1
|
Kozior M, Demehin OA, Ryan MM, O’Connell S, Jakeman PM. The Temporal Change in Ionised Calcium, Parathyroid Hormone and Bone Metabolism Following Ingestion of a Plant-Sourced Marine Mineral + Protein Isolate in Healthy Young Adults. Nutrients 2024; 16:3110. [PMID: 39339710 PMCID: PMC11434972 DOI: 10.3390/nu16183110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: An increase in plant-sourced (PS) nutrient intake is promoted in support of a sustainable diet. PS dietary minerals and proteins have bioactive properties that can affect bone health and the risk of fracture. Methods: In a group randomised, cross-over design, this study evaluated the post-ingestion temporal pattern of change in arterialised ionised calcium (iCa), parathyroid hormone (PTH), C-terminal crosslinked telopeptide of type I collagen (CTX) and procollagen type 1 amino-terminal propeptide (P1NP) for 4 h following ingestion of a novel supplement (SUPP) containing a PS marine multi-mineral + PS protein isolate. A diurnally matched intake of mineral water was used as a control (CON). Results: Compared to baseline, the change in iCa concentration was 0.022 (95% CI, 0.006 to 0.038, p = 0.011) mmol/l greater in SUPP than CON, resulting in a -4.214 (95% CI, -8.244 to -0.183, p = 0.042) pg/mL mean reduction in PTH, a -0.64 (95% CI, -0.199 to -0.008, p = 0.029) ng/mL decrease in the biomarker of bone resorption, CTX, and no change in the biomarker of bone formation, P1NP. Conclusions: When used as a dietary supplement, or incorporated into a food matrix, the promotion of PS marine multi-mineral and PS protein isolates may contribute to a more sustainable diet and overall bone health.
Collapse
Affiliation(s)
- Marta Kozior
- Food, Diet and Nutrition, Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Olusoji Aboyeji Demehin
- Marigot Research Centre, Sycamore Court, V92 N6C8 Tralee, Ireland; (O.A.D.); (M.M.R.); (S.O.)
| | - Michelle Mary Ryan
- Marigot Research Centre, Sycamore Court, V92 N6C8 Tralee, Ireland; (O.A.D.); (M.M.R.); (S.O.)
| | - Shane O’Connell
- Marigot Research Centre, Sycamore Court, V92 N6C8 Tralee, Ireland; (O.A.D.); (M.M.R.); (S.O.)
- Shannon Applied Technology Centre, Munster Technological University, Clash, V92 CX88 Tralee, Ireland
| | - Philip Michael Jakeman
- Food, Diet and Nutrition, Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| |
Collapse
|
2
|
Docaj A, Carriero A. Bone health: Quality versus quantity. JOURNAL OF THE PEDIATRIC ORTHOPAEDIC SOCIETY OF NORTH AMERICA 2024; 7:100054. [PMID: 40433261 PMCID: PMC12088120 DOI: 10.1016/j.jposna.2024.100054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2025]
Abstract
Healthy bone has the ability to resist deformation and fracture while adapting to applied mechanical loads. These properties of bone depend on characteristics of its extracellular matrix. This review focuses on the contribution of bone quality and quantity to bone health and highlights current and promising future clinical approaches to measure bone health in the pediatric population. Bone's unique material properties are derived from its highly organized, hierarchical composite structure, together with its modeling and remodeling dynamics and microdamage mechanisms. Pediatric bone diseases and disorders affect the biological processes that regulate its quality, negatively impacting the extracellular matrix and causing bone fragility. Laboratory bone analysis from human biopsies or animal models of human bone diseases allows high detail examination of the mechanisms contributing to bone fragility. Conversely, clinical measurements of bone fragility are difficult and limited due to the inaccessibility of the material. Because bone quality directly affects fracture resistance, both structure and composition should be used in fracture risk calculation rather than bone mineral density or bone quantity alone. Thus, to advance clinical evaluation of bone fragility, future studies are needed to determine which characteristics of bone quality can be applied to clinical practice to predict bone fragility. New and effective clinical tools are needed to predict fracture risk taking bone quality into consideration. Key Concepts (1)Bone quality and bone quantity are both fundamental for resistance to deformity and fracture.(2)Pediatric bone diseases and disorders alter bone's composition and structure, compromising bone quality and increasing vulnerability to fracture.(3)Current clinical approaches to assess bone fragility and fracture risk rely mainly on bone quantity measurements from DEXA scans.(4)DEXA bone mineral density poorly correlates with bone's resistance to fracture, both in adults and children.(5)Future clinical approaches to measure bone health should account for bone quality in order to predict fracture risk.
Collapse
Affiliation(s)
- Anxhela Docaj
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
3
|
Aurégan JC, Bosser C, Bachy-Razzouk M, Bensidhoum M, Hoc T. In Vivo Assessment of Skin Surface Pattern: Exploring Its Potential as an Indicator of Bone Biomechanical Properties. Bioengineering (Basel) 2023; 10:1338. [PMID: 38135929 PMCID: PMC10741173 DOI: 10.3390/bioengineering10121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
The mechanical properties of bone tissue are the result of a complex process involving collagen-crystal interactions. The mineral density of the bone tissue is correlated with bone strength, whereas the characteristics of collagen are often associated with the ductility and toughness of the bone. From a clinical perspective, bone mineral density alone does not satisfactorily explain skeletal fragility. However, reliable in vivo markers of collagen quality that can be easily used in clinical practice are not available. Hence, the objective of the present study is to examine the relationship between skin surface morphology and changes in the mechanical properties of the bone. An experimental study was conducted on healthy children (n = 11), children with osteogenesis imperfecta (n = 13), and women over 60 years of age (n = 22). For each patient, the skin characteristic length (SCL) of the forearm skin surface was measured. The SCL quantifies the geometric patterns formed by wrinkles on the skin's surface, both in terms of size and elongation. The greater the SCL, the more deficient was the organic collagen matrix. In addition, the bone volume fraction and mechanical properties of the explanted femoral head were determined for the elderly female group. The mean SCL values of the healthy children group were significantly lower than those of the elderly women and osteogenesis imperfecta groups. For the aged women group, no significant differences were indicated in the elastic mechanical parameters, whereas bone toughness and ductility decreased significantly as the SCL increased. In conclusion, in bone collagen pathology or bone aging, the SCL is significantly impaired. This in vivo skin surface parameter can be a non-invasive tool to improve the estimation of bone matrix quality and to identify subjects at high risk of bone fracture.
Collapse
Affiliation(s)
- Jean-Charles Aurégan
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Orthopedics Department, Université Paris-Saclay, AP-HP, Hôpital Antoine Béclère, 157, Rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - Catherine Bosser
- HealthDataSciences, 45, Chemin du Barthélémy, 69260 Charbonnières-les-Bains, France
| | - Manon Bachy-Razzouk
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Orthopedics Department, Sorbonne Université, AP-HP, Hôpital Trousseau, 26, Avenue du Docteur-Arnold-Netter, 75012 Paris, France
| | - Morad Bensidhoum
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
| | - Thierry Hoc
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Mechanical Department, École Centrale de Lyon, MSGMGC, 36, Avenue Guy-de-Collongue, 69134 Ecully, France
| |
Collapse
|
4
|
Sheppard AJ, Paravastu SS, Wojnowski NM, Osamor CC, Farhadi F, Collins MT, Saboury B. Emerging Role of 18F-NaF PET/Computed Tomographic Imaging in Osteoporosis: A Potential Upgrade to the Osteoporosis Toolbox. PET Clin 2023; 18:1-20. [PMID: 36442958 PMCID: PMC9773817 DOI: 10.1016/j.cpet.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Osteoporosis is a metabolic bone disorder that leads to a decline in bone microarchitecture, predisposing individuals to catastrophic fractures. The current standard of care relies on detecting bone structural change; however, these methods largely miss the complex biologic forces that drive these structural changes and response to treatment. This review introduces sodium fluoride (18F-NaF) positron emission tomography/computed tomography (PET/CT) as a powerful tool to quantify bone metabolism. Here, we discuss the methods of 18F-NaF PET/CT, with a special focus on dynamic scans to quantify parameters relevant to bone health, and how these markers are relevant to osteoporosis.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Sriram S. Paravastu
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Natalia M. Wojnowski
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA;,Northwestern University Feinberg School of Medicine, 420 East Superior Street, Chicago, IL 60611, USA
| | - Charles C. Osamor
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-4320, USA;,Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Michael T. Collins
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-4320, USA;,Corresponding author. 10 Center Drive, Bethesda, MD 20892.
| |
Collapse
|
5
|
Rana ZH, Bourassa MW, Gomes F, Khadilkar A, Mandlik R, Owino V, Pettifor JM, Roth DE, Shlisky J, Thankachan P, Weaver CM. Calcium status assessment at the population level: Candidate approaches and challenges. Ann N Y Acad Sci 2022; 1517:93-106. [PMID: 36044378 DOI: 10.1111/nyas.14886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inadequate dietary calcium intake is a global public health problem that disproportionately affects low- and middle-income countries. However, the calcium status of a population is challenging to measure, and there are no standard methods to identify high-risk communities even in settings with an elevated prevalence of a disease caused or exacerbated by low calcium intake (e.g., rickets). The calcium status of a population depends on numerous factors, including intake of calcium-rich foods; the bioavailability of the types of calcium consumed in foods and supplements; and population characteristics, including age, sex, vitamin D status, and genetic attributes that influence calcium retention and absorption. The aim of this narrative review was to assess candidate indicators of population-level calcium status based on a range of biomarkers and measurement methods, including dietary assessment, calcium balance studies, hormonal factors related to calcium, and health outcomes associated with low calcium status. Several promising approaches were identified, but there was insufficient evidence of the suitability of any single indicator to assess population calcium status. Further research is required to develop and validate specific indicators of calcium status that could be derived from the analysis of data or samples that are feasibly collected in population-based surveys.
