1
|
Yücel Ç, Esim O, Bakırhan NK, Erdoğan Kablan S, Koçak E, Ertuğrul MS, Özkan CK, Nemutlu E, Savaşer A, Özkan SA, Özkan Y, Balık AR, Özgürtaş T. Metabolomic profiles altered by erlotinib encapsulated in poly(lactide-co-glycolide) nanoparticles in non-small cell lung cancer. Drug Dev Ind Pharm 2025; 51:467-476. [PMID: 40122082 DOI: 10.1080/03639045.2025.2484326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE This research is focused on the metabolomics and cytotoxic effects of the anticancer drug erlotinib encapsulated in poly(lactide-co-glycolide) nanoparticles on non-small cell lung cancer (NSCLC) cell lines. METHODS Uniform-sized nanoparticles (0.325 and 0.068 PDI) with mean diameters of 264.5 and 268.4 nm for blank and erlotinib-PLGA nanoparticles (nanodrugs-NDs) were formulated, respectively. The encapsulation efficiency of prepared nanoparticles was found to be 90.1%. 36% of erlotinib was released from PLGA nanoparticles within 24 h, and the maximum sustained release was 43% at 72 h. The metabolomic and cytotoxic effects of ND were evaluated. RESULTS The Bax/Bcl-2 ratio was the lowest in the nanodrug group at 72 h, showing increased apoptosis, indicating that the most effective drug formulation is the combined nanoparticle at 72 h. The metabolomic studies revealed changing amino acids, antioxidant molecules, and carbohydrate profiles. The most significant changes were obtained in pathways related to the synthesis of p-glycoprotein, which is the principal protein for drug efflux and causes drug resistance. The lowest levels of amino acids and polyamines like serine, threonine, spermine, and spermidine were obtained at 72 h with erlotinib encapsulated in poly(lactide-co-glycolide) (PLGA) nanoparticles, showing that the drug resistance may in part be overcome with this nanoparticles. CONCLUSION The encapsulation of erlotinib with PLGA showed effects and influenced critical metabolic pathways, especially pointing out the need to lower drug resistance and signifying it's potential use as an effective treatment strategy for NSCLC.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Department of Biochemistry, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
- Gülhane Training and Research Hospital, Department of Clinical Biochemistry, University of Health Sciences, Ankara, Türkiye
| | - Ozgur Esim
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
| | - Nurgül K Bakırhan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
| | - Sevilay Erdoğan Kablan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Engin Koçak
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
| | - Meryem Sebla Ertuğrul
- Gülhane Training and Research Hospital, Department of Clinical Biochemistry, University of Health Sciences, Ankara, Türkiye
| | - Cansel Köse Özkan
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Ayhan Savaşer
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Özkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| | - Yalçın Özkan
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
| | - Ahmet Rıfat Balık
- Gülhane Training and Research Hospital, Department of Clinical Biochemistry, University of Health Sciences, Ankara, Türkiye
| | - Taner Özgürtaş
- Gülhane Training and Research Hospital, Department of Clinical Biochemistry, University of Health Sciences, Ankara, Türkiye
| |
Collapse
|
2
|
Bhalla M, Lee CJ. Astrocytic Ornithine Decarboxylase 1 in Alzheimer's Disease. Exp Neurobiol 2025; 34:49-52. [PMID: 40210470 PMCID: PMC12069927 DOI: 10.5607/en25006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025] Open
Abstract
Recent research has shed light on the metabolic changes in reactive astrocytes associated with Alzheimer's disease, contributing to disease pathology. In this article, we summarize key findings related to reactive astrogliosis and how the discovery of the role of the enzyme ornithine decarboxylase 1 can set us on the path to finding more effective therapeutic strategies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
3
|
Sonálio KC, Malcorra de Almeida L, Bassi LS, Kuritza LN, Dias IDC, da Rocha C, Maiorka A. Effect of Putrescine Inoculation In Ovo on Hatchability, Hepatic and Muscular Glycogen Reserve, Intestinal Morphology, and Performance of Broilers. Animals (Basel) 2025; 15:1259. [PMID: 40362073 PMCID: PMC12070924 DOI: 10.3390/ani15091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
The objective of this study was to evaluate the inoculation of nutrient solutions with increasing levels of putrescine on the hatchability, physiology, and performance of broilers during the initial phase. The study is composed of four treatments with increasing doses of putrescine (0.015; 0.030; 0.060, and 0.090%) and a control group. At hatch, hatchability rate; ratio between egg weight and chick weight; ratio between yolk sac, liver, breast and intestine weight, and chick weight; glycogen concentration in the liver and breast; and morphometric characteristics of the jejunum and ileum were evaluated. After hatch, 400 birds were housed in metabolic cages according to the treatments received, and feed intake, body weight gain, and feed conversion ratio were assessed at specific time points. Hatchability, chick performance at hatch, and organ weight were not affected by the inoculation of increasing levels of putrescine. Intestinal villi at hatch were higher in groups supplemented with putrescine (p < 0.001). The amounts of hepatic glycogen per gram of tissue at hatch were higher in groups with the lowest levels of putrescine and decreased with increasing doses (p = 0.017). Growth performance from 1 to 21 days was not influenced by the inoculation of putrescine.
Collapse
Affiliation(s)
- Katiucia Cristine Sonálio
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| | - Leopoldo Malcorra de Almeida
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| | - Lucas Schmidt Bassi
- Department of Animal Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil (C.d.R.)
| | - Leandro Nagae Kuritza
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| | - Isabela de Camargo Dias
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| | - Chayane da Rocha
- Department of Animal Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil (C.d.R.)
| | - Alex Maiorka
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| |
Collapse
|
4
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
5
|
Gil‐Martínez A, Galiana‐Roselló C, Lázaro‐Gómez A, Mulet‐Rivero L, González‐García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2025; 26:e202400873. [PMID: 39656761 PMCID: PMC12002122 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil‐Martínez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Cristina Galiana‐Roselló
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
- Príncipe Felipe Research CenterEduardo Primo Yúfera, 346012ValenciaSpain
| | - Andrea Lázaro‐Gómez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Laura Mulet‐Rivero
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Jorge González‐García
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| |
Collapse
|
6
|
Nowotarski SL, DiAngelo JR. Drosophila melanogaster imaginal disc assays to study the polyamine transport system. Methods Enzymol 2025; 715:351-361. [PMID: 40382148 DOI: 10.1016/bs.mie.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Polyamine metabolism in higher eukaryotes is well studied; however, the mechanism of how the polyamines putrescine, spermidine and spermine enter the cell remains unclear. An effective approach to investigate potential players that function in the uptake of polyamines involves using the Drosophila melanogaster imaginal disc assay. Leg imaginal discs dissected from Drosophila melanogaster wandering third star larvae can be assessed for leg development after 18 h of treatment with hormones to induce this process. The protocol described here details how to use genetically manipulated Drosophila melanogaster to test candidate genes involved in the polyamine transport system, how to dissect leg imaginal discs and how to assess the entry of polyamines into the cells of the imaginal disc.
Collapse
|
7
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
8
|
Dong X, Zhang K, Yi S, Wang L, Wang X, Li M, Liang S, Wang Y, Zeng Y. Multi-omics profiling combined with molecular docking reveals immune-inflammatory proteins as potential drug targets in colorectal cancer. Biochem Biophys Res Commun 2024; 739:150598. [PMID: 39213754 DOI: 10.1016/j.bbrc.2024.150598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer is globally ranked as the third most common malignant tumor. Its development involves a complex biological process driven by various genetic and epigenetic alterations. To elucidate the biological significance of the extensive omics data, we conducted comparative multi-omics studies on colorectal cancer patients at different clinical stages. Bioinformatics methods were applied to analyze multi-omics datasets and explore the molecular landscape. Drug prediction and molecular docking also were conducted to assess potential therapeutic interventions. In vitro experiments were used to validate the inhibitory effect on the migration and proliferation of cell lines. The results indicate up-regulated proteins involved in immune-inflammatory related pathways, while biomarkers related to muscular contraction and cell adhesion are significantly down-regulated. Drug prediction, coupled with in vitro experiments, suggests that AZ-628 may act as a potential drug to inhibit the proliferation and migration of CRC cell lines HCT-116 and HT-29 by regulating the aforementioned key biological pathways or proteins. Complementing these findings, metabolomics analysis unveiled a down-regulation of key carbon metabolism pathways, alongside an up-regulation in amino acid metabolism, particularly proline metabolism. This metabolic shift may reflect an adaptive response in cancer cells, favoring specific amino acids to support their growth. Together, these integrated results provide valuable insights into the intricate landscape of tumor development, highlighting the crossroads of immune regulation, cellular structure, and metabolic reprogramming in the tumorigenic process and providing valuable insights into cancer pathology.
