MP, Ricote M. The multi-faceted role of retinoid X receptor in bone remodeling. Cell Mol Life Sci 2017; 74:2135-2149. [PMID: 28105491 PMCID: PMC11107715 DOI: 10.1007/s00018-017-2458-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
Retinoid X receptors (RXRs) form a unique subclass within the nuclear receptor (NR) superfamily of ligand-dependent transcription factors. RXRs are obligatory partners for a number of other NRs, placing RXRs in a coordinating role at the crossroads of multiple signaling pathways. In addition, RXRs can function as self-sufficient homodimers. Recent advances have revealed RXRs as novel regulators of osteoclastogenesis and bone remodeling. This review outlines the versatility of RXR action in the control of transcription of bone-forming osteoblasts and bone-resorbing osteoclasts, both through heterodimerization with other NRs and through RXR homodimerization. RXR signaling is currently a major therapeutic target and, therefore, knowledge of how RXR signaling affects bone remodeling creates enormous potential for the translation of basic research findings into successful clinical therapies to increase bone mass and improve bone quality.
Collapse
Affiliation(s)
- María P Menéndez-Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Mercedes Ricote
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Combination breast cancer chemotherapy with doxorubicin and cyclophosphamide damages bone and bone marrow in a female rat model. Breast Cancer Res Treat 2017; 165:41-51. [DOI: 10.1007/s10549-017-4308-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
22
|
Tiedemann K, Le Nihouannen D, Fong JE, Hussein O, Barralet JE, Komarova SV. Regulation of Osteoclast Growth and Fusion by mTOR/raptor and mTOR/rictor/Akt. Front Cell Dev Biol 2017; 5:54. [PMID: 28573133 PMCID: PMC5435769 DOI: 10.3389/fcell.2017.00054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are giant bone cells formed by fusion from monocytes and uniquely capable of a complete destruction of mineralized tissues. Previously, we have demonstrated that in energy-rich environment not only osteoclast fusion index (the number of nuclei each osteoclast contains), but also cytoplasm volume per single nucleus was increased. The goal of this study was to investigate the regulation of metabolic sensor mTOR during osteoclast differentiation in energy-rich environment simulated by addition of pyruvate. We have found that in the presence of pyruvate, the proportion of mTOR associated with raptor increased, while mTOR-rictor-mediated Akt phosphorylation decreased. Inhibition of mTOR with rapamycin (10 nM) significantly interfered with all aspects of osteoclastogenesis. However, rapamycin at 1 nM, which preferentially targets mTOR-raptor complex, was only effective in control cultures, while in the presence of pyruvate osteoclast fusion index was successfully increased. Inhibition of Akt drastically reduced osteoclast fusion, however in energy-rich environment, osteoclasts of comparable size were formed through increased cytoplasm growth. These data suggest that mTOR-rictor mediated Akt signaling regulates osteoclast fusion, while mTOR-raptor regulation of protein translation contributes to fusion-independent cytoplasm growth. We demonstrate that depending on the bioenergetics microenvironment osteoclastogenesis can adjust to occur through preferential multinucleation or through cell growth, implying that attaining large cell size is part of the osteoclast differentiation program.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada.,Shriners Hospital for Children-CanadaMontreal, QC, Canada
| | | | - Jenna E Fong
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada
| | - Osama Hussein
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada
| | - Jake E Barralet
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada.,Department of Surgery, Faculty of Medicine, McGill UniversityMontreal, QC, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada.,Shriners Hospital for Children-CanadaMontreal, QC, Canada
| |
Collapse
|
23
|
Natural uranium impairs the differentiation and the resorbing function of osteoclasts. Biochim Biophys Acta Gen Subj 2017; 1861:715-726. [PMID: 28089586 DOI: 10.1016/j.bbagen.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Uranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts. METHODS The effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses. RESULTS We observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis. CONCLUSIONS We show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis. GENERAL SIGNIFICANCE We describe cellular and molecular effects of uranium that potentially affect bone homeostasis.
Collapse
|
24
|
Hwang MP, Subbiah R, Kim IG, Lee KE, Park J, Kim SH, Park K. Approximating bone ECM: Crosslinking directs individual and coupled osteoblast/osteoclast behavior. Biomaterials 2016; 103:22-32. [PMID: 27376556 DOI: 10.1016/j.biomaterials.2016.06.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 11/30/2022]
Abstract
Osteoblast and osteoclast communication (i.e. osteocoupling) is an intricate process, in which the biophysical profile of bone ECM is an aggregate product of their activities. While the effect of microenvironmental cues on osteoblast and osteoclast maturation has been resolved into individual variables (e.g. stiffness or topography), a single cue can be limited with regards to reflecting the full biophysical scope of natural bone ECM. Additionally, the natural modulation of bone ECM, which involves collagenous fibril and elastin crosslinking via lysyl oxidase, has yet to be reflected in current synthetic platforms. Here, we move beyond traditional substrates and use cell-derived ECM to examine individual and coupled osteoblast and osteoclast behavior on a physiological platform. Specifically, preosteoblast-derived ECM is crosslinked with genipin, a biocompatible crosslinker, to emulate physiological lysyl oxidase-mediated ECM crosslinking. We demonstrate that different concentrations of genipin yield changes to ECM density, stiffness, and roughness while retaining biocompatibility. By approximating various bone ECM profiles, we examine how individual and coupled osteoblast and osteoclast behavior are affected. Ultimately, we demonstrate an increase in osteoblast and osteoclast differentiation on compact and loose ECM, respectively, and identify ECM crosslinking density as an underlying force in osteocoupling behavior.