Collapse
Affiliation(s)
- Ziaul H Rana
- The New York Academy of Sciences, New York, New York, USA
| | | | - Filomena Gomes
- The New York Academy of Sciences, New York, New York, USA.,NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | | - Rubina Mandlik
- Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | - Victor Owino
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - John M Pettifor
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Daniel E Roth
- The Hospital for Sick Children/University of Toronto, Toronto, Ontario, Canada
| | - Julie Shlisky
- The New York Academy of Sciences, New York, New York, USA
| | | | | |
Collapse
|
6
|
Yoon HE, Lee YH, Lee JE, Lee J, Kim H, Chung BH, Shin SJ. Seasonality in hip fracture among hemodialysis patients and kidney transplant recipients in South Korea. Nephrology (Carlton) 2022; 27:925-933. [PMID: 36136601 DOI: 10.1111/nep.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The seasonality of hip fracture in hemodialysis (HD) patients and kidney transplant recipients (KTRs) have not been reported. We assessed seasonal variations in hip fractures among patients with end-stage kidney disease who undergo maintenance HD and KTRs. METHODS Using the Korean National Health Insurance System database from January 2012 to December 2017, monthly counts of hip fracture were calculated among HD patients (n = 77,420) and KTRs (n = 8,921). The 6-year normalized monthly fraction and seasonal fractions of hip fractures were calculated. A cosinor analysis was performed to determine the seasonality of the monthly incidence of hip fractures. RESULTS The 6-year average monthly fraction of hip fractures was lowest in June and highest in October in HD patients, and lowest in February and highest in November in KTRs. The 6-year average seasonal fraction among HD patients was lowest in summer and highest in winter, and lowest in summer and highest in autumn among KTRs, but there was no significant difference. The incidence ratio of hip fractures was lowest in June and highest in January in HD patients, and lowest in August and highest in November in KTRs. On cosinor analysis, HD patients showed significant seasonality in hip fracture incidence, with a trough in summer and a peak in winter (P = 0.031), whereas KTRs did not exhibit a significant trend (P = 0.44). CONCLUSION Hip fractures occurred more frequently in winter and less frequently in summer in patients undergoing HD, whereas KTRs did not show a seasonal trend.
Collapse
Affiliation(s)
- Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Hee Lee
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo Eun Lee
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jungkuk Lee
- Data Science Team, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Hoseob Kim
- Data Science Team, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Wang D, Wang H. Cellular Senescence in Bone. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Senescence is an irreversible cell-cycle arrest process induced by environmental, genetic, and epigenetic factors. An accumulation of senescent cells in bone results in age-related disorders, and one of the common problems is osteoporosis. Deciphering the basic mechanisms contributing to the chronic ailments of aging may uncover new avenues for targeted treatment. This review focuses on the mechanisms and the most relevant research advancements in skeletal cellular senescence. To identify new options for the treatment or prevention of age-related chronic diseases, researchers have targeted hallmarks of aging, including telomere attrition, genomic instability, cellular senescence, and epigenetic alterations. First, this chapter provides an overview of the fundamentals of bone tissue, the causes of skeletal involution, and the role of cellular senescence in bone and bone diseases such as osteoporosis. Next, this review will discuss the utilization of pharmacological interventions in aging tissues and, more specifically, highlight the role of senescent cells to identify the most effective and safe strategies.
Collapse
|
8
|
Lee JH, Cho JH, Lee DG. Sclerostin Concentration and Bone Biomarker Trends in Patients with Spinal Cord Injury: A Prospective Study. Healthcare (Basel) 2022; 10:healthcare10060983. [PMID: 35742035 PMCID: PMC9222769 DOI: 10.3390/healthcare10060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Patients with spinal cord injury (SCI) experience a high osteoporosis incidence, which increases fracture risk. Recently, a sclerostin antibody was introduced as a target biomarker to treat osteoporosis. We aimed to determine the serum concentration of sclerostin and factors affecting its concentration over time. This was a prospective cross-sectional study. The inclusion criteria were (1) SCI patients with a grade 3 modified functional ambulatory category score (FAC—patients requiring firm continuous support) and (2) patients whose injury occurred >1 month ago. The exclusion criterion was a history of osteoporosis medication administration within 6 months. The collected data included bone biomarkers (carboxy-terminal collagen crosslinks (CTX), procollagen type 1 intact N-terminal propeptide, and sclerostin), clinical data (FAC, lower extremity motor score), body mass index, SCI duration, and hip bone mineral density (BMD). This study recruited 62 patients with SCI. Sclerostin levels significantly correlated with age, CTX level, and hip BMD. SCI duration was negatively correlated with sclerostin levels. Lower extremity motor scores were not significantly correlated with sclerostin levels. The acute SCI state showed a higher sclerostin level than the chronic SCI state. Sclerostin showed a significant relationship with CTX. In conclusion, age and BMD affect sclerostin concentration in patients with SCI.
Collapse
Affiliation(s)
- Jong Ho Lee
- Department of Laboratory Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jang Hyuk Cho
- Department of Rehabilitation Medicine, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu 42601, Korea;
| | - Dong Gyu Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 42415, Korea
- Correspondence: ; Tel.: +82-53-620-3829
| |
Collapse
|
9
|
Puri T, Frost ML, Cook GJ, Blake GM. [ 18F] Sodium Fluoride PET Kinetic Parameters in Bone Imaging. Tomography 2021; 7:843-854. [PMID: 34941643 PMCID: PMC8708178 DOI: 10.3390/tomography7040071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
This report describes the significance of the kinetic parameters (k-values) obtained from the analysis of dynamic positron emission tomography (PET) scans using the Hawkins model describing the pharmacokinetics of sodium fluoride ([18F]NaF) to understand bone physiology. Dynamic [18F]NaF PET scans may be useful as an imaging biomarker in early phase clinical trials of novel drugs in development by permitting early detection of treatment-response signals that may help avoid late-stage attrition.
Collapse
Affiliation(s)
- Tanuj Puri
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
| | - Michelle L. Frost
- Institute of Cancer Research Clinical Trials & Statistics Unit (ICR-CTSU), Institute of Cancer Research, Sutton SM2 5NG, UK;
| | - Gary J. Cook
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
| | - Glen M. Blake
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
- Correspondence: ; Tel.: +44-7762717295
| |
Collapse
|
10
|
Adams JW, Zhang Z, Noetscher GM, Nazarian A, Makarov SN. Application of a Neural Network Classifier to Radiofrequency-Based Osteopenia/Osteoporosis Screening. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2021; 9:4900907. [PMID: 34522471 PMCID: PMC8428761 DOI: 10.1109/jtehm.2021.3108575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023]
Abstract
Objective: There is an unmet need for quick, physically small, and cost-effective office-based techniques that can measure bone properties without the use of ionizing radiation. Methods: The present study reports the application of a neural network classifier to the processing of previously collected data on very-low-power radiofrequency propagation through the wrist to detect osteoporotic/osteopenic conditions. Our approach categorizes the data obtained for two dichotomic groups. Group 1 included 27 osteoporotic/osteopenic subjects with low Bone Mineral Density (BMD), characterized by a Dual X-Ray Absorptiometry (DXA) T-score below – 1, measured within one year. Group 2 included 40 healthy and mostly young subjects without major clinical risk factors such as a (family) history of bone fracture. We process the complex radiofrequency spectrum from 30 kHz to 2 GHz. Instead of averaging data for both wrists, we process them independently along with the wrist circumference and then combine the results, which greatly increases the sensitivity. Measurements along with data processing require less than 1 min. Results: For the two dichotomic groups identified above, the neural network classifier of the radiofrequency spectrum reports a sensitivity of 83% and a specificity of 94%. Significance: These results are obtained without including any additional clinical risk factors. They justify that the radio transmission data are usable on their own as a predictor of bone density. This approach has the potential for screening patients at risk for fragility fractures in the office, given the ease of implementation, small device size, and low costs associated with both the technique and the equipment.