Collapse
Affiliation(s)
- Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - Kun Zhang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Siwei Yi
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - Lingxiang Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China; The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xingyao Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - Mengtuo Li
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - YongJun Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Yong Zeng
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China; The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
9
|
Kay KE, Lee J, Hong ES, Beilis J, Dayal S, Wesley ER, Mitchell S, Wang SZ, Silver DJ, Volovetz J, Johnson S, McGraw M, Grabowski MM, Lu T, Freytag L, Narayana V, Freytag S, Best SA, Whittle JR, Wang Z, Reizes O, Yu JS, Hazen SL, Brown JM, Bayik D, Lathia JD. Tumor cell-derived spermidine promotes a protumorigenic immune microenvironment in glioblastoma via CD8+ T cell inhibition. J Clin Invest 2024; 135:e177824. [PMID: 39561012 PMCID: PMC11735101 DOI: 10.1172/jci177824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
The glioblastoma (GBM) microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly affect the immune system, but the mechanisms driving these interactions are not completely clear. Here, we demonstrate that the polyamine metabolite spermidine (SPD) was elevated in the GBM tumor microenvironment. Exogenous administration of SPD drove tumor aggressiveness in an immune-dependent manner in preclinical mouse models via reduction of CD8+ T cell frequency and reduced cytotoxic function. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in SPD synthesis, did not affect cancer cell growth in vitro but did result in extended survival. Furthermore, patients with GBM with a more favorable outcome had a significant reduction in SPD compared with patients with a poor prognosis. Our results demonstrate that SPD functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+ T cell numbers and function.
Collapse
Affiliation(s)
- Kristen E. Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine; and
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ellen S. Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Medical Scientist Training Program, School of Medicine; Case Western Reserve University, Cleveland, Ohio, USA
| | - Julia Beilis
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sahil Dayal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emily R. Wesley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine; and
| | - Sofia Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sabrina Z. Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Medical Scientist Training Program, School of Medicine; Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel J. Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Josephine Volovetz
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sadie Johnson
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mary McGraw
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew M. Grabowski
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine; and
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Tianyao Lu
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology; and
| | - Lutz Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vinod Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne, Melbourne, Victoria, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology; and
| | - Sarah A. Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology; and
| | - James R. Whittle
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology; and
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine; and
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Jennifer S. Yu
- Cleveland Clinic Lerner College of Medicine; and
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine; and
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine; and
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Defne Bayik
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine; and
- Sylvester Comprehensive Cancer Center; University of Miami, Miami, Florida, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine; and
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Pont I, Felipe R, Frías JC, Chicote JU, García-España A, García-España E, Albelda MT. An Effective Liposome-Based Nanodelivery System for Naphthalene Derivative Polyamines with Antitumor Activity. Biomolecules 2024; 14:1347. [PMID: 39595524 PMCID: PMC11591986 DOI: 10.3390/biom14111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
This study focuses on the development of a novel liposome-based nanodelivery system designed to encapsulate polyamine-1, a compound with potential anti-tumor properties. The main objective of this work was to enhance the therapeutic and imaging potential of polyamine-1 by incorporating it into liposome-based nanoparticles, which were functionalized with a gadolinium complex for imaging purposes and a fluorescent phospholipid for tracking applications. These nanoparticles were characterized by measuring their size, shape, polydispersity index, zeta potential and encapsulation efficiency. In vitro experiments were conducted to evaluate the antitumor activity, specifically determining the cytotoxicity of both free and encapsulated polyamine-1 in cancerous and non-cancerous cell lines. Additionally, the study shows the enhanced signal intensity of gadolinium-loaded liposomes by T1-weighted MRI, highlighting their imaging potential. The experimental results suggest that this liposome-based nanodelivery system not only has therapeutic potential in targeted cancer therapy but also could be advantageous for diagnostic imaging, particularly in MRI applications.
Collapse
Affiliation(s)
- Isabel Pont
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - Rubén Felipe
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - Juan C. Frías
- Departamento de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain;
| | - Javier U. Chicote
- Unitat de Recerca, Hospital Joan XXIII, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Roviri i Virgili, 43002 Tarragona, Spain;
| | - Antonio García-España
- Unitat de Recerca, Hospital Joan XXIII, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Roviri i Virgili, 43002 Tarragona, Spain;
| | - Enrique García-España
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - M. Teresa Albelda
- Department of Inorganic Chemistry, University of Valencia, 46010 Burjassot, Spain
| |
Collapse
|
11
|
Ferreira FHDC, Farrell NP, Costa LAS. Spermine and spermidine SI-PPCs: Molecular dynamics reveals enhanced biomolecular interactions. Int J Biol Macromol 2024; 278:134654. [PMID: 39128748 DOI: 10.1016/j.ijbiomac.2024.134654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
In this paper the effects on the interaction of highly positively charged substitution-inert platinum polynuclear complexes (SI-PPCs) with negatively charged DNA and heparin are examined and compared by theoretical chemistry methods. Electrostatic and hydrogen bonding interactions contribute to the overall effects on the biomolecule. Root Mean Square (RMS) deviation, Solvent Accessible Surface, RMS fluctuation, and interaction analysis all confirm similar effects on both biomolecules, dictated predominantly by the total positive charge and total number of hydrogen bonds formed. Especially, changes in structural parameters suggesting condensation and reduction of available surface area will reduce or prevent normal protein recognition and may thus potentially inhibit biological mechanisms related to apoptosis (DNA) or reduced vascularization viability (HEP). Thermodynamic analyses supported these findings with favourable interaction energies. The comparison of DNA and heparin confirms the general intersectionality between the two biomolecules and confirms the intrinsic dual-nature function of this chemotype. The distinction between the two-limiting mode of actions (HS or DNA-centred) could reflect an intriguing balance between extracellular (GAG) and intracellular (DNA) binding and affinities. The results underline the need to fully understand GAG-small molecule interactions and their contribution to drug pharmacology and related therapeutic modalities. This report contributes to that understanding.
Collapse
Affiliation(s)
- Frederico Henrique do C Ferreira
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA
| | - Luiz Antônio S Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil.
| |
Collapse
|
12
|
Pearson LA, Karuso P, Neilan BA. Structure, biosynthesis and activity of indolactam alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2024; 92:1-45. [PMID: 39384253 DOI: 10.1016/bs.alkal.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Indolactam alkaloids are a family of aromatic toxins produced by various actinobacteria and the cyanobacterium, Moorena producens. The best characterized examples include the teleocidins, lyngbyatoxins, olivoretins, blastmycetins, and pendolmycins, which share a nine-membered lactam core, comprised from l-tryptophanol and l-valine. Contact with indolactam alkaloids has been linked to severe dermatitis (swimmers itch), while accidental ingestion may lead to illness and fatalities. Indolactam alkaloids are also potent tumor promotors, due to their activation of protein kinase C isozymes. This chapter reviews the current literature on indolactam alkaloids, from their discovery in the early 1960s up to 2024. Topics covered include the isolation, structural elucidation, biosynthesis, bioactivity, and total synthesis of the indolactam alkaloid core.
Collapse
Affiliation(s)
- Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia; The Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, Australia.
| | - Peter Karuso
- Department of Applied Biosciences, Macquarie University, Macquarie Park, NSW, Australia; School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia; The Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, Australia
| |
Collapse
|
13
|
Shakeri F, Mohamadynejad P, Moghanibashi M. Identification of ASMTL-AS1 and LINC02604 lncRNAs as novel biomarkers for diagnosis of colorectal cancer. Int J Colorectal Dis 2024; 39:112. [PMID: 39028420 PMCID: PMC11271384 DOI: 10.1007/s00384-024-04692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Colorectal cancer is one of the major leading causes of death worldwide, and available treatments for advanced colorectal cancer are not successful. Therefore, early detection of colorectal cancer is essential to improve patient survival, and biomarkers are potential tools to achieve this goal. Considering the key role of lncRNAs in cancers, the aim of this study is to identify lncRNAs involved in colorectal cancer as new potential prognosis biomarkers for CRC. METHODS In this observational study, gene expression data obtained from the TCGA database were analyzed, Identification of differentially expressed mRNAs, miRNAs, and lncRNAs was performed, and ceRNA network was drawn. Also, survival analysis of patients was performed in order to identify potential biomarkers related to the diagnosis and prognosis of colon cancer. After confirming the results using the GSE39582 dataset, the expression of target lncRNAs in colorectal tumor tissues was also investigated to confirm the bioinformatic data. RESULTS Analysis of the TCGA data showed that the expression of three lncRNAs-SNHG7, ASMTL-AS1, and LINC02604-that had the highest interaction with other miRNAs and mRNAs identified based on the ceRNA network was increased in colorectal cancer. Also, based on the ceRNA network, three microRNAs, hsa-let-7d-5p, hsa-mir-92a-3p, and hsa-mir-423-5p, and eight mRNAs, including CPA4, MSI2, RRM2, IGF2BP1, ONECUT2, HMGA1, SOX4, and SRM, were associated with all three mentioned lncRNAs, the expression of microRNAs was decreased and the expression of mRNAs was increased. By enrichment analysis, it was found that the target lncRNAs are involved in the processes of cell proliferation, apoptosis, and metastasis, indicating their importance in the development and malignancy of colorectal cancer. Furthermore, Kaplan-Meier analysis showed a significant increase in mortality in patients with higher expression levels of these lncRNAs. Analysis of the GSE39582 dataset, and real-time RT-PCR analysis, confirmed our bioinformatic results. Also, ROC analysis showed that SNHG7 was a relatively good promising biomarker (AUC = 0.73, p value = 0.02), while ASMTL-AS1 (AUC = 0.92, p value < 0.0001) and LINC02604 (AUC = 1.00, p value < 0.0001) emerged as excellent diagnostic biomarkers in colorectal cancer. CONCLUSION It seems that increased expression of lncRNAs ASMTL-AS1 and LINC02604 can serve as molecular biomarkers for CRC, possibly through the sponge hsa-let-7d-5p, hsa-mir-92a-3p, and hsa-mir-423 5p, which increases target mRNAs, which are effective in the carcinogenesis process.