Collapse
Affiliation(s)
- Mintai P Hwang
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In Gul Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jimin Park
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Heon Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
25
|
Oliveira MC, Di Ceglie I, Arntz OJ, van den Berg WB, van den Hoogen FHJ, Ferreira AVM, van Lent PLEM, van de Loo FAJ. Milk-Derived Nanoparticle Fraction Promotes the Formation of Small Osteoclasts But Reduces Bone Resorption. J Cell Physiol 2016; 232:225-33. [PMID: 27138291 DOI: 10.1002/jcp.25414] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/29/2016] [Indexed: 01/15/2023]
Abstract
The general consensus is that milk promotes bone growth and density because is a source of calcium and contains components that enhance intestinal calcium uptake or directly affect bone metabolism. In this study, we investigated the effect of bovine-derived milk 100,000 g pellet (P100), which contains nanoparticles (<220 nm) including extracellular vesicles, on osteoclast differentiation and bone resorption. Bone marrow-derived osteoclast precursor cells were differentiated into osteoclasts by M-CSF and RANKL (control) and in the presence of milk P100. Milk P100 treatment until day 4 increased the number of TRAP-positive mononuclear cells and small (≤5 nuclei) osteoclasts. The number of large (≥6 nuclei) osteoclasts remained the same. These alterations were associated with increased expression of TRAP, NFATc1, and c-Fos. Cells seeded in a calcium-phosphate coated plate or bone slices showed reduced resorption area when exposed to milk P100 during the differentiation phase and even after osteoclast formation. Interestingly, milk P100 treatment enhanced Cathepsin K expression but reduced Carbonic Anhydrase 2 gene expression. Moreover, intracellular acid production was also decreased by milk P100 treatment. Oral delivery of milk P100 to female DBA1/J mice for 7 weeks did not alter bone area; however, increased osteoclast number and area in tibia without changes in serum RANKL and CTX-I levels. We showed for the first time the effect of milk P100 on osteoclast differentiation both in vitro and in vivo and found that milk P100 increased the formation of small osteoclasts but this does not lead to more bone resorption probably due to reduced acid secretion. J. Cell. Physiol. 232: 225-233, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marina C Oliveira
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Adaliene V M Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Fan C, Georgiou KR, McKinnon RA, Keefe DMK, Howe PRC, Xian CJ. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats. J Bone Miner Metab 2016; 34:277-90. [PMID: 26056019 DOI: 10.1007/s00774-015-0679-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/19/2015] [Indexed: 12/16/2022]
Abstract
The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation.
Collapse
Affiliation(s)
- Chiaming Fan
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Kristen R Georgiou
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Ross A McKinnon
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Bedford Park, SA, 5042, Australia
| | - Dorothy M K Keefe
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia
- SA Cancer Service, SA Cancer Clinical Network, SA Health, Adelaide, SA, 5000, Australia
- Centre of Cancer Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Peter R C Howe
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
27
|
Kawamoto D, Ando-Suguimoto ES, Bueno-Silva B, DiRienzo JM, Mayer MPA. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT. Front Cell Infect Microbiol 2016; 6:33. [PMID: 27064424 PMCID: PMC4815040 DOI: 10.3389/fcimb.2016.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Give that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of RANKL and the cell viability and cytokine profile of osteoclast precursor cells were determined. Multinucleated TRAP(+) cell numbers, and relative transcription of genes related to osteoclastogenesis were also evaluated. The addition of AaCDT did not lead to loss in cell viability but promoted an increase in the average number of TRAP(+) cells with 1-2 nuclei in the absence or presence of RANKL (Tukey, p < 0.05). This increase was also observed for TRAP(+) cells with ≥3nuclei, although this difference was not significant. Levels of TGF-β, TNF-α, and IL-6, in the supernatant fraction of cells, were higher when in AaCDT exposed cells, whereas levels of IL-1β and IL-10 were lower than controls under the same conditions. After interaction with AaCDT, transcription of the rank (encoding the receptor RANK), nfatc1 (transcription factor), and ctpK (encoding cathepsin K) genes was downregulated in pre-osteoclastic cells. The data indicated that despite the presence of RANKL and M-CSF, AaCDT may inhibit osteoclast differentiation by altering cytokine profiles and repressing transcription of genes involved in osteoclastogenesis. Therefore, the CDT may impair host defense mechanisms in periodontitis.