Collapse
Affiliation(s)
- Johnathan W Adams
- Department of Electrical and Computer EngineeringWorcester Polytechnic Institute Worcester MA 01609 USA
| | - Ziming Zhang
- Department of Electrical and Computer EngineeringWorcester Polytechnic Institute Worcester MA 01609 USA
| | - Gregory M Noetscher
- Department of Electrical and Computer EngineeringWorcester Polytechnic Institute Worcester MA 01609 USA.,Neva Electromagnetics LLC Yarmouth Port MA 02675 USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation InitiativeCarl J. Shapiro Department of Orthopaedic SurgeryBeth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA.,Department of Orthopedic SurgeryYerevan State Medical University 0025 Yerevan Armenia
| | - Sergey N Makarov
- Department of Electrical and Computer EngineeringWorcester Polytechnic Institute Worcester MA 01609 USA.,Neva Electromagnetics LLC Yarmouth Port MA 02675 USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalHarvard Medical School Boston MA 02114 USA
| |
Collapse
|
11
|
Ott SM, Malluche HH, Jorgetti V, Elder GJ. Importance of bone turnover for therapeutic decisions in patients with CKD-MBD. Kidney Int 2021; 100:502-505. [PMID: 34420656 DOI: 10.1016/j.kint.2021.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023]
Abstract
Patients with chronic kidney disease-mineral and bone disorder (CKD-MBD) frequently have low bone formation rates. A recent review suggested that adynamic bone disease is not always associated with negative outcomes and therefore antiresorptive medications could be used more often. However, there is currently no evidence to support an improvement in fracture risk or mortality in patients with CKD-MBD and low bone turnover who are treated with antiresorptive medication. There is reasonable pathophysiological evidence suggesting that it may even be harmful.
Collapse
Affiliation(s)
- Susan M Ott
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | - Hartmut H Malluche
- Division of Nephrology Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Vanda Jorgetti
- Faculdade de Medicina, Hospital das Clínicas, Laboratório de Fisiopatologia Renal, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Grahame J Elder
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia; Osteoporosis and Bone Biology Division, Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
12
|
Dual-energy X-ray Absorptiometry Does Not Represent Bone Structure in Patients with Osteoporosis: A Comparison of Lumbar Dual-Energy X-Ray Absorptiometry with Vertebral Biopsies. Spine (Phila Pa 1976) 2021; 46:861-866. [PMID: 34100839 DOI: 10.1097/brs.0000000000003917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective cross-sectional exploratory study. OBJECTIVE To evaluate the correlation between in vivo lumbar dual-energy x-ray absorptiometry (DXA) and parameters of bone architecture in micro-computed tomography (micro-CT) in patients with osteoporosis. SUMMARY OF BACKGROUND DATA DXA is the current diagnostic standard for evaluating osteoporosis. However, there are various concerns regarding its validity, especially in the spine. No study has so far investigated whether in vivo DXA correlates with the actual lumbar bone architecture. METHODS Lumbar DXA scans were compared with micro-CT analysis of vertebral biopsies in patients with osteoporotic vertebral fractures (fracture group) and those without (control group). Preoperatively, all patients underwent a DXA scan (L1-L4). Intraoperative biopsies from nonfractured vertebrae (preferably L3) were analyzed by micro-CT regarding bone quantity and quality. The groups were compared regarding differences in DXA and micro-CT results. In each group, a correlation analysis was performed between DXA and micro-CT. RESULTS The study included 66 patients (33 per group). Preoperative DXA results were worse in the fracture group than the control group (areal bone mineral density [aBMD] 0.95 vs. 1.31, T-score -1.97 vs. 0.92, each P < 0.001). Micro-CT analysis confirmed differences regarding quantitative parameters (bone/total volume: 0.09 vs. 0.12, P < 0.001) and qualitative parameters (connectivity index: 15.73 vs. 26.67, P < 0.001; structure model index: 2.66 vs. 2.27, P < 0.001; trabecular number: 2.11 vs. 2.28, P = 0.014) of bone architecture between both groups. The DXA results did not correlate with micro-CT parameters in the fracture group. In the control group, correlations were found for some parameters (bone/total volume vs. aBMD: r = 0.51, P = 0.005; trabecular number vs. aBMD: r = 0.56, P = 0.001). CONCLUSION These data constitute the first comparison of DXA measurements with microstructural analysis of vertebral biopsies in patients with osteoporosis. Our results indicate that lumbar DXA neither qualitatively nor quantitatively represents microstructural bone architecture and is therefore not a reliable tool for the evaluation of bone quality in the spine.Level of Evidence: 3.
Collapse
|
13
|
A territory-wide assessment of the incidence of persistent hypoparathyroidism after elective thyroid surgery and its impact on new fracture risk over time. Surgery 2021; 170:1369-1375. [PMID: 34116859 DOI: 10.1016/j.surg.2021.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although persistent (≥6 months) postoperative hypoparathyroidism is often believed to be rare after elective total thyroidectomy, we hypothesized a higher incidence in the community and that patients with persistent postoperative hypoparathyroidism may have a higher fracture risk. A population-based analysis was performed using an electronic health database to address these issues. METHODS All elective total thyroidectomies performed in 14 major hospitals across the territory over 20 years were analyzed. Persistent postoperative hypoparathyroidism was defined by the requirement of oral calcium and vitamin D shortly postoperatively and continued for ≥6 months. Those with albumin-corrected calcium <1.90 mmol/L on ≥1 occasion beyond 1 year postoperation were considered suboptimally controlled. Patients were followed until an index fracture, death, or the time of analysis, whichever was earlier. Multivariable Cox regression analysis was used to identify clinical predictors for fractures. RESULTS Among 4,123 eligible patients, 460 patients (11.2%) had persistent postoperative hypoparathyroidism. Over a median of 10.3 years, 126 patients suffered from a new fracture (2.77 per 1,000 person-years). There was no difference in fracture events between patients with and without persistent postoperative hypoparathyroidism (P = .761). Subgroup analyses according to the adequacy of persistent postoperative hypoparathyroidism control did not reveal significant differences in fracture events. Age, female, history of fall, and diabetes independently predicted post-thyroidectomy fractures. CONCLUSION Persistent postoperative hypoparathyroidism appeared to be a more common complication in the community after elective total thyroidectomy than previously thought. We did not observe a significant difference in fracture risk between patients with and without persistent postoperative hypoparathyroidism. The impact of persistent postoperative hypoparathyroidism control on fracture risk remained to be determined.
Collapse
|
14
|
Weiner S, Raguin E, Shahar R. High resolution 3D structures of mineralized tissues in health and disease. Nat Rev Endocrinol 2021; 17:307-316. [PMID: 33758360 DOI: 10.1038/s41574-021-00479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
A thorough knowledge of the structures of healthy mineralized tissues, such as bone or cartilage, is key to understanding the pathological changes occurring during disease. Such knowledge enables the underlying mechanisms that are responsible for pathology to be pinpointed. One high-resolution 3D method in particular - focused ion beam-scanning electron microscopy (FIB-SEM) - has fundamentally changed our understanding of healthy vertebrate mineralized tissues. FIB-SEM can be used to study demineralized matrix, the hydrated components of tissue (including cells) using cryo-fixation and even untreated mineralized tissue. The latter requires minimal sample preparation, making it possible to study enough samples to carry out studies capable of detecting statistically significant differences - a pre-requisite for the study of pathological tissues. Here, we present an imaging and characterization strategy for tissue structures at different length scales, describe new insights obtained on healthy mineralized tissues using FIB-SEM, and suggest future research directions for both healthy and diseased mineralized tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Emeline Raguin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
15
|
Liu J, Kim EK, Ni A, Kim YR, Zheng F, Lee BS, Kim DG. Multiscale characterization of ovariectomized rat femur. J Biomech 2021; 122:110462. [PMID: 33915473 DOI: 10.1016/j.jbiomech.2021.110462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Estrogen deficiency activates bone resorbing cells (osteoclasts) and to a lesser extent bone forming cells (osteoblasts), resulting in a gap between resorption and formation that leads to a net loss of bone. These cell activities alter bone architecture and tissue composition. Thus, the objective of this study is to examine whether multiscale (10-2 to 10-7 m) characterization can provide more integrated information to understand the effects of estrogen deficiency on the fracture risk of bone. This is the first study to examine the effects of estrogen deficiency on multiscale characteristics of the same bone specimen. Sprague-Dawley female rats (6 months old) were obtained for a bilateral ovariectomy (OVX) or a sham operation (sham). Micro-computed tomography of rat femurs provided bone volumetric, mineral density, and morphological parameters. Dynamic mechanical analysis, static elastic and fracture mechanical testing, and nanoindentation were also performed using the same femur. As expected, the current findings indicate that OVX reduces bone quantity (mass and bone mineral density) and quality (morphology, and fracture displacement). Additionally, they demonstrated reductions in amount and heterogeneity of tissue mineral density (TMD) and viscoelastic properties. The current results validate that multiscale characterization for the same bone specimen can provide more comprehensive insights to understand how the bone components contributed to mechanical behavior at different scales.
Collapse
Affiliation(s)
- Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Eun Kyoung Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Yong-Rak Kim
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX, USA
| | - Fengyuan Zheng
- Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Abstract
The present paper reviews published literature on the relationship between dietary protein and bone health. It will include arguments both for and against the anabolic and catabolic effects of dietary protein on bone health. Adequate protein intake provides the amino acids used in building and maintaining bone tissue, as well as stimulating the action of insulin-like growth factor 1, which in turn promotes bone growth and increases calcium absorption. However, the metabolism of dietary sulphur amino acids, mainly from animal protein, can lead to increased physiological acidity, which may be detrimental for bone health in the long term. Similarly, cereal foods contain dietary phytate, which in turn contains phosphate. It is known that phosphate consumption can also lead to increased physiological acidity. Therefore, cereal products may produce as much acid as do animal proteins that contain sulphur amino acids. The overall effect of dietary protein on physiological acidity, and its consequent impact on bone health, is extremely complex and somewhat controversial. The consensus is now moving towards a synthesised approach. Particularly, how anabolic and catabolic mechanisms interact; as well as how the context of the whole diet and the type of protein consumed is important.