Collapse
Affiliation(s)
- Fariba Shakeri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
14
|
Offenbacher R, Jackson KW, Hayashi M, Zhang J, Peng D, Tan Y, Stewart TM, Ciero P, Foley J, Casero RA, Cahan P, Loeb DM. Polyamine Depletion by D, L-alpha-difluoromethylornithine Inhibits Ewing Sarcoma Metastasis by Inducing Ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599064. [PMID: 38948823 PMCID: PMC11212937 DOI: 10.1101/2024.06.14.599064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Polyamine metabolism and signaling play important roles in multiple cancers but have not previously been studied in Ewing sarcoma. Here, we show that blocking polyamine synthesis with D, L-alpha-difluoromethylornithine (DFMO) causes a G1 cell cycle arrest, dose-dependent decreases in sarcosphere formation from Ewing sarcoma cell lines growing in non-adherent conditions and a decrease in clonogenic growth in soft agar. Further, we utilized our orthotopic implantation/amputation model of Ewing sarcoma metastasis to demonstrate that DFMO slowed primary tumor growth in addition to limiting metastasis. RNA sequencing demonstrated gene expression patterns consistent with induction of ferroptosis caused by polyamine depletion. Induction of ferroptosis was validated in vitro by demonstrating that ferrostatin-1, an inhibitor of ferroptosis, allows sphere formation even in the presence of DFMO. Collectively, these results reveal a novel mechanism by which DFMO prevents metastasis - induction of ferroptosis due to polyamine depletion. Our results provide preclinical justification to test the ability of DFMO to prevent metastatic recurrence in Ewing sarcoma patients at high risk for relapse.
Collapse
|
15
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
16
|
Rahman S, Haque R, Raisuddin S. Potential inhibition of 12- O-tetradecanoylphorbol-13-acetate-induced inflammation, hyperproliferation, and hyperplasiogenic responses by celecoxib in mouse skin. Cutan Ocul Toxicol 2024; 43:87-96. [PMID: 38127818 DOI: 10.1080/15569527.2023.2295843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Skin exposure to noxious agents leads to cutaneous lesion marked by an increase in inflammation, cellular proliferation, and hyperplasiogenic reactions. Studies have demonstrated that these damages breach the skin integrity resulting in the aetiology of various cutaneous disorders like atopic dermatitis, eczema, psoriasis, and development of non-melanoma skin cancer. Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, is an effective treatment for a variety of inflammatory diseases. Its importance in the therapy of skin problems, however, remains under appreciated. METHODS We tested efficacy of topically applied celecoxib in mitigating skin inflammation, cellular proliferation, and hyperplasia induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) in Swiss albino mice. RESULTS Celecoxib (5 and 10 μmol) markedly reduced TPA (10 nmol) induced prostaglandin E2 (PGE2) production, oedema formation, myeloperoxidase (MPO) activity, and levels of pro-inflammatory cytokines such as tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). It also resulted in a considerable decrease in ornithine decarboxylase (ODC) activity and the incorporation of [3H]-thymidine into DNA. In addition, there was a significant reduction in histoarchitectural abnormalities such as epidermal thickness, number of epidermal cell layers, neutrophil infiltration, intercellular oedema, and vasodilation. CONCLUSION Our results demonstrate that topical celecoxib can reduce the inflammation, hyperproliferation, and hyperplasiogenic events of skin insults suggesting that it may prove to be a valuable management option for cutaneous lesion and associated illnesses such as atopic dermatitis, eczema, and psoriasis, as well as the emergence of non-melanoma cancer.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Rizwanul Haque
- Department of Biotechnology, School of Earth, Biological and Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Sheikh Raisuddin
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
17
|
Ahmed M, Semreen AM, Giddey AD, Ramadan WS, El-Awady R, Soares NC, El-Huneidi W, Bustanji Y, Alqudah MAY, Alzoubi KH, Semreen MH. Proteomic and metabolomic signatures of U87 glioblastoma cells treated with cisplatin and/or paclitaxel. Ann Med 2024; 55:2305308. [PMID: 38253025 PMCID: PMC10810643 DOI: 10.1080/07853890.2024.2305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a primary malignancy of the central nervous system and is classified as a grade IV astrocytoma by the World Health Organization (WHO). Although GBM rarely metastasizes, its prognosis remains poor. Moreover, the standard treatment for GBM, temozolomide (TMZ), is associated with chemoresistance, which is a major factor behind GBM-related deaths. Investigating drugs with repurposing potential in the context of GBM is worthwhile to bypass lengthy bench-to-bedside research. The field of omics has garnered significant interest in scientific research because of its potential to delineate the intricate regulatory network underlying tumor development. In particular, proteomic and metabolomic analyses are powerful approaches for the investigation of metabolic enzymes and intermediate metabolites since they represent the functional end of the cancer phenotype. METHODS We chose two of the most widely prescribed anticancer drugs, cisplatin and paclitaxel. To our knowledge, the current literature lacks studies examining their effects on metabolic and proteomic alterations in GBM. We employed the mass spectrometry technological platform 'UHPLC-Q-TOF-MS/MS' to examine the changes in the proteome and metabolome profiles of the U87 cell line with defined concentrations of cisplatin and/or paclitaxel via an untargeted approach. RESULTS A total of 1,419 distinct proteins and 90 metabolites were generated, and subsequent analysis was performed. We observed that upon treatment with cisplatin (9.5 μM), U87 cells exhibited apparent efforts to cope with this exogenous stressor, understanding the effect of paclitaxel (5.3 μM) on altering the transport machinery of the cell, and how the combination of cisplatin and/or paclitaxel suggests potential interactions with promising benefits in GBM therapeutics. CONCLUSION Our research provides a detailed map of alterations in response to cisplatin and paclitaxel treatment, provides crucial insights into the molecular basis of their action, and paves the way for further research to identify molecular targets for this elusive malignancy.
Collapse
Affiliation(s)
- Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahlam M. Semreen
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Alexander D. Giddey
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa S. Ramadan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Department of Basic and Clinical Pharmacology, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammad A. Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Park MG, Kim SY, Lee CJ. DMSO-tolerant ornithine decarboxylase (ODC) tandem assay optimised for high-throughput screening. J Enzyme Inhib Med Chem 2023; 38:309-318. [DOI: 10.1080/14756366.2022.2150186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Suyeon Yellena Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
19
|
Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun Signal 2023; 21:348. [PMID: 38049863 PMCID: PMC10694995 DOI: 10.1186/s12964-023-01373-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023] Open
Abstract
Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
20
|
Kay KE, Lee J, Hong ES, Beilis J, Dayal S, Wesley E, Mitchell S, Wang SZ, Silver DJ, Volovetz J, Johnson S, McGraw M, Grabowski MM, Lu T, Freytag L, Narayana V, Freytag S, Best SA, Whittle JR, Wang Z, Reizes O, Yu JS, Hazen SL, Brown JM, Bayik D, Lathia JD. Tumor cell-derived spermidine promotes a pro-tumorigenic immune microenvironment in glioblastoma via CD8+ T cell inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567048. [PMID: 38014234 PMCID: PMC10680681 DOI: 10.1101/2023.11.14.567048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The glioblastoma microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly impact the immune system, but the mechanisms driving these interactions are not completely clear. Here we demonstrate that the polyamine metabolite spermidine is elevated in the glioblastoma tumor microenvironment. Exogenous administration of spermidine drives tumor aggressiveness in an immune-dependent manner in pre-clinical mouse models via reduction of CD8+ T cell frequency and phenotype. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in spermidine synthesis, did not impact cancer cell growth in vitro but did result in extended survival. Furthermore, glioblastoma patients with a more favorable outcome had a significant reduction in spermidine compared to patients with a poor prognosis. Our results demonstrate that spermidine functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+T cell number and function.