Collapse
Affiliation(s)
- Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Ellen S Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania PA, USA
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|
28
|
Role of actin filaments in fusopod formation and osteoclastogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1715-24. [DOI: 10.1016/j.bbamcr.2015.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/19/2015] [Accepted: 04/06/2015] [Indexed: 12/16/2022]
|
29
|
Green AC, Poulton IJ, Vrahnas C, Häusler KD, Walkley CR, Wu JY, Martin TJ, Gillespie MT, Chandraratna RAS, Quinn JMW, Sims NA, Purton LE. RARγ is a negative regulator of osteoclastogenesis. J Steroid Biochem Mol Biol 2015; 150:46-53. [PMID: 25800721 DOI: 10.1016/j.jsbmb.2015.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 01/14/2023]
Abstract
Vitamin A is known to influence post-natal bone content, with excess intake being associated with reduced bone mineral density and increased fracture risk. Despite this, the roles retinoids play in regulating osteoclastogenesis, particularly in vivo, remain unresolved. This study therefore aimed to determine the effect of loss of retinoic acid receptors (RAR)α or RARγ on bone mass (analyzed by histomorphometry and dual-energy X-ray absorptiometry) and osteoclastogenesis in mice in vivo. RARγ null mice had significantly less trabecular bone at 8 weeks of age compared to wildtype littermates. In contrast, no change in trabecular bone mass was detected in RARα null mice at this age. Further histomorphometric analysis revealed a significantly greater osteoclast surface in bones from 8-week-old RARγ null male mice. This in vivo effect was cell lineage autonomous, and was associated with increased osteoclastogenesis in vitro from hematopoietic cells obtained from 8-week-old RARγ null male mice. The use of highly selective agonists in RANKL-induced osteoclast differentiation of wild type mouse whole bone marrow cells and RAW264.7 cells in vitro showed a stronger inhibitory effect of RARγ than RARα agonists, suggesting that RARγ is a more potent inhibitor of osteoclastogenesis. Furthermore, NFAT activation was also more strongly inhibited by RARγ than RARα agonists. While RARα and RARγ antagonists did not significantly affect osteoclast numbers in vitro, larger osteoclasts were observed in cultures stimulated with the antagonists, suggesting increased osteoclast fusion. Further investigation into the effect of retinoids in vivo revealed that oral administration of 5mg/kg/day ATRA for 10 days protected against bone loss induced by granulocyte colony-stimulating factor (G-CSF) by inhibiting the pro-osteoclastogenic action of G-CSF. Collectively, our data indicates a physiological role for RARγ as a negative regulator of osteoclastogenesis in vivo and in vitro, and reveals distinct influences of RARα and RARγ in bone structure regulation.
Collapse
Affiliation(s)
- Alanna C Green
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | | | - Christina Vrahnas
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Karl D Häusler
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, CA 94305, USA
| | - T John Martin
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Matthew T Gillespie
- MIMR-PHI Institute, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | | | - Julian M W Quinn
- MIMR-PHI Institute, Monash Medical Centre, Clayton, Victoria 3168, Australia; The Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010 Australia
| | - Natalie A Sims
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Louise E Purton
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia.
| |
Collapse
|
30
|
Mine Y, Shuto T, Nikawa H, Kawai T, Ohara M, Kawahara K, Ohta K, Kukita T, Terada Y, Makihira S. Inhibition of RANKL-dependent cellular fusion in pre-osteoclasts by amiloride and a NHE10-specific monoclonal antibody. Cell Biol Int 2015; 39:696-709. [PMID: 25612314 DOI: 10.1002/cbin.10447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022]
Abstract
The functions of Na(+) /H(+) exchangers (NHEs) during osteoclastic differentiation were investigated using the NHE inhibitor amiloride and a monoclonal antibody (MAb). Compared with sRANKL-stimulated control cells, amiloride decreased the number of large TRAP-positive osteoclast cells (OCs) with ≥10 nuclei and increased the number of small TRAP-positive OCs with ≤10 nuclei during sRANKL-dependent osteoclastic differentiation of RAW264.7 cells. NHE10 mRNA expression and OC differentiation markers were increased by sRANKL stimulation in dose- and time-dependent manners. NHEs 1-9 mRNA expression was not increased by sRANKL stimulation. Similar to amiloride, a rat anti-mouse NHE10 MAb (clone 6B11) decreased the number of large TRAP-positive OCs, but increased the number of small TRAP-positive OCs. These findings suggested that inhibition of NHEs by amiloride or an anti-NHE10 MAb prevented sRANKL-promoted cellular fusion. The anti-NHE10 MAb has the potential for use as an effective inhibitor of bone resorption for targeted bone disease therapy.