Collapse
|
17
|
Groenendijk I, Chan R, Woo J, Ong S, Parikh P, Bragt MCE, de Groot LCPGM. A Combined Nutrition and Exercise Intervention Influences Serum Vitamin B-12 and 25-Hydroxyvitamin D and Bone Turnover of Healthy Chinese Middle-Aged and Older Adults. J Nutr 2020; 150:2112-2119. [PMID: 32588047 PMCID: PMC7398768 DOI: 10.1093/jn/nxaa149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hong Kong faces several public health problems including malnutrition and osteoporosis. Considering the typical Chinese diet and overall low physical activity levels of Chinese adults, timely interventions to improve nutritional status and bone health are needed. OBJECTIVES We examined the effects of a nutrition plus exercise intervention on serum vitamin B-12 and 25-hydroxyvitamin D [25(OH)D], bone turnover markers, and parathyroid hormone (PTH) concentrations in apparently healthy Chinese middle-aged and older adults. METHODS In this 24-wk randomized controlled trial, 180 Chinese adults (85 women, mean ± SD age: 61 ± 6 y) were randomly assigned to receive a fortified milk supplement (2 × 30 g/d) and an exercise program (2 × 1 h/wk including resistance, balance, and aerobic training) or no intervention. The primary outcome was physical performance. In this article we analyzed the secondary outcomes serum vitamin B-12 and 25(OH)D concentrations, assessed at baseline, 12 wk, and 24 wk. Also, bone turnover markers and PTH concentrations were studied. Linear mixed models evaluated group differences over time. RESULTS A significant time × group interaction (P < 0.001) was found for serum vitamin B-12 and 25(OH)D concentrations and the bone turnover markers, but not for serum PTH concentrations (P = 0.09). The intervention increased mean ± SD vitamin B-12 concentrations from baseline (345 ± 119 pmol/L) to 24 wk (484 ± 136 pmol/L), whereas concentrations remained stable within the control. For 25(OH)D concentrations, the intervention group had a greater increase from baseline (54.7 ± 14.2 nmol/L) to 24 wk (80.1 ± 19.2 nmol/L) than the control (60.6 ± 15.2 compared with 65.6 ± 14.6 nmol/L). The ratio of the net effect of bone formation and resorption was greater in the intervention group, suggesting less bone remodeling, irrespective of sex. CONCLUSIONS A fortified milk supplement and exercise intervention successfully improved vitamin B-12 and 25(OH)D concentrations as well as the balance of bone turnover markers of Chinese middle-aged and older adults.This trial was registered at trialregister.nl as NTR6214.
Collapse
Affiliation(s)
| | - Ruth Chan
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jean Woo
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | - Lisette C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Mishima MDV, da Silva BP, Toledo RCL, Costa NMB, Martino HSD. Bioavailability of Calcium from Chia ( Salvia hispanica L.) in Ovariectomized Rats Fed a High Fat Diet. J Am Coll Nutr 2020; 40:454-464. [PMID: 32729778 DOI: 10.1080/07315724.2020.1790441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Skeletal abnormalities such as bone loss occur when there is an imbalance in bone matrix synthesis and bone resorption. This imbalance is also caused by hormonal changes and inflammation. Chia (Salvia hispanica L.) has a high nutritional value and is an excellent source of calcium. Evaluate the bioavailability of calcium from chia, and its effect on bone metabolism when consumed as part of a standard or high fat diet (HFD) in ovariectomized rats. METHODS The study was conducted with 80 female Wistar rats that received standard diet or HFD. 40 female mice were ovariectomized (OVX) and 40 were sham-operated (SHAM). After recovery from surgery the animals received chia as a source of 20% of the calcium recommendation, calcium bioavailability was measured using the calcium balance technique. Bone strength and bone morphometry were evaluated by weight, length and microtomography measurements. RESULTS HFD increased serum calcium and decreased calcium retention. The addition of chia to HFD did not alter bone morphology. Ovariectomy led to lower percentage of bone volume, smaller trabecular thickness, higher trabecular separation and higher porosity, when ovariectomy was associated with HFD, the final weight, waist circumference, body mass index and adiposity were increased. CONCLUSIONS Chia maintained bone health when offered as a source of 20% calcium, in a diet that met 100% of the mineral recommendation, regardless of the type of diet, in animals non-ovariectomized adults.
Collapse
|
19
|
Makarov SN, Noetscher GM, Arum S, Rabiner R, Nazarian A. Concept of a Radiofrequency Device for Osteopenia/Osteoporosis Screening. Sci Rep 2020; 10:3540. [PMID: 32103042 PMCID: PMC7044313 DOI: 10.1038/s41598-020-60173-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/06/2020] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis represents a major health problem, resulting in substantial increases in health care costs. There is an unmet need for a cost-effective technique that can measure bone properties without the use of ionizing radiation. The present study reports design, construction, and testing of a safe, and easy to use radiofrequency device to detect osteoporotic bone conditions. The device uses novel on-body antennas contacting the human wrist under an applied, operator-controlled pressure. For the dichotomous diagnostic test, we selected 60 study participants (23-94 years old, 48 female, 12 male) who could be positively differentiated between healthy and osteopenic/osteoporotic states. The band-limited integral of the transmission coefficient averaged for both wrists, multiplied by age, and divided by BMI has been used as an index. For a 100 MHz frequency band centered about 890-920 MHz, the maximum Youden's J index is 81.5%. Both the sensitivity and specificity simultaneously reach 87% given the calibration device threshold tolerance of ±3%. Our approach correlates well with the available DXA measurements and has the potential for screening patients at risk for fragility fractures, given the ease of implementation and low costs associated with both the technique and the equipment. The inclusion of radiofrequency transmission data does add supplementary useful information to the available clinical risk factors.
Collapse
Affiliation(s)
- Sergey N Makarov
- ECE Dept., Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Neva Electromagnetics, LLC., Yarmouth Port, MA, 02675, USA.
| | - Gregory M Noetscher
- ECE Dept., Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Neva Electromagnetics, LLC., Yarmouth Port, MA, 02675, USA
| | - Seth Arum
- Alnylam Pharmaceuticals, Cambridge, MA, 02412, USA
| | | | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
20
|
Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L, Kierdorf U. Antlers - Evolution, development, structure, composition, and biomechanics of an outstanding type of bone. Bone 2019; 128:115046. [PMID: 31446115 DOI: 10.1016/j.bone.2019.115046] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Antlers are bony appendages of deer that undergo periodic regeneration from the top of permanent outgrowths (the pedicles) of the frontal bones. Of the "less familiar" bone types whose study was advocated by John Currey to gain a better understanding of structure-function relationships of mineralized tissues and organs, antlers were of special interest to him. The present review summarizes our current knowledge about the evolution, development, structure, mineralization, and biomechanics of antlers and how their formation is affected by environmental factors like nutrition. Furthermore, the potential role of antlers as a model in bone biology and several fields of biomedicine as well as their use as a monitoring tool in environmental studies are discussed.
Collapse
Affiliation(s)
- T Landete-Castillejos
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| | - H Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany
| | - S Gomez
- Universidad de Cádiz, 11071 Cádiz, Spain
| | - S Luna
- Universidad de Cádiz, 11071 Cádiz, Spain
| | - A J García
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - J Cappelli
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - M Pérez-Serrano
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - J Pérez-Barbería
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - L Gallego
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - U Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany
| |
Collapse
|
21
|
Ong MW, Tan CH, Cheng AKS. Prevalence and Determinants of Vitamin D Deficiency Among the Overweight and Obese Singaporeans Seeking Weight Management Including Bariatric Surgery: a Relationship with Bone Health. Obes Surg 2019; 28:2305-2312. [PMID: 29453514 DOI: 10.1007/s11695-018-3142-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Low vitamin D status is prevalent worldwide and has been linked to a variety of pathologies including obesity in adults. The severity of vitamin D deficiency amongst the overweight and obese Singaporeans is not well documented. The purpose of this prospective observational study was to assess the prevalence and determinants of vitamin D deficiency in a multi-ethnic Asian population referred for weight management, including those seeking bariatric surgery. MATERIALS AND METHODS This was a cross-sectional study conducted among 111 consecutive subjects referred to a single institution weight management service in Singapore. The data collected included their anthropometric data, body mass index (BMI), body fat percentage, waist circumference, 25-hydroxyvitamin D [25(OH)D] and other bone turnover markers. RESULTS The average BMI among the 111 subjects was 40.1 ± 8.2 kg/m2 and mean age of 40 ± 10 years. Vitamin D deficiency was found in 75.7% of the population. There was a significant negative association of vitamin D with adiposity markers including BMI (r = - 0.31), body fat percentage (r = - 0.34) and waist circumference (r = - 0.26). Predictors of vitamin D deficiency included age > 50 years, female gender, waist circumference and body fat percentage. CONCLUSION Vitamin D deficiency is prevalent among this target population in Singapore regardless of ethnicity. In particular, the elderly, females, those with larger waist circumference and body fat percentage were significantly associated with lower serum 25(OH)D level. Hence, routine screening for the overweight and obese subjects in multi-ethnic Singapore seeking weight management is indicated.