Collapse
|
21
|
Wang Z, Zhang J, Shi S, Ma H, Wang D, Zuo C, Zhang Q, Lian C. Predicting lung adenocarcinoma prognosis, immune escape, and pharmacomic profile from arginine and proline-related genes. Sci Rep 2023; 13:15198. [PMID: 37709932 PMCID: PMC10502151 DOI: 10.1038/s41598-023-42541-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous disease that ranks first in morbidity and mortality. Abnormal arginine metabolism is associated with inflammatory lung disease and may influence alterations in the tumor immune microenvironment. However, the potential role of arginine and proline metabolic patterns and immune molecular markers in LUAD is unclear. Gene expression, somatic mutations, and clinicopathological information of LUAD were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was performed to identify metabolic genes associated with overall survival (OS). Unsupervised clustering divided the sample into two subtypes with different metabolic and immunological profiles. Gene set enrichment analysis (GESA) and gene set variation analysis (GSVA) were used to analyze the underlying biological processes of the two subtypes. Drug sensitivity between subtypes was also predicted; then prognostic features were developed by multivariate Cox regression analysis. In addition, validation was obtained in the GSE68465, and GSE50081 dataset. Then, gene expression, and clinical characterization of hub genes CPS1 and SMS were performed; finally, in vitro validation experiments for knockdown of SMS were performed in LUAD cell lines. In this study, we first identified 12 arginine and proline-related genes (APRGs) significantly associated with OS and characterized the clinicopathological features and tumor microenvironmental landscape of two different subtypes. Then, we established an arginine and proline metabolism-related scoring system and identified two hub genes highly associated with prognosis, namely CPS1, and SMS. In addition, we performed CCK8, transwell, and other functional experiments on SMS to obtain consistent results. Our comprehensive analysis revealed the potential molecular features and clinical applications of APRGs in LUAD. A model based on 2 APRGs can accurately predict survival outcomes in LUAD, improve our understanding of APRGs in LUAD, and pave a new pathway to guide risk stratification and treatment strategy development for LUAD patients.
Collapse
Affiliation(s)
- Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Shuhua Shi
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, China
| | - Dongqin Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Chao Zuo
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
22
|
Buelvas N, Ugarte-Vio I, Asencio-Leal L, Muñoz-Uribe M, Martin-Martin A, Rojas-Fernández A, Jara JA, Tapia JC, Arias ME, López-Muñoz RA. Indomethacin Induces Spermidine/Spermine-N 1-Acetyltransferase-1 via the Nucleolin-CDK1 Axis and Synergizes with the Polyamine Oxidase Inhibitor Methoctramine in Lung Cancer Cells. Biomolecules 2023; 13:1383. [PMID: 37759783 PMCID: PMC10526249 DOI: 10.3390/biom13091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Indomethacin is a non-selective NSAID used against pain and inflammation. Although cyclooxygenase (COX) inhibition is considered indomethacin's primary action mechanism, COX-independent ways are associated with beneficial effects in cancer. In colon cancer cells, the activation of the peroxisome proliferator-activated receptor-γ (PPAR-γ) is related to the increase in spermidine/spermine-N1-acetyltransferase-1 (SSAT-1), a key enzyme for polyamine degradation, and related to cell cycle arrest. Indomethacin increases the SSAT-1 levels in lung cancer cells; however, the mechanism relying on the SSAT-1 increase is unclear. Thus, we asked for the influence of the PPAR-γ on the SSAT-1 expression in two lung cancer cell lines: H1299 and A549. We found that the inhibition of PPAR-γ with GW9662 did not revert the increase in SSAT-1 induced by indomethacin. Because the mRNA of SSAT-1 suffers a pre-translation retention step by nucleolin, a nucleolar protein, we explored the relationship between indomethacin and the upstream translation regulators of SSAT-1. We found that indomethacin decreases the nucleolin levels and the cyclin-dependent kinase 1 (CDK1) levels, which phosphorylates nucleolin in mitosis. Overexpression of nucleolin partially reverts the effect of indomethacin over cell viability and SSAT-1 levels. On the other hand, Casein Kinase, known for phosphorylating nucleolin during interphase, is not modified by indomethacin. SSAT-1 exerts its antiproliferative effect by acetylating polyamines, a process reverted by the polyamine oxidase (PAOX). Recently, methoctramine was described as the most specific inhibitor of PAOX. Thus, we asked if methoctramine could increase the effect of indomethacin. We found that, when combined, indomethacin and methoctramine have a synergistic effect against NSCLC cells in vitro. These results suggest that indomethacin increases the SSAT-1 levels by reducing the CDK1-nucleolin regulatory axis, and the PAOX inhibition with methoctramine could improve the antiproliferative effect of indomethacin.
Collapse
Affiliation(s)
- Neudo Buelvas
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Isidora Ugarte-Vio
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Laura Asencio-Leal
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Matías Muñoz-Uribe
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Antonia Martin-Martin
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Alejandro Rojas-Fernández
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - José A. Jara
- Instituto de Investigaciones en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago P.O. Box 8380544, Chile
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago P.O. Box 8380453, Chile
| | - María Elena Arias
- Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco P.O. Box 4811230, Chile
| | - Rodrigo A. López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| |
Collapse
|
23
|
Hodkovicova N, Halas S, Tosnerova K, Stastny K, Svoboda M. The use of functional amino acids in different categories of pigs - A review. VET MED-CZECH 2023; 68:299-312. [PMID: 37982122 PMCID: PMC10646542 DOI: 10.17221/72/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023] Open
Abstract
The present review deals with a particularly important topic: the use of functional amino acids in different categories of pigs. It is especially relevant in the context of the current efforts to reduce the use of antibiotics in pig farming and the search for possible alternatives to replace them. The review is based on the definition that functional amino acids (FAAs) are classified as dispensable amino acids, but with additional biological functions, i.e., not only are they used for protein formation, but they are also involved in regulating essential metabolic pathways to improve health, survival, growth, and development. We describe the mechanism of action of individual FAAs and their potential use in pigs, including glutamate, glutamine, arginine, branched-chain amino acids (i.e., leucine, isoleucine, and valine), tryptophan and glycine. The work is divided into three parts. The first part deals with the FAAs and their role in the overall health of sows and their offspring. The second part describes the use of functional amino acids in piglets after weaning. Part three examines the use of functional amino acids in growing and fattening pigs and their impact on meat quality.