Collapse
Affiliation(s)
- Yuichi Mine
- Department of Oral Biology and Engineering, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Takahiro Shuto
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Nikawa
- Department of Oral Biology and Engineering, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 1st St., Cambridge, MA, 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA, 02115,, USA
| | - Masaru Ohara
- Hiroshima University Hospital, Dental Clinic, 1-1-2 Kagamiyama, Higashihiroshima, 739-0046, Japan
| | - Kazuko Kawahara
- Department of Oral Biology and Engineering, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Kouji Ohta
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 1st St., Cambridge, MA, 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA, 02115,, USA
| | - Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Terada
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seicho Makihira
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
31
|
Kleinhans C, Schmid FF, Schmid FV, Kluger PJ. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D. J Biotechnol 2015; 205:101-10. [PMID: 25562421 DOI: 10.1016/j.jbiotec.2014.11.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Abstract
Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts.
Collapse
Affiliation(s)
- C Kleinhans
- Institute for Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569 Stuttgart, Germany; Medical University Graz, Department of Orthopaedics, 8036 Graz, Austria
| | - F F Schmid
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) , Nobelstrasse 12, 70569 Stuttgart, Germany
| | - F V Schmid
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) , Nobelstrasse 12, 70569 Stuttgart, Germany
| | - P J Kluger
- Institute for Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569 Stuttgart, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) , Nobelstrasse 12, 70569 Stuttgart, Germany; Reutlingen University, Process Analysis & Technology (PA&T), Alteburgstraße 150, 72762 Reutlingen, Germany.
| |
Collapse
|
32
|
Al-Duliamy MJ, Ghaib NH, Kader OA, Abdullah BH. Enhancement of orthodontic anchorage and retention by the local injection of strontium: An experimental study in rats. Saudi Dent J 2015; 27:22-9. [PMID: 25544811 PMCID: PMC4273278 DOI: 10.1016/j.sdentj.2014.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 03/30/2014] [Accepted: 08/27/2014] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES To examine the clinical and histological effects of locally injected strontium on the anchoring unit of a rat model of an experimental relapsed tooth movement. MATERIALS AND METHODS Thirty-six 10-week-old male Wister rats were randomly divided into two groups of 18 animals that were then randomly divided into three subgroups of six animals corresponding to three observation periods: T1 = 1 week, T2 = 2 weeks, and T3 = 3 weeks. In the first experiment, both the right and left maxillary first molars were moved buccally with a standardized expansive spring. Strontium chloride solution was injected every 2 days into the subperiosteal area buccal to the left maxillary first molar (the experimental side). The right-sided first molar was injected with distilled water as a control. In the second experiment, maxillary first molars were moved buccally with the spring. After 3 weeks, the spring was removed. Two days before the spring removal, strontium chloride was injected into the palatal side of left-sided maxillary first molar and distilled water was injected into the palatal side of the right-sided maxillary first molar as in experiment 1. RESULTS At the end of the experimental period, significant levels of inhibition were noted in terms of both tooth movement and relapse movement in strontium-injected sides. Histological examinations showed that strontium enhanced the number of osteoblasts and reduced the number of osteoclasts. CONCLUSION The local injection of strontium can inhibit the degree of experimental and relapsed tooth movement in a rat model.
Collapse
Affiliation(s)
| | - Nidhal H. Ghaib
- Department of Orthodontics, College of Dentistry, University of Baghdad, Iraq
| | - Omar A. Kader
- Department of Oral Diagnosis, College of Dentistry, University of Baghdad, Iraq
| | - Bashar H. Abdullah
- Department of Oral Diagnosis, College of Dentistry, University of Baghdad, Iraq
| |
Collapse
|
33
|
Trouillet-Assant S, Gallet M, Nauroy P, Rasigade JP, Flammier S, Parroche P, Marvel J, Ferry T, Vandenesch F, Jurdic P, Laurent F. Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis 2014; 211:571-81. [PMID: 25006047 DOI: 10.1093/infdis/jiu386] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Bone and joint infection, mainly caused by Staphylococcus aureus, is associated with significant morbidity and mortality, characterized by severe inflammation and progressive bone destruction. Studies mostly focused on the interaction between S. aureus and osteoblasts, the bone matrix-forming cells, while interactions between S. aureus and osteoclasts, the only cells known to be able to degrade bone, have been poorly explored. METHODS We developed an in vitro infection model of primary murine osteoclasts to study the direct impact of live S. aureus on osteoclastogenesis and osteoclast resorption activity. RESULTS Staphylococcal infection of bone marrow-derived osteoclast precursors induced their differentiation into activated macrophages that actively secreted proinflammatory cytokines. These cytokines enhanced the bone resorption capacity of uninfected mature osteoclasts and promoted osteoclastogenesis of the uninfected precursors at the site of infection. Moreover, infection of mature osteoclasts by live S. aureus directly enhanced their ability to resorb bone by promoting cellular fusion. CONCLUSIONS Our results highlighted two complementary mechanisms involved in bone loss during bone and joint infection, suggesting that osteoclasts could be a pivotal target for limiting bone destruction.