Collapse
Affiliation(s)
- Marc Weijie Ong
- Department of General Surgery, Khoo Teck Puat Hospital, 90 Yishun Central, Singapore, 768828, Singapore.
| | - Chun Hai Tan
- Department of General Surgery, Khoo Teck Puat Hospital, 90 Yishun Central, Singapore, 768828, Singapore
| | - Anton Kui Sing Cheng
- Department of General Surgery, Khoo Teck Puat Hospital, 90 Yishun Central, Singapore, 768828, Singapore
| |
Collapse
|
22
|
Dominguez VM, Agnew AM. Microdamage as a Bone Quality Component: Practical Guidelines for the Two-Dimensional Analysis of Linear Microcracks in Human Cortical Bone. JBMR Plus 2019; 3:e10203. [PMID: 31346569 PMCID: PMC6636773 DOI: 10.1002/jbm4.10203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/19/2019] [Accepted: 05/07/2019] [Indexed: 01/23/2023] Open
Abstract
Microdamage is a component of bone quality believed to play an integral role in bone health. However, comparability between existing studies is fraught with issues due to highly variable methods of sample preparation and poorly defined quantification criteria. To address these issues, this article has two aims. First, detailed methods for preparation and analysis of linear microcracks in human ribs, specifically addressing troubleshooting issues cited in previous studies, are laid out. Second, new, partially validated criteria are proposed in an effort to reduce subjective differences in microcrack counts and measures, ensuring more comparable results between studies. Revised definitions based on current literature in conjunction with a digital atlas to reduce observer inaccuracy and bias are presented. The goal is to provide a practical methodology for bone biologists and biomechanists to collect and analyze linear microcracks for basic science research. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Victoria M Dominguez
- Skeletal Biology Research Laboratory The Ohio State University Columbus OH USA.,Department of Anthropology Lehman College CUNY New York NY USA
| | - Amanda M Agnew
- Skeletal Biology Research Laboratory The Ohio State University Columbus OH USA
| |
Collapse
|
23
|
Temporal Change in Biomarkers of Bone Turnover Following Late Evening Ingestion of a Calcium-Fortified, Milk-Based Protein Matrix in Postmenopausal Women with Osteopenia. Nutrients 2019; 11:nu11061413. [PMID: 31234587 PMCID: PMC6627915 DOI: 10.3390/nu11061413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
The diurnal rhythm of bone remodeling suggests nocturnal dietary intervention to be most effective. This study investigated the effect of bedtime ingestion of a calcium-fortified, milk-derived protein matrix (MBPM) or maltodextrin (CON) on acute (0–4 h) blood and 24-h urinary change in biomarkers of bone remodeling in postmenopausal women with osteopenia. In CON, participants received 804 ± 52 mg calcium, 8.2 ± 3.2 µg vitamin D and 1.3 ± 0.2 g/kg BM protein per day. MBPM increased calcium intake to 1679 ± 196 mg, vitamin D to 9.2 ± 3.1 µg and protein to 1.6 ± 0.2 g/kg BM. Serum C-terminal cross-linked telopeptide of type I collagen (CTX) and procollagen type 1 amino-terminal propeptide (P1NP), and urinary N-telopeptide cross-links of type I collagen (NTX), pyridinoline (PYD) and deoxypyridinoline (DPD) was measured. Analyzed by AUC and compared to CON, a −32% lower CTX (p = 0.011, d = 0.83) and 24% (p = 0.52, d = 0.2) increase in P1NP was observed for MBPM. Mean total 24 h NTX excreted in MBPM was −10% (p = 0.035) lower than CON. Urinary PYD and DPD were unaffected by treatment. This study demonstrates the acute effects of bedtime ingestion of a calcium-fortified, milk-based protein matrix on bone remodeling.
Collapse
|
24
|
Ruiz Wills C, Olivares AL, Tassani S, Ceresa M, Zimmer V, González Ballester MA, Del Río LM, Humbert L, Noailly J. 3D patient-specific finite element models of the proximal femur based on DXA towards the classification of fracture and non-fracture cases. Bone 2019; 121:89-99. [PMID: 30611923 DOI: 10.1016/j.bone.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 11/18/2022]
Abstract
Osteoporotic bone fractures reduce quality of life and drastically increase mortality. Minimally irradiating imaging techniques such as dual-energy X-ray absorptiometry (DXA) allow assessment of bone loss through the use of bone mineral density (BMD) as descriptor. Yet, the accuracy of fracture risk predictions remains limited. Recently, DXA-based 3D modelling algorithms were proposed to analyse the geometry and BMD spatial distribution of the proximal femur. This study hypothesizes that such approaches can benefit from finite element (FE)-based biomechanical analyses to improve fracture risk prediction. One hundred and eleven subjects were included in this study and stratified in two groups: (a) 62 fracture cases, and (b) 49 non-fracture controls. Side fall was simulated using a static peak load that depended on patient mass and height. Local mechanical fields were calculated based on relationships between tissue stiffness and BMD. The area under the curve (AUC) of the receiver operating characteristic method evaluated the ability of calculated biomechanical descriptors to discriminate fracture and control cases. The results showed that the major principal stress was better discriminator (AUC > 0.80) than the volumetric BMD (AUC ≤ 0.70). High discrimination capacity was achieved when the analysis was performed by bone type, zone of fracture and gender/sex (AUC of 0.91 for women, trabecular bone and trochanter area), and outcomes suggested that the trabecular bone is critical for fracture discrimination. In conclusion, 3D FE models derived from DXA scans might significantly improve the prediction of hip fracture risk; providing a new insight for clinicians to use FE simulations in clinical practice for osteoporosis management.
Collapse
Affiliation(s)
| | | | - Simone Tassani
- BCN MedTech, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mario Ceresa
- BCN MedTech, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Veronika Zimmer
- BCN MedTech, Universitat Pompeu Fabra (UPF), Barcelona, Spain; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | | | | | - Jérôme Noailly
- BCN MedTech, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
25
|
Austin AG, Raynor WY, Reilly CC, Zadeh MZ, Werner TJ, Zhuang H, Alavi A, Rajapakse CS. Evolving Role of MR Imaging and PET in Assessing Osteoporosis. PET Clin 2019; 14:31-41. [DOI: 10.1016/j.cpet.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Rajapakse CS, Kobe EA, Batzdorf AS, Hast MW, Wehrli FW. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing. Bone 2018; 108:71-78. [PMID: 29278746 PMCID: PMC5803422 DOI: 10.1016/j.bone.2017.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
High-resolution MRI-derived finite element analysis (FEA) has been used in translational research to estimate the mechanical competence of human bone. However, this method has yet to be validated adequately under in vivo imaging spatial resolution or signal-to-noise conditions. We therefore compared MRI-based metrics of bone strength to those obtained from direct, mechanical testing. The study was conducted on tibiae from 17 human donors (12 males and five females, aged 33 to 88years) with no medical history of conditions affecting bone mineral homeostasis. A 25mm segment from each distal tibia underwent MR imaging in a clinical 3-Tesla scanner using a fast large-angle spin-echo (FLASE) sequence at 0.137mm×0.137mm×0.410mm voxel size, in accordance with in vivo scanning protocol. The resulting high-resolution MR images were processed and used to generate bone volume fraction maps, which served as input for the micro-level FEA model. Simulated compression was applied to compute stiffness, yield strength, ultimate strength, modulus of resilience, and toughness, which were then compared to metrics obtained from mechanical testing. Moderate to strong positive correlations were found between computationally and experimentally derived values of stiffness (R2=0.77, p<0.0001), yield strength (R2=0.38, p=0.0082), ultimate strength (R2=0.40, p=0.0067), and resilience (R2=0.46, p=0.0026), but only a weak, albeit significant, correlation was found for toughness (R2=0.26, p=0.036). Furthermore, experimentally derived yield strength and ultimate strength were moderately correlated with MRI-derived stiffness (R2=0.48, p=0.0022 and R2=0.58, p=0.0004, respectively). These results suggest that high-resolution MRI-based finite element (FE) models are effective in assessing mechanical parameters of distal skeletal extremities.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, United States; Department of Orthopaedic Surgery, University of Pennsylvania, United States.