Collapse
Affiliation(s)
- Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Simon Halas
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Kristina Tosnerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kamil Stastny
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Martin Svoboda
- Ruminant and Swine Clinic, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
24
|
Li D, Neo SP, Gunaratne J, Sabapathy K. EPLIN-β is a novel substrate of ornithine decarboxylase antizyme 1 and mediates cellular migration. J Cell Sci 2023; 136:jcs260427. [PMID: 37325974 PMCID: PMC10281260 DOI: 10.1242/jcs.260427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Polyamines promote cellular proliferation. Their levels are controlled by ornithine decarboxylase antizyme 1 (Az1, encoded by OAZ1), through the proteasome-mediated, ubiquitin-independent degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis. Az1-mediated degradation of other substrates such as cyclin D1 (CCND1), DNp73 (TP73) or Mps1 regulates cell growth and centrosome amplification, and the currently known six Az1 substrates are all linked with tumorigenesis. To understand whether Az1-mediated protein degradation might play a role in regulating other cellular processes associated with tumorigenesis, we employed quantitative proteomics to identify novel Az1 substrates. Here, we describe the identification of LIM domain and actin-binding protein 1 (LIMA1), also known as epithelial protein lost in neoplasm (EPLIN), as a new Az1 target. Interestingly, between the two EPLIN isoforms (α and β), only EPLIN-β is a substrate of Az1. The interaction between EPLIN-β and Az1 appears to be indirect, and EPLIN-β is degraded by Az1 in a ubiquitination-independent manner. Az1 absence leads to elevated EPLIN-β levels, causing enhanced cellular migration. Consistently, higher LIMA1 levels correlate with poorer overall survival of colorectal cancer patients. Overall, this study identifies EPLIN-β as a novel Az1 substrate regulating cellular migration.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Suat Peng Neo
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
25
|
Wang M, Song Q, Song Z, Xie Y. Development of an Immune Prognostic Model for Clear Cell Renal Cell Carcinoma Based on Tumor Microenvironment. Horm Metab Res 2023. [PMID: 37192644 DOI: 10.1055/a-2079-2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Immune infiltration remains at a high level in clear cell renal cell carcinoma (ccRCC). It has been confirmed that immune cell infiltration in tumor microenvironment (TME) is intimately bound up with the progression and the clinical outcome of ccRCC. The prognostic model, developed based on different immune subtypes of ccRCC, has a predictive value in patients' prognosis. RNA sequencing data, somatic mutation data of ccRCC and clinical information were acquired from the cancer genome atlas (TCGA) database. The key immune-related genes (IRGs) were selected and by univariate Cox, LASSO, and multivariate Cox regression analyses. Then the ccRCC prognostic model was developed. The applicability of this model was verified in the independent dataset GSE29609. Thirteen IRGs including CCL7, ATP6V1C2, ATP2B3, ELAVL2, SLC22A8, DPP6, EREG, SERPINA7, PAGE2B, ADCYAP1, ZNF560, MUC20, and ANKRD30A were finally selected and a 13-IRGs prognostic model was developed. Survival analysis demonstrated that when compared with the low-risk group, patients in the high-risk group had a lower overall survival (p<0.05). AUC values based on the 13-IRGs prognostic model used to predict 3- and 5-year survival of ccRCC patients were greater than 0.70. And risk score was an independent prognostic factor (p<0.001). In addition, nomogram could accurately predict ccRCC patient's prognosis. This 13-IRGs model can effectively evaluate the prognosis of ccRCC patients, and also provide guidance for the treatment and prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Munan Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qianqian Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhijie Song
- School of Integrated Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuduan Xie
- Laboratory Department, Wangjing Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
27
|
Jiang D, Guo Y, Niu C, Long S, Jiang Y, Wang Z, Wang X, Sun Q, Ling W, An X, Ji C, Zhao H, Kang B. Exploration of the Antioxidant Effect of Spermidine on the Ovary and Screening and Identification of Differentially Expressed Proteins. Int J Mol Sci 2023; 24:ijms24065793. [PMID: 36982867 PMCID: PMC10051986 DOI: 10.3390/ijms24065793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Spermidine is a naturally occurring polyamine compound that has many biological functions, such as inducing autophagy and anti-inflammatory and anti-aging effects. Spermidine can affect follicular development and thus protect ovarian function. In this study, ICR mice were fed exogenous spermidine drinking water for three months to explore the regulation of ovarian function by spermidine. The results showed that the number of atretic follicles in the ovaries of spermidine-treated mice was significantly lower than that in the control group. Antioxidant enzyme activities (SOD, CAT, T-AOC) significantly increased, and MDA levels significantly decreased. The expression of autophagy protein (Beclin 1 and microtubule-associated protein 1 light chain 3 LC3 II/I) significantly increased, and the expression of the polyubiquitin-binding protein p62/SQSTM 1 significantly decreased. Moreover, we found 424 differentially expressed proteins (DEPs) were upregulated, and 257 were downregulated using proteomic sequencing. Gene Ontology and KEGG analyses showed that these DEPs were mainly involved in lipid metabolism, oxidative metabolism and hormone production pathways. In conclusion, spermidine protects ovarian function by reducing the number of atresia follicles and regulating the level of autophagy protein, antioxidant enzyme activity, and polyamine metabolism in mice.
Collapse
Affiliation(s)
- Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongni Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyang Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyun Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yilong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zelong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Weikang Ling
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoguang An
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengweng Ji
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
28
|
Bou Zerdan M, Ashok Kumar P, Haroun E, Srivastava N, Ross J, Sivapiragasam A. Genomic landscape of metastatic breast cancer (MBC) patients with methylthioadenosine phosphorylase ( MTAP) loss. Oncotarget 2023; 14:178-187. [PMID: 36913304 PMCID: PMC10010627 DOI: 10.18632/oncotarget.28376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
INTRODUCTION Homozygous deletion of MTAP upregulates de novo synthesis of purine (DNSP) and increases the proliferation of neoplastic cells. This increases the sensitivity of breast cancer cells to DNSP inhibitors such as methotrexate, L-alanosine and pemetrexed. MATERIALS AND METHODS 7,301 cases of MBC underwent hybrid-capture based comprehensive genomic profiling (CGP). Tumor mutational burden (TMB) was determined on up to 1.1 Mb of sequenced DNA and microsatellite instability (MSI) was determined on 114 loci. Tumor cell PD-L1 expression was determined by IHC (Dako 22C3). RESULTS 208 (2.84%) of MBC featured MTAP loss. MTAP loss patients were younger (p = 0.002) and were more frequently ER- (30% vs. 50%; p < 0.0001), triple negative (TNBC) (47% vs. 27%; p < 0.0001) and less frequently HER2+ (2% vs. 8%; p = 0.0001) than MTAP intact MBC. Lobular histology and CDH1 mutations were more frequent in MTAP intact (14%) than MTAP loss MBC (p < 0.0001). CDKN2A (100%) and CDKN2B (97%) loss (9p21 co-deletion) were significantly associated with MTAP loss (p < 0.0001). Likely associated with the increased TNBC cases, BRCA1 mutation was also more frequent in MTAP loss MBC (10% vs. 4%; p < 0.0001). As for immune checkpoint inhibitors biomarkers, higher TMB >20 mut/Mb levels in the MTAP intact MBC (p < 0.0001) and higher PD-L1 low expression (1-49% TPS) in the MTAP loss MTAP (p = 0.002) were observed. CONCLUSIONS MTAP loss in MBC has distinct clinical features with genomic alterations (GA) affecting both targeted and immunotherapies. Further efforts are necessary to identify alternative means of targeting PRMT5 and MTA2 in MTAP-ve cancers to benefit from the high-MTA environment of MTAP-deficient cancers.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Prashanth Ashok Kumar
- Department of Internal Medicine, Division of Hematology Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Elio Haroun
- SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Nimisha Srivastava
- Department of Internal Medicine, Division of Hematology Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey Ross
- Foundation Medicine, Inc., Morrisville, NC 27560, USA.,Departments of Pathology and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Abirami Sivapiragasam
- Department of Internal Medicine, Division of Hematology Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
29
|
Wang H, Qin K, Shi D, Wu P, Hao X, Liu H, Gao J, Li J, Wu Z, Li S. A new 68Ga-labeled ornithine derivative for PET imaging of ornithine metabolism in tumors. Amino Acids 2023:10.1007/s00726-023-03250-z. [PMID: 36809562 DOI: 10.1007/s00726-023-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Ornithine metabolism plays a vital role in tumorigenesis. For cancer cells, ornithine is mainly used as a substrate for ornithine decarboxylase (ODC) for the synthesis of polyamines. The ODC as a key enzyme of polyamine metabolism has become an important target for cancer diagnosis and treatment. To non-invasively detect the levels of ODC expression in malignant tumors, we have synthesized a novel 68Ga-labeled ornithine derivative ([68Ga]Ga-NOTA-Orn). The synthesis time of [68Ga]Ga-NOTA-Orn was about 30 min with a radiochemical yield of 45-50% (uncorrected), and the radiochemical purity was > 98%. [68Ga]Ga-NOTA-Orn was stable in saline and rat serum. Cellular uptake and competitive inhibition assays using DU145 and AR42J cells demonstrated that the transport pathway of [68Ga]Ga-NOTA-Orn was similar to that of L-ornithine, and it could interact with the ODC after transporting into the cell. Biodistribution and micro-positron emission tomography (Micro-PET) imaging studies showed that [68Ga]Ga-NOTA-Orn exhibited rapid tumor uptake and was rapidly excreted through the urinary system. All above results suggested that [68Ga]Ga-NOTA-Orn is a novel amino acid metabolic imaging agent with great potential of tumor diagnosis.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Kaixin Qin
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Dongmei Shi
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ping Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xinzhong Hao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jie Gao
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Jianguo Li
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
30
|
Lores S, Gámez-Chiachio M, Cascallar M, Ramos-Nebot C, Hurtado P, Alijas S, López López R, Piñeiro R, Moreno-Bueno G, de la Fuente M. Effectiveness of a novel gene nanotherapy based on putrescine for cancer treatment. Biomater Sci 2023. [PMID: 36790445 DOI: 10.1039/d2bm01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Gene therapy has long been proposed for cancer treatment. However, the use of therapeutic nucleic acids presents several limitations such as enzymatic degradation, rapid clearance, and poor cellular uptake and efficiency. In this work we propose the use of putrescine, a precursor for higher polyamine biosynthesis for the preparation of cationic nanosystems for cancer gene therapy. We have formulated and characterized putrescine-sphingomyelin nanosystems (PSN) and studied their endocytic pathway and intracellular trafficking in cancer cells. After loading a plasmid DNA (pDNA) encoding the apoptotic Fas Ligand (FasL), we proved their therapeutic activity by measuring the cell death rate after treatment of MDA-MB-231 cells. We have also used xenografted zebrafish embryos as a first in vivo approach to demonstrate the efficacy of the proposed PSN-pDNA formulation in a more complex model. Finally, intratumoral and intraperitoneal administration to mice-bearing MDA-MB-231 xenografts resulted in a significant decrease in tumour cell growth, highlighting the potential of the developed gene therapy nanoformulation for the treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain
| | - Manuel Gámez-Chiachio
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - María Cascallar
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Carmen Ramos-Nebot
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Pablo Hurtado
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Rafael López López
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Roberto Piñeiro
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Gema Moreno-Bueno
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,MD Anderson International Foundation, Gómez Hemans s/n, 28033 Madrid, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,DIVERSA Technologies SL, Edificio Emprendia, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Rojas-Luna L, Posadas-Modragón A, Avila-Trejo AM, Alcántara-Farfán V, Rodríguez-Páez LI, Santiago-Cruz JA, Pastor-Alonso MO, Aguilar-Faisal JL. Inhibition of chikungunya virus replication by N-ω-Chloroacetyl-L-Ornithine in C6/36, Vero cells and human fibroblast BJ. Antivir Ther 2023; 28:13596535231155263. [PMID: 36724136 DOI: 10.1177/13596535231155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Polyamines are involved in several cellular processes and inhibiting their synthesis affects chikungunya virus (CHIKV) replication and translation, and, therefore, reduces the quantity of infectious viral particles produced. In this study, we evaluated the inhibition of CHIKV replication by N-ω-chloroacetyl-L-ornithine (NCAO), a competitive inhibitor of ornithine decarboxylase, an enzyme which is key in the biosynthesis of polyamines (PAs). METHODS The cytotoxicity of NCAO was evaluated by MTT in cell culture. The inhibitory effect of CHIKV replication by NCAO was evaluated in Vero and C6/36 cells. The intracellular polyamines were quantified by HPLC in CHIKV-infected cells. We evaluated the yield of CHIKV in titres via the addition of PAs in Vero, C6/36 cells and human fibroblast BJ treated with NCAO. RESULTS We found that NCAO inhibits the replication of CHIKV in Vero and C6/36 cells in a dose-dependent manner, causing a decrease in the PFU/mL of at least 4 logarithms (p < 0.01) in both cell lines. Viral yields were restored by the addition of exogenous polyamines, mainly putrescine. The HPLC analyses showed that NCAO decreases the content of intracellular PAs, even though it is predominantly spermidines and spermines which are present in infected cells. Inhibition of CHIKV replication was observed in human fibroblast BJ treated with 100 μM NCAO 24 h before and 48 h after the infection at a MOI 1. CONCLUSIONS NCAO inhibits CHIKV replication by depleting the intracellular polyamines in Vero, C6/36 cells and human fibroblast BJ, suggesting that this compound is a possible antiviral agent for CHIKV.