Collapse
Affiliation(s)
- Sophie Trouillet-Assant
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Marlène Gallet
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Pauline Nauroy
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Jean-Philippe Rasigade
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Sacha Flammier
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Peggy Parroche
- CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Jacqueline Marvel
- CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Tristan Ferry
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Francois Vandenesch
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Pierre Jurdic
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Frederic Laurent
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| |
Collapse
|
34
|
Salem S, Gao C, Li A, Wang H, Nguyen-Yamamoto L, Goltzman D, Henderson JE, Gros P. A novel role for interferon regulatory factor 1 (IRF1) in regulation of bone metabolism. J Cell Mol Med 2014; 18:1588-98. [PMID: 24954358 PMCID: PMC4152406 DOI: 10.1111/jcmm.12327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022] Open
Abstract
Increased risk of bone fractures is observed in patients with chronic inflammatory conditions, such as inflammatory bowel disease and rheumatoid arthritis. Members of the Interferon Response Factor family of transcriptional regulators, IRF1 and IRF8, have been identified as genetic risk factors for several chronic inflammatory and autoimmune diseases. We have investigated a potential role for the Irf1 gene in bone metabolism. Here, we report that Irf1(-/-) mutant mice show altered bone morphology in association with altered trabecular bone architecture and increased cortical thickness and cellularity. Ex vivo studies on cells derived from bone marrow stimulated with Rank ligand revealed an increase in size and resorptive activity of tartrate-resistant acid-positive cells from Irf1(-/-) mutant mice compared with wild-type control mice. Irf1 deficiency was also associated with decreased proliferation of bone marrow-derived osteoblast precursors ex vivo, concomitant with increased mineralization activity compared with control cells. We show that Irf1 plays a role in bone metabolism and suggest that Irf1 regulates the maturation and activity of osteoclasts and osteoblasts. The altered bone phenotype of Irf1(-/-) mutants is strikingly similar to that of Stat1(-/-) mice, suggesting that the two interacting proteins play a critical enabling role in the common regulation of these two cell lineages.
Collapse
Affiliation(s)
- Sandra Salem
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Detsch R, Boccaccini AR. The role of osteoclasts in bone tissue engineering. J Tissue Eng Regen Med 2014; 9:1133-49. [PMID: 24478169 DOI: 10.1002/term.1851] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/18/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
The success of scaffold-based bone regeneration approaches strongly depends on the performance of the biomaterial utilized. Within the efforts of regenerative medicine towards a restitutio ad integrum (i.e. complete reconstruction of a diseased tissue), scaffolds should be completely degraded within an adequate period of time. The degradation of synthetic bone substitute materials involves both chemical dissolution (physicochemical degradation) and resorption (cellular degradation by osteoclasts). Responsible for bone resorption are osteoclasts, cells of haematopoietic origin. Osteoclasts play also a crucial role in bone remodelling, which is essential for the regeneration of bone defects. There is, however, surprisingly limited knowledge about the detailed effects of osteoclasts on biomaterials degradation behaviour. This review covers the relevant fundamental knowledge and progress made in the field of osteoclast activity related to biomaterials used for bone regeneration. In vitro studies with osteoclastic precursor cells on synthetic bone substitute materials show that there are specific parameters that inhibit or enhance resorption. Moreover, analyses of the bone-material interface reveal that biomaterials composition has a significant influence on their degradation in contact with osteoclasts. Crystallinity, grain size, surface bioactivity and density of the surface seem to have a less significant effect on osteoclastic activity. In addition, the topography of the scaffold surface can be tailored to affect the development and spreading of osteoclast cells. The present review also highlights possible areas on which future research is needed and which are relevant to enhance our understanding of the complex role of osteoclasts in bone tissue engineering.