| | - Elizabeth A Kobe
- Department of Radiology, University of Pennsylvania, United States
| | | | - Michael W Hast
- Department of Orthopaedic Surgery, University of Pennsylvania, United States
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, United States
| |
Collapse
|
27
|
Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng 2018; 2:62-71. [DOI: 10.1038/s41551-017-0183-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
|
28
|
Ni Y, Wang L, Liu X, Zhang H, Lin CY, Fan Y. Micro-mechanical properties of different sites on woodpecker’s skull. Comput Methods Biomech Biomed Engin 2017; 20:1483-1493. [DOI: 10.1080/10255842.2017.1378648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yikun Ni
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Biomedical, Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, USA
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyu Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongquan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chia-Ying Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Biomedical, Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, USA
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, USA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
29
|
Beauchesne P, Agarwal SC. A multi-method assessment of bone maintenance and loss in an Imperial Roman population: Implications for future studies of age-related bone loss in the past. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:41-61. [DOI: 10.1002/ajpa.23256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Patrick Beauchesne
- Department of Behavioral Sciences; University of Michigan; Dearborn Michigan
| | - Sabrina C. Agarwal
- Department of Anthropology; University of California; Berkeley California
| |
Collapse
|
30
|
Klein KF, Hu J, Reed MP, Schneider LW, Rupp JD. Validation of a parametric finite element human femur model. TRAFFIC INJURY PREVENTION 2017; 18:420-426. [PMID: 28095035 DOI: 10.1080/15389588.2016.1269172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Finite element (FE) models with geometry and material properties that are parametric with subject descriptors, such as age and body shape/size, are being developed to incorporate population variability into crash simulations. However, the validation methods currently being used with these parametric models do not assess whether model predictions are reasonable in the space over which the model is intended to be used. This study presents a parametric model of the femur and applies a unique validation paradigm to this parametric femur model that characterizes whether model predictions reproduce experimentally observed trends. METHODS FE models of male and female femurs with geometries that are parametric with age, femur length, and body mass index (BMI) were developed based on existing statistical models that predict femur geometry. These parametric FE femur models were validated by comparing responses from combined loading tests of femoral shafts to simulation results from FE models of the corresponding femoral shafts whose geometry was predicted using the associated age, femur length, and BMI. The effects of subject variables on model responses were also compared with trends in the experimental data set by fitting similarly parameterized statistical models to both the results of the experimental data and the corresponding FE model results and then comparing fitted model coefficients for the experimental and predicted data sets. RESULTS The average error in impact force at experimental failure for the parametric models was 5%. The coefficients of a statistical model fit to simulation data were within one standard error of the coefficients of a similarly parameterized model of the experimental data except for the age parameter, likely because material properties used in simulations were not varied with specimen age. In simulations to explore the effects of femur length, BMI, and age on impact response, only BMI significantly affected response for both men and women, with increasing BMI producing higher impact forces. CONCLUSIONS Impactor forces from simulations, on average, matched experimental values at the time of failure. In addition, the simulations were able to match the trends in the experimental data set.
Collapse
Affiliation(s)
- Katelyn F Klein
- a University of Michigan Transportation Research Institute , Ann Arbor , Michigan
| | - Jingwen Hu
- a University of Michigan Transportation Research Institute , Ann Arbor , Michigan
- b Department of Mechanical Engineering , University of Michigan , Ann Arbor , Michigan
| | - Matthew P Reed
- a University of Michigan Transportation Research Institute , Ann Arbor , Michigan
- c Center for Ergonomics, Industrial and Operations Engineering, University of Michigan , Ann Arbor , Michigan
| | - Lawrence W Schneider
- a University of Michigan Transportation Research Institute , Ann Arbor , Michigan
- d Department of Biomedical Engineering , University of Michigan , Ann Arbor , Michigan
| | - Jonathan D Rupp
- a University of Michigan Transportation Research Institute , Ann Arbor , Michigan
- d Department of Biomedical Engineering , University of Michigan , Ann Arbor , Michigan
- e Department of Emergency Medicine , University of Michigan Medical School , Ann Arbor , Michigan
| |
Collapse
|
31
|
Vennin S, Desyatova A, Turner JA, Watson PA, Lappe JM, Recker RR, Akhter MP. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women. Bone 2017; 97:233-242. [PMID: 28132909 PMCID: PMC5367951 DOI: 10.1016/j.bone.2017.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance. Although the magnitudes of differences in the intrinsic properties were not overwhelming, this is the first comprehensive study to investigate, and compare the intrinsic properties of bone tissue in fracturing and non-fracturing postmenopausal women.
Collapse
Affiliation(s)
- S Vennin
- University of Nebraska-Lincoln, NE, United States
| | - A Desyatova
- University of Nebraska-Lincoln, NE, United States
| | - J A Turner
- University of Nebraska-Lincoln, NE, United States
| | - P A Watson
- Osteoporosis Research Center, Creighton University, Omaha, NE, United States
| | - J M Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, United States
| | - R R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, United States
| | - M P Akhter
- Osteoporosis Research Center, Creighton University, Omaha, NE, United States.
| |
Collapse
|
32
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017; 97:135-187. [PMID: 27807202 PMCID: PMC5539371 DOI: 10.1152/physrev.00033.2015] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
33
|
Whiting SJ, Kohrt WM, Warren MP, Kraenzlin MI, Bonjour JP. Food fortification for bone health in adulthood: a scoping review. Eur J Clin Nutr 2016; 70:1099-1105. [PMID: 27026430 PMCID: PMC5056988 DOI: 10.1038/ejcn.2016.42] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Food fortification can deliver essential micronutrients to large population segments without modifications in consumption pattern, suggesting that fortified foods may be formulated for populations at risk for fragility fractures. This scoping review determined the extent to which randomized controlled studies have been carried out to test the impact of fortified foods on bone outcomes, searching PubMed for all studies using the terms 'fortified AND bone', and 'fortification AND bone'. Studies were restricted to English language, published between 1996 and June 2015. From 360 articles, 24 studies met the following criteria: human study in adults ⩾18 years (excluding pregnancy or lactation); original study of a fortified food over time, with specific bone outcomes measured pre- and post intervention. Six studies involved adults <50 years; 18 involved adults ⩾50 years. Singly or in combination, 17 studies included calcium and 16 included vitamin D. There were 1 or 2 studies involving either vitamin K, magnesium, iron, zinc, B-vitamins, inulin or isoflavones. For adults <50 years, the four studies involving calcium or vitamin D showed a beneficial effect on bone remodeling. For adults ⩾50 years, n=14 provided calcium and/or vitamin D, and there was a significant bone turnover reduction. No consistent effects were reported in studies in which addition of vitamin K, folic acid or isoflavone was assessed. Results from this scoping review indicate that up to now most studies of fortification with bone health have evaluated calcium and/or vitamin D and that these nutrients show beneficial effects on bone remodeling.
Collapse
Affiliation(s)
- S J Whiting
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - W M Kohrt
- Department of Medicine, Division of Geriatric Medicine, University of Colorado, Denver, CO, USA
| | - M P Warren
- Department of Obstetrics and Gynecology and Medicine, Columbia University Medical Center, New York, NY, USA
| | - M I Kraenzlin
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University Hospital, Bale, Switzerland
| | - J-P Bonjour
- Department of Internal Medicine Specialties, Division of Bone Disease, University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
34
|
Saers JPP, Cazorla-Bak Y, Shaw CN, Stock JT, Ryan TM. Trabecular bone structural variation throughout the human lower limb. J Hum Evol 2016; 97:97-108. [PMID: 27457548 DOI: 10.1016/j.jhevol.2016.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/18/2022]
Abstract
Trabecular bone is responsive to mechanical loading, and thus may be a useful tool for interpreting past behaviour from fossil morphology. However, the ability to meaningfully interpret variation in archaeological and hominin trabecular morphology depends on the extent to which trabecular bone properties are integrated throughout the postcranium or are locally variable in response to joint specific loading. We investigate both of these factors by comparing trabecular bone throughout the lower limb between a group of highly mobile foragers and two groups of sedentary agriculturalists. Trabecular bone structure is quantified in four volumes of interest placed within the proximal and distal joints of the femur and tibia. We determine how trabecular structures correspond to inferred behavioural differences between populations and whether the patterns are consistent throughout the limb. A significant correlation was found between inferred mobility level and trabecular bone structure in all volumes of interest along the lower limb. The greater terrestrial mobility of foragers is associated with higher bone volume fraction, and thicker and fewer trabeculae (lower connectivity density). In all populations, bone volume fraction decreases while anisotropy increases proximodistally throughout the lower limb. This observation mirrors reductions in cortical bone mass resulting from proximodistal limb tapering. The reduction in strength associated with reduced bone volume fraction may be compensated for by the increased anisotropy in the distal tibia. A similar pattern of trabecular structure is found throughout the lower limb in all populations, upon which a signal of terrestrial mobility appears to be superimposed. These results support the validity of using lower limb trabecular bone microstructure to reconstruct terrestrial mobility levels from the archaeological and fossil records. The results further indicate that care should be taken to appreciate variation resulting from differences in habitual activity when inferring behaviour from the trabecular structure of hominin fossils through comparisons with modern humans.