Collapse
Affiliation(s)
- Lucero Rojas-Luna
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| | - Araceli Posadas-Modragón
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| | - Amanda M Avila-Trejo
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Bioquímica Farmacológica, 61735Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Verónica Alcántara-Farfán
- Laboratorio de Bioquímica Farmacológica, 61735Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lorena I Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, 61735Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Angel Santiago-Cruz
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marvin O Pastor-Alonso
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| | - J Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
32
|
Nwonuma CO, Balogun EA, Gyebi GA. Evaluation of Antimalarial Activity of Ethanolic Extract of Annona muricata L.: An in vivo and an in silico Approach. J Evid Based Integr Med 2023; 28:2515690X231165104. [PMID: 37019435 PMCID: PMC10084581 DOI: 10.1177/2515690x231165104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
In Nigeria, Annona muricata L. has been used to treat a variety of ailments. The mechanism of the antimalarial activity of ethanolic leaf extract of Annona muricata (EEAML) was investigated using both an in vivo and an in silico approach. The experimental mice were divided into five groups: A-F. The mice in groups B-F were inoculated with Plasmodium berghei NK-65 and treated accordingly. Groups A and B are the negative and positive controls (infected and untreated), respectively. Group C received 10 mg/kg chloroquine (standard drug), whereas groups D-F received 100, 200, and 300 mg/kg body weight of the extract orally respectively. The mice were euthanized eight days after infection, and their liver and blood were collected and used in biochemical tests. Molecular docking was performed using the extract's HPLC compounds and Plasmodium falciparum proteins. In the suppressive, prophylactic, and curative tests, there was a significant decrease (p < 0.05) in parasitemia levels in groups treated with the extract compared to the positive control and standard drug. When compared to the positive control, there was a significant (p < 0.05) reduction in liver MDA, total cholesterol, and total triglyceride levels. The binding energies of luteolin and apigenin-pfprotein complexes were significantly (p < 0.05) higher compared to their respective references. The anti-plasmodial activity of the extract may result from its hypolipidemic effect, which deprives the parasite of essential lipid molecules needed for parasite growth, as well as from the inhibitory effects of apigenin and luteolin on specific proteins required for the Plasmodium metabolic pathway.
Collapse
Affiliation(s)
- Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | - Gideon Ampoma Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, Karu, Nigeria
| |
Collapse
|
33
|
Kumar A, Ali A, Kapardar RK, Dar GM, Nimisha, Apurva, Sharma AK, Verma R, Sattar RSA, Ahmad E, Mahajan B, Saluja SS. Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
Affiliation(s)
- Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Raj Kishore Kapardar
- Microbial Biotechnology Division, The Energy and Resource Institute (TERI), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
34
|
Ursolic Acid Analogs as Potential Therapeutics for Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248981. [PMID: 36558113 PMCID: PMC9785537 DOI: 10.3390/molecules27248981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Collapse
|
35
|
Halwas K, Döring LM, Oehlert FV, Dohmen RJ. Hypusinated eIF5A Promotes Ribosomal Frameshifting during Decoding of ODC Antizyme mRNA in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms232112972. [PMID: 36361762 PMCID: PMC9656687 DOI: 10.3390/ijms232112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Polyamines are essential biogenic poly-cations with important roles in many cellular processes and diseases such as cancer. A rate-limiting step early in the biosynthesis of polyamines is the conversion of ornithine to putrescine by the homodimeric enzyme ornithine decarboxylase (ODC). In a conserved mechanism of posttranslational regulation, ODC antizyme (OAZ) binds to ODC monomers promoting their ubiquitin-independent degradation by the proteasome. Decoding of OAZ mRNA is unusual in that it involves polyamine-regulated bypassing of an internal translation termination (STOP) codon by a ribosomal frameshift (RFS) event. Using Saccharomyces cerevisiae, we earlier showed that high polyamine concentrations lead to increased efficiency of OAZ1 mRNA translation by binding to nascent Oaz1 polypeptide. The binding of polyamines prevents stalling of the ribosomes on OAZ1 mRNA caused by nascent Oaz1 polypeptide thereby promoting synthesis of full-length Oaz1. Polyamine depletion, however, also inhibits RFS during the decoding of constructs bearing the OAZ1 shift site lacking sequences encoding the Oaz1 parts implicated in polyamine binding. Polyamine depletion is known to impair hypusine modification of translation factor eIF5A. Using a novel set of conditional mutants impaired in the function of eIF5A/Hyp2 or its hypusination, we show here that hypusinated eIF5A is required for efficient translation across the OAZ1 RFS site. These findings identify eIF5A as a part of Oaz1 regulation, and thereby of polyamine synthesis. Additional experiments with DFMO, however, show that depletion of polyamines inhibits translation across the OAZ1 RFS site not only by reducing Hyp2 hypusination, but in addition, and even earlier, by affecting RFS more directly.
Collapse
|
36
|
Yathindranath V, Safa N, Sajesh BV, Schwinghamer K, Vanan MI, Bux R, Sitar DS, Pitz M, Siahaan TJ, Miller DW. Spermidine/Spermine N1-Acetyltransferase 1 ( SAT1)-A Potential Gene Target for Selective Sensitization of Glioblastoma Cells Using an Ionizable Lipid Nanoparticle to Deliver siRNA. Cancers (Basel) 2022; 14:5179. [PMID: 36358597 PMCID: PMC9656607 DOI: 10.3390/cancers14215179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2023] Open
Abstract
Spermidine/spermine N1-acetyltransferase 1 (SAT1) responsible for cell polyamine catabolism is overexpressed in glioblastoma multiforme (GB). Its role in tumor survival and promoting resistance towards radiation therapy has made it an interesting target for therapy. In this study, we prepared a lipid nanoparticle-based siRNA delivery system (LNP-siSAT1) to selectively knockdown (KD) SAT1 enzyme in a human glioblastoma cell line. The LNP-siSAT1 containing ionizable DODAP lipid was prepared following a microfluidics mixing method and the resulting nanoparticles had a hydrodynamic size of around 80 nm and a neutral surface charge. The LNP-siSAT1 effectively knocked down the SAT1 expression in U251, LN229, and 42MGBA GB cells, and other brain-relevant endothelial (hCMEC/D3), astrocyte (HA) and macrophage (ANA-1) cells at the mRNA and protein levels. SAT1 KD in U251 cells resulted in a 40% loss in cell viability. Furthermore, SAT1 KD in U251, LN229 and 42MGBA cells sensitized them towards radiation and chemotherapy treatments. In contrast, despite similar SAT1 KD in other brain-relevant cells no significant effect on cytotoxic response, either alone or in combination, was observed. A major roadblock for brain therapeutics is their ability to cross the highly restrictive blood-brain barrier (BBB) presented by the brain microcapillary endothelial cells. Here, we used the BBB circumventing approach to enhance the delivery of LNP-siSAT1 across a BBB cell culture model. A cadherin binding peptide (ADTC5) was used to transiently open the BBB tight junctions to promote paracellular diffusion of LNP-siSAT1. These results suggest LNP-siSAT1 may provide a safe and effective method for reducing SAT1 and sensitizing GB cells to radiation and chemotherapeutic agents.