Collapse
Affiliation(s)
- Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
36
|
Iqbal J, Sun L, Cao J, Yuen T, Lu P, Bab I, Leu NA, Srinivasan S, Wagage S, Hunter CA, Nebert DW, Zaidi M, Avadhani NG. Smoke carcinogens cause bone loss through the aryl hydrocarbon receptor and induction of Cyp1 enzymes. Proc Natl Acad Sci U S A 2013; 110:11115-20. [PMID: 23776235 PMCID: PMC3704019 DOI: 10.1073/pnas.1220919110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Smoking is a major risk factor for osteoporosis and fracture, but the mechanism through which smoke causes bone loss remains unclear. Here, we show that the smoke toxins benzo(a)pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) interact with the aryl hydrocarbon receptor (Ahr) to induce osteoclastic bone resorption through the activation of cytochrome P450 1a/1b (Cyp1) enzymes. BaP and TCDD enhanced osteoclast formation in bone marrow cell cultures and gavage with BaP stimulated bone resorption and osteoclastogenesis in vivo. The osteoclastogenesis triggered by BaP or RANK-L was reduced in Ahr(-/-) cells, consistent with the high bone mass noted in Ahr(-/-) male mice. The receptor activator of NF-κB ligand (RANK-L) also failed to induce the expression of Cyp1 enzymes in Ahr(-/-) cells. Furthermore, the osteoclastogenesis induced by TCDD was lower in Cyp1a1/1a2(-/-) and Cyp1a1/1a2/1b1(-/-) cultures, indicating that Ahr was upstream of the Cyp enzymes. Likewise, the pharmacological inhibition of the Cyp1 enzymes with tetramethylsilane or proadifen reduced osteoclastogenesis. Finally, deletion of the Cyp1a1, Cyp1a2, and Cyp1b1 in triple knockout mice resulted in reduced bone resorption and recapitulated the high bone mass phenotype of Ahr(-/-) mice. Overall, the data identify the Ahr and Cyp1 enzymes not only in the pathophysiology of smoke-induced osteoporosis, but also as potential targets for selective modulation by new therapeutics.
Collapse
Affiliation(s)
- Jameel Iqbal
- Departments of Animal Biology and
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19147
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Li Sun
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Jay Cao
- US Department of Agriculture, Human Nutrition Research Center, Grand Forks, ND 58201
| | - Tony Yuen
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Ping Lu
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Itai Bab
- The Bone Laboratory, Hebrew University, Jerusalem 76100, Israel; and
| | | | | | - Sagie Wagage
- Pathobiology, School of Veterinary Medicine, and
| | | | - Daniel W. Nebert
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Mone Zaidi
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
37
|
Gheryani N, Coffelt SB, Gartland A, Rumney RMH, Kiss-Toth E, Lewis CE, Tozer GM, Greaves DR, Dear TN, Miller G. Generation of a novel mouse model for the inducible depletion of macrophages in vivo. Genesis 2012; 51:41-9. [PMID: 22927121 DOI: 10.1002/dvg.22343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 11/08/2022]
Abstract
Macrophages play an essential role in tissue homeostasis, innate immunity, inflammation, and wound repair. Macrophages are also essential during development, severely limiting the use of mouse models in which these cells have been constitutively deleted. Consequently, we have developed a transgenic model of inducible macrophage depletion in which macrophage-specific induction of the cytotoxic diphtheria toxin A chain (DTA) is achieved by administration of doxycycline. Induction of the DTA protein in transgenic animals resulted in a significant 50% reduction in CD68+ macrophages of the liver, spleen, and bone over a period of 6 weeks. Pertinently, the macrophages remaining after doxycycline treatment were substantially smaller and are functionally impaired as shown by reduced inflammatory cytokine production in response to lipopolysaccharide. This inducible model of macrophage depletion can now be utilized to determine the role of macrophages in both development and animal models of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Nabeia Gheryani
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rumney RMH, Wang N, Agrawal A, Gartland A. Purinergic signalling in bone. Front Endocrinol (Lausanne) 2012; 3:116. [PMID: 23049524 PMCID: PMC3446723 DOI: 10.3389/fendo.2012.00116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022] Open
Abstract
Purinergic signaling in bone was first proposed in the early 1990s with the observation that extracellular ATP could modulate events crucial to the normal functioning of bone cells. Since then the expression of nearly all the P2Y and P2X receptors by osteoblasts and osteoclasts has been reported, mediating multiple processes including cell proliferation, differentiation, function, and death. This review will highlight the most recent developments in the field of purinergic signaling in bone, with a special emphasis on recent work resulting from the European Framework 7 funded collaboration ATPBone, as well as Arthritis Research UK and Bone Research Society supported projects.
Collapse
Affiliation(s)
| | | | | | - Alison Gartland
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of SheffieldSheffield, UK
| |
Collapse
|
39
|
Lionetto S, Little A, Moriceau G, Heymann D, Decurtins M, Plecko M, Filgueira L, Cadosch D. Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro. J Biomed Mater Res A 2012; 101:991-7. [PMID: 22965942 DOI: 10.1002/jbm.a.34402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 11/08/2022]
Abstract
In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS.