Collapse
Affiliation(s)
- Jaap P P Saers
- PAVE Research Group, Department of Archaeology and Anthropology, Division of Biological Anthropology, University of Cambridge, Pembroke Street, Cambridge, United Kingdom.
| | - Yasmin Cazorla-Bak
- PAVE Research Group, Department of Archaeology and Anthropology, Division of Biological Anthropology, University of Cambridge, Pembroke Street, Cambridge, United Kingdom
| | - Colin N Shaw
- PAVE Research Group, Department of Archaeology and Anthropology, Division of Biological Anthropology, University of Cambridge, Pembroke Street, Cambridge, United Kingdom
| | - Jay T Stock
- PAVE Research Group, Department of Archaeology and Anthropology, Division of Biological Anthropology, University of Cambridge, Pembroke Street, Cambridge, United Kingdom
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, State College PA, 322 Carpenter Building, United States; Center for Quantitative Imaging, EMS Energy Institute, Pennsylvania State University, State College PA, University Park, PA 16802, United States
| |
Collapse
|
35
|
Sabet FA, Raeisi Najafi A, Hamed E, Jasiuk I. Modelling of bone fracture and strength at different length scales: a review. Interface Focus 2016; 6:20150055. [PMID: 26855749 PMCID: PMC4686238 DOI: 10.1098/rsfs.2015.0055] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this paper, we review analytical and computational models of bone fracture and strength. Bone fracture is a complex phenomenon due to the composite, inhomogeneous and hierarchical structure of bone. First, we briefly summarize the hierarchical structure of bone, spanning from the nanoscale, sub-microscale, microscale, mesoscale to the macroscale, and discuss experimental observations on failure mechanisms in bone at these scales. Then, we highlight representative analytical and computational models of bone fracture and strength at different length scales and discuss the main findings in the context of experiments. We conclude by summarizing the challenges in modelling of bone fracture and strength and list open topics for scientific exploration. Modelling of bone, accounting for different scales, provides new and needed insights into the fracture and strength of bone, which, in turn, can lead to improved diagnostic tools and treatments of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Klein KF, Hu J, Reed MP, Hoff CN, Rupp JD. Development and Validation of Statistical Models of Femur Geometry for Use with Parametric Finite Element Models. Ann Biomed Eng 2015; 43:2503-14. [DOI: 10.1007/s10439-015-1307-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/20/2015] [Indexed: 11/24/2022]
|
37
|
Vitamin A intake, serum vitamin D and bone mineral density: analysis of the Korea National Health and Nutrition Examination Survey (KNHANES, 2008-2011). Nutrients 2015; 7:1716-27. [PMID: 25763530 PMCID: PMC4377877 DOI: 10.3390/nu7031716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/01/2023] Open
Abstract
The association of high vitamin A intake and low bone mineral density (BMD) is still controversial. To determine the association of dietary vitamin A intake and serum 25-hydroxyvitamin D (25(OH)D) concentration with BMD, a total of 6481 subjects (2907 men and 3574 women) aged ≥50 years from the Korean National Health and Nutrition Examination Survey (2008–2011) were divided into groups according to dietary vitamin A intake (tertiles) and serum 25(OH)D (<50, 50–75, >75 nmol/L), and evaluated for BMD after adjusting for relevant variables. Mean dietary vitamin A intakes were 737 and 600 μg RE (Retinol Equivalents) in men and women, respectively. Total hip and femoral neck BMD in men and lumbar spine BMD in women were both positively correlated with dietary vitamin A intake in subjects with serum 25(OH)D >75 nmol/L. Among men with serum 25(OH)D <50 nmol/L, both the top (mean 1353 μg RE) and bottom (mean 218 μg RE) tertiles of dietary vitamin A intake had lower BMD than the middle group (mean 577 μg RE). In this population, BMD was the highest among men and women with serum 25(OH)D = 50–75 nmol/L and that there were no differences in BMD by vitamin A intake in these vitamin D adequate groups. This cross-sectional study indicates that vitamin A intake does not affect bone mineral density as long as the serum 25(OH)D concentration is maintained in the moderate level of 50–75 nmol/L.
Collapse
|
38
|
Agnew AM, Schafman M, Moorhouse K, White SE, Kang YS. The effect of age on the structural properties of human ribs. J Mech Behav Biomed Mater 2015; 41:302-14. [DOI: 10.1016/j.jmbbm.2014.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
39
|
Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading. Proc Natl Acad Sci U S A 2014; 112:372-7. [PMID: 25535352 DOI: 10.1073/pnas.1418646112] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.
Collapse
|
40
|
Biochemical markers for assessment of calcium economy and bone metabolism: application in clinical trials from pharmaceutical agents to nutritional products. Nutr Res Rev 2014; 27:252-67. [PMID: 25394580 PMCID: PMC4307651 DOI: 10.1017/s0954422414000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nutrition plays an important role in osteoporosis prevention and treatment. Substantial progress in both laboratory analyses and clinical use of biochemical markers has modified the strategy of anti-osteoporotic drug development. The present review examines the use of biochemical markers in clinical research aimed at characterising the influence of foods or nutrients on bone metabolism. The two types of markers are: (i) specific hormonal factors related to bone; and (ii) bone turnover markers (BTM) that reflect bone cell metabolism. Of the former, vitamin D metabolites, parathyroid hormone, and insulin-like growth factor-I indicate responses to variations in the supply of bone-related nutrients, such as vitamin D, Ca, inorganic phosphate and protein. Thus modification in bone remodelling, the key process upon which both pharmaceutical agents and nutrients exert their anti-catabolic or anabolic actions, is revealed. Circulating BTM reflect either osteoclastic resorption or osteoblastic formation. Intervention with pharmacological agents showed that early changes in BTM predicted bone loss and subsequent osteoporotic fracture risk. New trials have documented the influence of nutrition on bone-tropic hormonal factors and BTM in adults, including situations of body-weight change, such as anorexia nervosa, and weight loss by obese subjects. In osteoporosis-prevention studies involving dietary manipulation, randomised cross-over trials are best suited to evaluate influences on bone metabolism, and insight into effects on bone metabolism may be gained within a relatively short time when biochemical markers are monitored.
Collapse
|
41
|
A methodology for the investigation of toughness and crack propagation in mouse bone. J Mech Behav Biomed Mater 2014; 39:38-47. [DOI: 10.1016/j.jmbbm.2014.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022]
|
42
|
Vanderoost J, Lenthe GHV. From histology to micro-CT: Measuring and modeling resorption cavities and their relation to bone competence. World J Radiol 2014; 6:643-56. [PMID: 25276308 PMCID: PMC4176782 DOI: 10.4329/wjr.v6.i9.643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/22/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure. Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle. At the microstructural level, osteoclasts create bone deficits by eroding resorption cavities. Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging, but maybe even more so in quantifying their role in metabolic bone diseases. Metabolic bone diseases and their treatment are both known to affect the bone remodelling cycle; hence, the bone mechanical competence can and will be affected. However, the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited. This is not surprising considering the difficulties in deriving three-dimensional (3D) properties from two-dimensional (2D) histological sections. The measurement difficulties are reflected in the evaluation of how resorption cavities affect bone competence. Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities, the representation of the cavities themselves has basically been limited to simplified shapes and averaged cavity properties. Qualitatively, these models indicate that cavity size and location are important, and that the effect of cavities is larger than can be expected from simple bone loss. In summary, the dimensions of osteoclast resorption cavities were until recently estimated from 2D measures; hence, a careful interpretation of resorption cavity dimensions is necessary. More effort needs to go into correctly quantifying resorption cavities using modern 3D imaging techniques like micro-computed tomography (micro-CT) and synchrotron radiation CT. Osteoclast resorption cavities affect bone competence. The structure-function relationships have been analysed using computational models that, on one hand, provide rather detailed information on trabecular bone structure, but on the other incorporate rather crude assumptions on cavity dimensions. The use of high-resolution representations and parametric descriptions could be potential routes to improve the quantitative fidelity of these models.
Collapse
|
43
|
Kim DG. Can dental cone beam computed tomography assess bone mineral density? J Bone Metab 2014; 21:117-26. [PMID: 25006568 PMCID: PMC4075265 DOI: 10.11005/jbm.2014.21.2.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/18/2014] [Accepted: 05/18/2014] [Indexed: 12/02/2022] Open
Abstract
Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images.
Collapse
Affiliation(s)
- Do-Gyoon Kim
- Division of Orthodontics, Ohio State University College of Dentistry, Columbus, OH, USA
| |
Collapse
|
44
|
Han SW, Kim SJ, Lee DJ, Kim KM, Joo NS. The Relationship between Serum 25-Hydroxyvitamin D, Parathyroid Hormone and the Glomerular Filtration Rate in Korean Adults: The Korea National Health and Nutrition Examination Survey between 2009 and 2011. Korean J Fam Med 2014; 35:98-106. [PMID: 24724005 PMCID: PMC3978191 DOI: 10.4082/kjfm.2014.35.2.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The glomerular filtration rate (GFR) decreases with age, while parathyroid hormone (PTH) increases. There are a few reports only on the relationship between GFR and PTH under the category of serum 25-hydroxyvitamin D (25[OH]D) concentration. METHODS Using the Korea National Health and Nutrition Examination Survey (KNHANES) data, a cross-sectional study was conducted on the association between serum 25(OH)D concentration, GFR and PTH in Korean adults aged 50 years or older. Serum PTH concentration was compared to the tertiles of GFR after adjustment for relevant variables. In addition, the serum PTH concentration was compared with the GFR under the category of serum 25(OH) D concentration (<20, 20-30, >30 ng/mL). RESULTS The mean estimated GFR (eGFR) was 74.8 mL/min in men and 73.1 mL/min in women. The mean PTH and 25(OH) D was 66.8 pg/mL, 20.5 ng/mL in men and 69.0 pg/mL, 18.2 ng/mL in women. The serum PTH concentration showed a significant negative correlation with the serum 25(OH) D and eGFR in both genders. The serum PTH concentration significantly increased at the lower tertile of eGFR in male adults In addition, a decrease of serum PTH concentration was marked in the vitamin D sufficient male adults (>30 ng/mL). CONCLUSION This present study demonstrated that serum PTH concentration showed negative correlation with eGFR, however, serum PTH increase may be minimized by maintaining proper serum 25(OH)D concentrations under similar eGFR status in Korean adults aged 50 and above.