Collapse
Affiliation(s)
- Vinith Yathindranath
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada
| | - Nura Safa
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada
| | - Babu V. Sajesh
- Cancer Care Manitoba Research Institute—CCMRI, Winnipeg, MB R3E 0V9, Canada
| | - Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Magimairajan Issai Vanan
- Cancer Care Manitoba Research Institute—CCMRI, Winnipeg, MB R3E 0V9, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rashid Bux
- BioMark Diagnostics Inc., Richmond, BC V6X 2W2, Canada
| | - Daniel S. Sitar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Marshall Pitz
- Cancer Care Manitoba Research Institute—CCMRI, Winnipeg, MB R3E 0V9, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Donald W. Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada
| |
Collapse
|
37
|
Hofer SJ, Kroemer G, Kepp O. Autophagy-inducing nutritional interventions in experimental and clinical oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:125-158. [PMID: 36283765 DOI: 10.1016/bs.ircmb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Numerous pro-autophagic dietary interventions are being investigated for their potential cancer-preventive or therapeutic effects. This applies to different fasting regimens, methionine restriction and ketogenic diets. In addition, the supplementation of specific micronutrients such as nicotinamide (vitamin B3) or spermidine induces autophagy. In humans, leanness, plant-based diets (that may lead to partial methionine restriction) and high dietary uptake of spermidine are associated with a low incidence of cancers. Moreover, clinical trials have demonstrated the capacity of nicotinamide to prevent non-melanoma skin carcinogenesis. Multiple interventional trials are evaluating the capacity of autophagy-inducing regimens to improve the outcome of chemotherapy and immunotherapy. Here, we discuss the mechanistic underpinnings of autophagy induction by nutritional interventions, as well as the mechanisms through which autophagy induction in malignant or immune cells improves anticancer immunosurveillance.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, APHP, Hôpital Européen Georges Pompidou, Paris, France.
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France.
| |
Collapse
|
38
|
Stump CL, Casero RA, Phanstiel O, DiAngelo JR, Nowotarski SL. Elucidating the Role of Chmp1 Overexpression in the Transport of Polyamines in Drosophila melanogaster. Med Sci (Basel) 2022; 10:45. [PMID: 36135830 PMCID: PMC9502369 DOI: 10.3390/medsci10030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 02/05/2023] Open
Abstract
Polyamines are small organic cations that are essential for many biological processes such as cell proliferation and cell cycle progression. While the metabolism of polyamines has been well studied, the mechanisms by which polyamines are transported into and out of cells are poorly understood. Here, we describe a novel role of Chmp1, a vesicular trafficking protein, in the transport of polyamines using a well-defined leg imaginal disc assay in Drosophila melanogaster larvae. We show that Chmp1 overexpression had no effect on leg development in Drosophila, but does attenuate the negative impact on leg development of Ant44, a cytotoxic drug known to enter cells through the polyamine transport system (PTS), suggesting that the overexpression of Chmp1 downregulated the PTS. Moreover, we showed that the addition of spermine did not rescue the leg development in Chmp1-overexpressing leg discs treated with difluoromethylornithine (DFMO), an inhibitor of polyamine metabolism, while putrescine and spermidine did, suggesting that there may be unique mechanisms of import for individual polyamines. Thus, our data provide novel insight into the underlying mechanisms that are involved in polyamine transport and highlight the utility of the Drosophila imaginal disc assay as a fast and easy way to study potential players involved in the PTS.
Collapse
Affiliation(s)
- Coryn L. Stump
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA 19610, USA
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Justin R. DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA 19610, USA
| | - Shannon L. Nowotarski
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA 19610, USA
| |
Collapse
|
39
|
Lu B, Wang L, Ran X, Tang H, Cao D. Recent Advances in Fluorescent Methods for Polyamine Detection and the Polyamine Suppressing Strategy in Tumor Treatment. BIOSENSORS 2022; 12:bios12080633. [PMID: 36005029 PMCID: PMC9405807 DOI: 10.3390/bios12080633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022]
Abstract
The biogenic aliphatic polyamines (spermine, spermidine, and putrescine) are responsible for numerous cell functions, including cell proliferation, the stabilization of nucleic acid conformations, cell division, homeostasis, gene expression, and protein synthesis in living organisms. The change of polyamine concentrations in the urine or blood is usually related to the presence of malignant tumors and is regarded as a biomarker for the early diagnosis of cancer. Therefore, the detection of polyamine levels in physiological fluids can provide valuable information in terms of cancer diagnosis and in monitoring therapeutic effects. In this review, we summarize the recent advances in fluorescent methods for polyamine detection (supramolecular fluorescent sensing systems, fluorescent probes based on the chromophore reaction, fluorescent small molecules, and fluorescent nanoparticles). In addition, tumor polyamine-suppressing strategies (such as polyamine conjugate, polyamine analogs, combinations that target multiple components, spermine-responsive supramolecular chemotherapy, a combination of polyamine consumption and photodynamic therapy, etc.) are highlighted. We hope that this review promotes the development of more efficient polyamine detection methods and provides a comprehensive understanding of polyamine-based tumor suppressor strategies.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
- Correspondence:
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
40
|
Ragno R, Minarini A, Proia E, Lorenzo A, Milelli A, Tumiatti V, Fiore M, Fino P, Rutigliano L, Fioravanti R, Tahara T, Pacella E, Greco A, Canettieri G, Di Paolo ML, Agostinelli E. Bovine Serum Amine Oxidase and Polyamine Analogues: Chemical Synthesis and Biological Evaluation Integrated with Molecular Docking and 3-D QSAR Studies. J Chem Inf Model 2022; 62:3910-3927. [PMID: 35948439 DOI: 10.1021/acs.jcim.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural polyamines (PAs) are key players in cellular homeostasis by regulating cell growth and proliferation. Several observations highlight that PAs are also implicated in pathways regulating cell death. Indeed, the PA accumulation cytotoxic effect, maximized with the use of bovine serum amine oxidase (BSAO) enzyme, represents a valuable strategy against tumor progression. In the present study, along with the design, synthesis, and biological evaluation of a series of new spermine (Spm) analogues (1-23), a mixed structure-based (SB) and ligand-based (LB) protocol was applied. Binding modes of BSAO-PA modeled complexes led to clarify electrostatic and steric features likely affecting the BSAO-PA biochemical kinetics. LB and SB three-dimensional quantitative structure-activity relationship (Py-CoMFA and Py-ComBinE) models were developed by means of the 3d-qsar.com portal, and their analysis represents a strong basis for future design and synthesis of PA BSAO substrates for potential application in oxidative stress-induced chemotherapy.