Collapse
Affiliation(s)
- S Lionetto
- Department of Surgery, Spitalregion Fürstenland Toggenburg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Brisson L, Reshkin SJ, Goré J, Roger S. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 2012; 91:847-60. [PMID: 22673002 DOI: 10.1016/j.ejcb.2012.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Nutrition, Growth and Cancer, Université François-Rabelais de Tours, Inserm U, France
| | | | | | | |
Collapse
|
41
|
Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol 2012; 44:1422-35. [PMID: 22652318 DOI: 10.1016/j.biocel.2012.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- A Qin
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Badran Z, Pilet P, Verron E, Bouler JM, Weiss P, Grimandi G, Guicheux J, Soueidan A. Assay of in vitro osteoclast activity on dentine, and synthetic calcium phosphate bone substitutes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:797-803. [PMID: 22190199 DOI: 10.1007/s10856-011-4534-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 12/11/2011] [Indexed: 05/31/2023]
Abstract
Resorption of synthetic bone substitute materials is essential for the integration of these materials into the natural bone remodeling process. Osteoclast behavior in the presence of calcium phosphate bioceramics (CaPB) is partially understood, and a better understanding of the underlying mechanisms is expected to facilitate the development of new synthetic bone substitutes to improve bone regeneration. In the present study, our aim was to investigate osteoclastic resorption of various synthetic CaPB. We used neonatal total rabbit bone cells to generate osteoclasts. Osteoclast-generated resorption on dentine and multiple CaPB was investigated by quantifying the surface resorbed and measuring tartrate resistant acid phosphatase (TRAP) enzyme activity. In this study, we observed that osteoclastic cells responded in a different way to each substrate. Both dentine and CaPB were resorbed but the quantitative results for the surface resorbed and TRAP activity showed a specific response to each substrate and that increased mineral density seemed to inhibit osteoclast activity.
Collapse
Affiliation(s)
- Zahi Badran
- Osteo-Articular and Dental Tissue Engineering Laboratory LIOAD, Department of Periodontology, School of Dental Surgery, INSERM U791, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Doody KM, Bussières-Marmen S, Li A, Paquet M, Henderson JE, Tremblay ML. T cell protein tyrosine phosphatase deficiency results in spontaneous synovitis and subchondral bone resorption in mice. ACTA ACUST UNITED AC 2012; 64:752-61. [DOI: 10.1002/art.33399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Abstract
Newborn rabbits provide a useful and readily available source of authentic mature osteoclasts, which can be easily isolated directly from the long bones in relatively large numbers, compared to other rodents. Primary cultures of authentic rabbit osteoclasts on resorbable substrates in vitro are an ideal model of osteoclast behaviour in vivo, and for some studies may be preferable to osteoclast-like cells generated in vitro from bone marrow cultures or from human peripheral blood, for example in assessing osteoclast-mediated bone resorption independently of effects on osteoclast formation. Rabbits also provide a particularly useful model for determining the effects of pharmacological agents on osteoclasts in vivo, by isolating osteoclasts using immunomagnetic bead separation (with an antibody to α(V)β(3)) at the desired time following in vivo administration of the drug. Since osteoclasts are abundant in newborn rabbits, sufficient numbers of osteoclasts can be retrieved using this method for molecular and biochemical analyses.
Collapse
Affiliation(s)
- Fraser P Coxon
- Musculoskeletal Research Programme, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | | | | |
Collapse
|
45
|
Abstract
This chapter describes quantitative methods for isolating and culturing rodent osteoclasts on dentine, a bone-like, resorbable substrate. These techniques generate relatively large numbers of osteoclasts and allow the key processes of osteoclast formation and activation to be studied independently. A special focus will be on the role of extracellular pH, a critical factor in the control of osteoclast function.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | |
Collapse
|
46
|
Abstract
The greatest cause of preventable morbidity and mortality is smoking, and one of the often-underappreciated effects of smoking is profound bone loss. The existing clinical paradigm for smoking is that there is a low turnover osteoporosis. This review highlights findings from recent clinical trials and animal research demonstrating either support or conflict with the existing paradigm. Clinically, it is noted that markers of bone formation are often normal in smokers; these clinical findings conflict with well-conducted animal research demonstrating that carcinogens acting on the aryl hydrogen receptor can significantly reduce osteoblast formation and function. Regarding bone resorption, highlights from recent clinical studies suggest that bone remodeling is increased in smokers. Directly contradicting this enhanced osteoclastogenesis are several animal studies all demonstrating significant inhibition of osteoclast formation and function upon exposure to smoke carcinogens. Future research is needed to clarify whether smoking is truly a low bone remodeling osteoporosis, or an osteoclast-driven bone destruction, with inappropriately normal bone formation.