Collapse
Affiliation(s)
- Sung-Woo Han
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | - Sung-Jin Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | - Duck-Joo Lee
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | - Kwang-Min Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | - Nam-Seok Joo
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
45
|
Analysis of trabecular bone microstructure using contour tree connectivity. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2014. [PMID: 24579169 DOI: 10.1007/978-3-642-40763-5_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Millions of people worldwide suffer from fragility fractures, which cause significant morbidity, financial costs and even mortality. The gold standard to quantify structural properties of trabecular bone is based on the morphometric parameters obtained from microCT images of clinical bone biopsy specimens. The currently used image processing approaches are not able to fully explain the variation in bone strength. In this study, we introduce the contour tree connectivity (CTC) as a novel morphometric parameter to study trabecular bone quality. With CTC, we calculate a new connectivity measure for trabecular bone by using contour tree representation of binary images and algebraic graph theory. To test our approach, we use trabecular bone biopsies obtained from 55 female patients. We study the correlation of CTC with biomechanical test results as well as other morphometric parameters obtained from microCT. The results based on our dataset show that CTC is the 3rd best predictive feature of ultimate bone strength after bone volume fraction and degree of anisotropy.
Collapse
|
46
|
Luu AN, Anez-Bustillos L, Aran S, Araiza Arroyo FJ, Entezari V, Rosso C, Snyder BD, Nazarian A. Microstructural, densitometric and metabolic variations in bones from rats with normal or altered skeletal states. PLoS One 2013; 8:e82709. [PMID: 24358219 PMCID: PMC3866175 DOI: 10.1371/journal.pone.0082709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/27/2013] [Indexed: 01/23/2023] Open
Abstract
Background High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA) as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods. Methods Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose (18FDG) and sodium fluoride (Na18F) PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing. Results Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant) increase in 18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone), yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone); yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups. Conclusion PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity.
Collapse
Affiliation(s)
- Andrew N. Luu
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- School of Medicine, Tufts University, Boston, Massachusetts, United States of America
| | - Lorenzo Anez-Bustillos
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shima Aran
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francisco J. Araiza Arroyo
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vahid Entezari
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Claudio Rosso
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Orthopaedic Surgery, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Zhang N, Magland JF, Rajapakse CS, Bhagat YA, Wehrli FW. Potential of in vivo MRI-based nonlinear finite-element analysis for the assessment of trabecular bone post-yield properties. Med Phys 2013; 40:052303. [PMID: 23635290 DOI: 10.1118/1.4802085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Bone strength is the key factor impacting fracture risk. Assessment of bone strength from high-resolution (HR) images have largely relied on linear micro-finite element analysis (μFEA) even though failure always occurs beyond the yield point, which is outside the linear regime. Nonlinear μFEA may therefore be more informative in predicting failure behavior. However, existing nonlinear models applied to trabecular bone (TB) have largely been confined to micro-computed tomography (μCT) and, more recently, HR peripheral quantitative computed tomography (HR-pQCT) images, and typically have ignored evaluation of the post-yield behavior. The primary purpose of this work was threefold: (1) to provide an improved algorithm and program to assess TB yield as well as post-yield properties; (2) to explore the potential benefits of nonlinear μFEA beyond its linear counterpart; and (3) to assess the feasibility and practicality of performing nonlinear analysis on desktop computers on the basis of micro-magnetic resonance (μMR) images obtained in vivo in patients. METHODS A method for nonlinear μFE modeling of TB yield as well as post-yield behavior has been designed where material nonlinearity is captured by adjusting the tissue modulus iteratively according to the tissue-level effective strain obtained from linear analysis using a computationally optimized algorithm. The software allows for images at in vivo μMRI resolution as input with retention of grayscale information. Associations between axial stiffness estimated from linear analysis and yield as well as post-yield parameters from nonlinear analysis were investigated from in vivo μMR images of the distal tibia (N = 20; ages: 58-84) and radius (N = 20; ages: 50-75). RESULTS All simulations were completed in 1 h or less for 61 strain levels using a desktop computer (dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM). Although yield stress and ultimate stress correlated strongly (R(2) > 0.95, p < 0.001) with axial stiffness, toughness correlated moderately at the distal tibia (R(2) = 0.81, p < 0.001) and only weakly at the distal radius (R(2) = 0.34, p = 0.007). Further, toughness was found to vary by up to 16% for bone of very similar axial stiffness (<2%). CONCLUSIONS The work demonstrates the practicality of nonlinear μFE simulations at in vivo μMRI resolution, as well as its potential for providing additional information beyond that obtainable from linear analysis. The data suggest that a direct assessment of toughness may provide information not captured by stiffness.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
48
|
Liotier P, Rossi J, Wendling-Mansuy S, Chabrand P. Trabecular bone remodelling under pathological conditions based on biochemical and mechanical processes involved in BMU activity. Comput Methods Biomech Biomed Engin 2013; 16:1150-62. [DOI: 10.1080/10255842.2012.654781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Lu M, Farnebo LO, Bränström R, Larsson C. Inhibition of parathyroid hormone secretion by caffeine in human parathyroid cells. J Clin Endocrinol Metab 2013; 98:E1345-51. [PMID: 23788688 PMCID: PMC4207951 DOI: 10.1210/jc.2013-1466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
CONTEXT AND OBJECTIVE Caffeine is a highly consumed psychoactive substance present in our daily drinks. Independent studies have reported associations between caffeine consumption, low bone mineral density, and urinary calcium loss, as well as impaired bone development in vitro and in vivo. Calcium (Ca(2+)), vitamin D, and PTH are critical regulators of bone remodeling. A possible association between caffeine and parathyroid gland function has been suggested in the literature. DESIGN, SETTING, AND PATIENTS Effects of caffeine on PTH secretion and Ca(2+) levels were determined by batch incubation and Fura-2, respectively, in pathological parathyroid cells. Protein expressions were studied by Western blot and immunohistochemistry in normal and parathyroid adenoma tissues. Alterations in gene expressions of adenosine receptor A1 (ADORA1) and A2 (ADORA2A) and PTH were quantified by PCR; intracellular cAMP levels and protein kinase A activity were analyzed by an antibody-based assay. RESULTS We studied physiological concentrations of caffeine ranging from 1 to 50 μm and found that 50 μm caffeine caused a significant decrease of PTH secretion and PTH gene expression. This decrease occurred in parallel with a decrease of the intracellular cAMP level, protein kinase A activity, and ADORA1 gene expression, indicating a possible causal relationship. The intracellular level of Ca(2+) was unaffected even by high concentrations of caffeine. Protein expressions demonstrated two main targets for caffeine-ADORA1 and ADORA2A. CONCLUSION A physiological high dose of caffeine inhibits PTH secretion in human parathyroid cells, possibly due to a decrease of the intracellular level of cAMP. The observation demonstrates a functional link between caffeine and parathyroid cell function.
Collapse
Affiliation(s)
- Ming Lu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
50
|
Wright I, Blanco-Rojo R, Fernández MC, Toxqui L, Moreno G, Pérez-Granados AM, de la Piedra C, Remacha ÁF, Vaquero MP. Bone remodelling is reduced by recovery from iron-deficiency anaemia in premenopausal women. J Physiol Biochem 2013; 69:889-96. [PMID: 23813442 DOI: 10.1007/s13105-013-0266-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022]
Abstract
Iron-deficiency anaemia (IDA), one of the most common and widespread health disorders worldwide, affects fundamental metabolic functions and has been associated with deleterious effects on bone. Our aim was to know whether there are differences in bone remodelling between a group of premenopausal IDA women and a healthy group, and whether recovery of iron status has an effect on bone turnover markers. Thirty-five IDA women and 38 healthy women (control group) were recruited throughout the year. IDA women received pharmacological iron treatment. Iron biomarkers, aminoterminal telopeptide of collagen I (NTx), procollagen type 1 N-terminal propeptide (P1NP), 25-hydroxyvitamin D, and parathormone (PTH) were determined at baseline for both groups and after treatment with pharmacological iron for the IDA group. IDA subjects were classified as recovered (R) or non-recovered (nR) from IDA after treatment. NTx levels were significantly higher (p <0.001), and P1NP levels tended to be lower in IDA women than controls after adjusting for age and body mass index (BMI), with no differences in 25-hydroxyvitamin D or PTH. After treatment, the R group had significantly lower NTx and P1NP levels compared to baseline (p <0.05 and p <0.001 respectively), whilst no significant changes were seen in the nR group. No changes were seen in 25-hydroxyvitamin D or PTH for either group. IDA is related to higher bone resorption independent of age and BMI. Recovery from IDA has a concomitant beneficial effect on bone remodelling in premenopausal women, decreasing both bone resorption and formation.
Collapse
Affiliation(s)
- Ione Wright
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CISC), C/José Antonio Novais 10, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|