Collapse
Affiliation(s)
- Carol Yan
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
47
|
Faloni APDS, Sasso-Cerri E, Rocha FRG, Katchburian E, Cerri PS. Structural and functional changes in the alveolar bone osteoclasts of estrogen-treated rats. J Anat 2011; 220:77-85. [PMID: 22092353 DOI: 10.1111/j.1469-7580.2011.01449.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study investigated structural and functional features of apoptotic alveolar bone osteoclasts in estrogen-treated rats. For this purpose, 15 female rats 22 days old were divided into three groups: Estrogen (EG), Sham (SG) and Control (CG). The rats of EG received daily intramuscular injection of estrogen for 7 days. The SG received only the oil vehicle. Maxillary fragments containing alveolar bone were removed and processed for light and transmission electron microscopy. Area (OcA) and number of nuclei (OcN) and bone resorption surface per TRAP-positive osteoclasts (BS/OC) were obtained. Vimentin, caspase-3 and MMP-9 immunoreactions, TUNEL/TRAP and MMP-9/TUNEL combined reactions were performed. In EG, the OcA, OcN and BS/Oc were reduced. Moreover, osteoclasts showed cytoplasm immunolabelled by caspase-3 and a different pattern of vimentin expression in comparison with CG and SG. MMP-9 expression was not affected by estrogen and the TUNEL-positive osteoclasts were MMP-9-immunolabelled. In EG, ultrastructural images showed that apoptotic osteoclasts did not exhibit ruffled borders or clear zones and were shedding mononucleated portions. TRAP-positive structures containing irregular and dense chromatin were partially surrounded by fibroblast-like cells. In conclusion, the reduction in the BS/Oc may be due to reduction in OcA and OcN; these effects seem to be related to vimentin disarrangement rather than to an interference of estrogen with osteoclast MMP-9 expression. Osteoclast apoptosis involves caspase-3 activity and vimentin degradation; these cells release portions containing one apoptotic nucleus and, subsequently, undergo fragmentation, giving rise to apoptotic bodies.
Collapse
|
48
|
The influence of interleukin-32γ on osteoclastogenesis with a focus on fusion-related genes. J Clin Immunol 2011; 32:201-6. [PMID: 22068911 DOI: 10.1007/s10875-011-9611-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/19/2011] [Indexed: 12/30/2022]
Abstract
We previously reported that interleukin-32 gamma (IL-32γ) has a direct effect on osteoclast differentiation and activation in vitro in the context of receptor activator of NF-κB ligand (RANKL) co-stimulation. However, the stage of osteoclast differentiation at which IL-32γ exerts its effect was not determined. Here, we demonstrated that IL-32γ plays an important role in the fusion of preosteoclasts to yield multinuclear osteoclasts, particularly large osteoclasts. The synergistic effect of IL-32γ on RANKL-induced formation of multinuclear osteoclasts was readily apparent when cells were treated with IL-32γ at the fusion stage. In addition, we demonstrated that IL-32γ induced the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), and NFATc1 inactivation by cyclosporine treatment attenuated the effect of IL-32γ. These results indicate that IL-32γ is a potential mediator of osteoclast fusion, likely through up-regulation of NFATc1 and DC-STAMP.
Collapse
|
49
|
Makihira S, Nikawa H, Kajiya M, Kawai T, Mine Y, Kosaka E, Silva MJ, Tobiume K, Terada Y. Blocking of sodium and potassium ion-dependent adenosine triphosphatase-α1 with ouabain and vanadate suppresses cell–cell fusion during RANKL-mediated osteoclastogenesis. Eur J Pharmacol 2011; 670:409-18. [DOI: 10.1016/j.ejphar.2011.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
50
|
Hemingway F, Taylor R, Knowles HJ, Athanasou NA. RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone 2011; 48:938-44. [PMID: 21193069 DOI: 10.1016/j.bone.2010.12.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 12/31/2022]
Abstract
Non-canonical pathways of osteoclastogenesis have been described in which several cytokines are able to substitute for RANKL. These cytokines are few in number and their role(s) in pathological bone resorption has not been ascertained. We have identified five additional cytokines, APRIL, BAFF, NGF, IGF I and IGF II, that can induce RANKL-independent osteoclastogenesis. All five cytokines induced both osteoclast differentiation and activation with respect to the formation of significant numbers of TRAP(+) and VNR(+) multinucleated cells that were capable of resorbing bone. The number of TRAP(+) multinucleated cells that formed was in the range of 40-75% of that supported by MCSF plus RANKL. Resorption was at a similar level to that induced by the other known RANKL substitutes TNFα, IL-6 and TGF-β. The addition of osteoprotegrin, the endogenous decoy receptor of RANKL, revealed that this resorption was independent of RANKL. APRIL, BAFF, IGF I and IGF II were found to be expressed in giant cell tumour of bone. IGF I and IGF II demonstrated very strong expression in the stromal cell population of all tumour samples. This data suggests that non-canonical osteoclastogenesis plays a role in both normal and pathological bone resorption.
Collapse
Affiliation(s)
- F Hemingway
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD, UK
| | | | | | | |
Collapse
|