Collapse
Affiliation(s)
- Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Proia
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Antonini Lorenzo
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Marco Fiore
- Department Institute of Biochemistry and Cell Biology, IBBC-CNR, Via E. Ramarini, 32, Monterotondo Scalo Rome 00015, Italy
| | - Pasquale Fino
- UOC of Dermatology, Policlinico Umberto I Hospital, Sapienza Medical School of Rome, Viale del Policlinico 155, Rome I-00161, Italy
| | - Lavinia Rutigliano
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Tomoaki Tahara
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Elena Pacella
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University Padua, Via G. Colombo 3, Padova 35131, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy.,International Polyamines Foundation 'ETS-ONLUS', Via del Forte Tiburtino 98, Rome I-00159, Italy
| |
Collapse
|
41
|
Xi Y, Liu F, Qiu B, Li Y, Xie X, Guo J, Wu L, Liang T, Wang D, Wang J, Chen M, Xue L, Ding Y, Zhang J, Wu Q, Liu H. Analysis of Gut Microbiota Signature and Microbe-Disease Progression Associations in Locally Advanced Non-Small Cell Lung Cancer Patients Treated With Concurrent Chemoradiotherapy. Front Cell Infect Microbiol 2022; 12:892401. [PMID: 35719339 PMCID: PMC9200620 DOI: 10.3389/fcimb.2022.892401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To evaluate the association of gut microbiome signature and disease progression in locally advanced non-small cell lung cancer (LA-NSCLC) patients treated with concurrent chemoradiotherapy (CCRT) by fecal metagenome analysis. Methods Metagenome-wide association studies on baseline fecal samples from 18 LA-NSCLC patients before CCRT and 13 controls from healthy first-degree relatives were performed. Among the 18 LA-NSCLC patients, six patients were defined as the long progression-free survival (long-PFS) group (PFS≥11 months) while another 12 were in the short-PFS group (PFS<11 months). Alpha diversity, taxonomic composition, and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways were compared between groups. Results The Firmicutes/Bacteroidetes value of long-PFS group was higher than those of short-PFS (p=0.073) and healthy individual groups (p=0.009). Meanwhile, long-PFS group had significantly higher diversities in Fungi, Archaea, and Viruses than short-PFS group. The KEGG pathways overrepresented in short-PFS group included fructose and mannose metabolism (p=0.028), streptomycin biosynthesis (p=0.028), acarbose and validamycin biosynthesis (p=0.013), ribosome biogenesis in eukaryotes (p=0.035), biosynthesis of vancomycin group antibiotics (p=0.004), apoptosis-fly (p=0.044), and tetracycline biosynthesis (p=0.044), while those overrepresented in long-PFS group included fatty acid biosynthesis (p=0.035), fatty acid metabolism (p=0.008), vancomycin resistance (p=0.008), longevity regulating pathway-worm (p=0.028), type II diabetes mellitus (p=0.004), and viral carcinogenesis (p=0.003). Further analysis of antibiotic resistome demonstrated that the short-PFS group had a trend with more antibiotic resistance genes than healthy control (p=0.070) and long-PFS groups (p=0.218). The vancomycin resistance sequences were significantly enriched in the long-PFS group compared to the short-PFS group (p=0.006). Conclusions The baseline gut microbiome composition and functionality might be associated with PFS in LA-NSCLC treated with CCRT. The outcome of CCRT might be modulated through bacterial metabolic pathways. The antibiotic resistance genes might play a role in disease progression and provide potential information on the relationship between the use of antibiotics and treatment efficacy of CCRT in LA-NSCLC.
Collapse
Affiliation(s)
- Yu Xi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - FangJie Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat−sen University Cancer Center, Guangzhou, China
| | - Bo Qiu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat−sen University Cancer Center, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - XinQiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - JinYu Guo
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat−sen University Cancer Center, Guangzhou, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - TingTing Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - DaQuan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat−sen University Cancer Center, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - QingPing Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Hui Liu, ; QingPing Wu,
| | - Hui Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat−sen University Cancer Center, Guangzhou, China
- *Correspondence: Hui Liu, ; QingPing Wu,
| |
Collapse
|
42
|
Schwarz C, Benson GS, Horn N, Wurdack K, Grittner U, Schilling R, Märschenz S, Köbe T, Hofer SJ, Magnes C, Stekovic S, Eisenberg T, Sigrist SJ, Schmitz D, Wirth M, Madeo F, Flöel A. Effects of Spermidine Supplementation on Cognition and Biomarkers in Older Adults With Subjective Cognitive Decline: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2213875. [PMID: 35616942 PMCID: PMC9136623 DOI: 10.1001/jamanetworkopen.2022.13875] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Importance Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. Objective To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. Design, Setting, and Participants This 12-month randomized, double-masked, placebo-controlled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. Interventions One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (0.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. Main Outcomes and Measures Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. Results A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. Conclusions and Relevance In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage. Trial Registration ClinicalTrials.gov Identifier: NCT03094546.
Collapse
Affiliation(s)
- Claudia Schwarz
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gloria S. Benson
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nora Horn
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Wurdack
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Ralph Schilling
- Institute of Biometry and Clinical Epidemiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Märschenz
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theresa Köbe
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH–Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Slaven Stekovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Stephan J. Sigrist
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miranka Wirth
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Agnes Flöel
- German Center for Neurodegenerative Diseases, Greifswald, Germany
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
43
|
Human microbiota: a crucial gatekeeper in lung cancer initiation, progression, and treatment. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
44
|
Zhang Y, Zhang TT, Gao L, Tan YN, Li YT, Tan XY, Huang TX, Li HH, Bai F, Zou C, Pei XH, Tan BB, Fu L. Downregulation of MTAP promotes Tumor Growth and Metastasis by regulating ODC Activity in Breast Cancer. Int J Biol Sci 2022; 18:3034-3047. [PMID: 35541910 PMCID: PMC9066107 DOI: 10.7150/ijbs.67149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
5'-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway and has been reported to suppress tumorigenesis. The MTAP gene is located at 9p21, a chromosome region often deleted in breast cancer (BC). However, the clinical and biological significance of MTAP in BC is still unclear. Here, we reported that MTAP was frequently downregulated in 41% (35/85) of primary BCs and 89% (8/9) of BC cell lines. Low expression of MTAP was significantly correlated with a poor survival of BC patients (P=0.0334). Functional studies showed that MTAP was able to suppress both in vitro and in vivo tumorigenic ability of BC cells, including migration, invasion, angiogenesis, tumor growth and metastasis in nude mice with orthotopic xenograft tumor of BC. Mechanistically, we found that downregulation of MTAP could increase the polyamine levels by activating ornithine decarboxylase (ODC). By treating the MTAP-repressing BC cells with specific ODC inhibitor Difluoromethylornithine (DFMO) or treating the MTAP-overexpressing BC cells with additional putrescine, metastasis-promoting or -suppressing phenotype of these MTAP-manipulated cells was significantly reversed, respectively. Taken together, our data suggested that MTAP has a critical metastasis-suppressive role by tightly regulating ODC activity in BC cells, which may serve as a prominent novel therapeutic target for advanced breast cancer treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Tian-Tian Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Lin Gao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ya-Nan Tan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yu-Ting Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Xiang-Yu Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Tu-Xiong Huang
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hua-Hui Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Feng Bai
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Xin-Hai Pei
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Bin-Bin Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| |
Collapse
|
45
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
46
|
Poly-guanidine shows high cytotoxicity in glioma cell cultures and glioma stem cells. Invest New Drugs 2022; 40:565-575. [PMID: 35312943 PMCID: PMC9098561 DOI: 10.1007/s10637-022-01233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
AbstractGlioblastoma multiforme (GBM) is a malignant CNS tumor with a poor prognosis. GBM shows aberrant glycosylation with hypersialylation. This property is a potential target for therapy. This study investigates the growth inhibitory efficacy of poly-guanidine (GuaDex), with an affinity for sialic acid (Sia). Glioma cell cultures and patient-derived glioma cell lines (PDGCLs) expressing Prominin-1 (CD133) were used. Human fibroblasts and astrocyte-derived cells were used as controls. Temozolomide (standard GBM drug, TMZ) and DMSO were used as a comparison. GuaDex at 1–10 µM concentrations, were incubated for 3.5–72 h and with PDGCLs cells for 6–24 h. The cytotoxicity was estimated with a fluorometric cytotoxicity assay (FMCA). Fluorescence-labelled GuaDex was used to study the cell interactions. Sia expression was confirmed with a fluorescence labelled Sia binding lectin. Expression of glial fibrillary acidic protein was determined. GuaDex induction of growth inhibition was fast, showing after less than 5 min incubation while the control cells were not affected even after 50 min incubation. The growth inhibitory effect on PDGCLs spheroids was persistent still showing after 4 weeks post-treatment. The growth inhibition of GuaDex was induced at low µM concentrations while TMZ induced only a slight inhibition at mM concentrations. GuaDex efficacy appears significant and warrants further studies.
Collapse
|
47
|
Dewangan RP, Verma DP, Verma NK, Gupta A, Pant G, Mitra K, Habib S, Ghosh JK. Spermine-Conjugated Short Proline-Rich Lipopeptides as Broad-Spectrum Intracellular Targeting Antibacterial Agents. J Med Chem 2022; 65:5433-5448. [PMID: 35297625 DOI: 10.1021/acs.jmedchem.1c01809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Toward the design of new proline-rich peptidomimetics, a short peptide segment, present in several proline-rich antimicrobial peptides (AMPs), was selected. Fatty acids of varying lengths and spermine were conjugated at the N- and C-terminals of the peptide, respectively. Spermine-conjugated lipopeptides, C10-PR-Spn and C12-PR-Spn, exhibited minimum inhibitory concentrations within 1.5-6.2 μM against the tested pathogens including resistant bacteria and insignificant hemolytic activity against human red blood cells up to 100 μM concentrations and demonstrated resistance against trypsin digestion. C10-PR-Spn and C12-PR-Spn showed synergistic antimicrobial activity against multidrug-resistant methicillin-resistant Staphylococcus aureus with several tested antibiotics. These lipopeptides did not permeabilize bacterial membrane-mimetic lipid vesicles or damage the Escherichia coli membrane like the nonmembrane-lytic AMP, buforin-II. The results suggested that C10-PR-Spn and C12-PR-Spn could interact with the 70S ribosome of E. coli and inhibit its protein synthesis. C10-PR-Spn and C12-PR-Spn demonstrated superior clearance of bacteria from the spleen, liver, and kidneys of mice, infected with S. aureus ATCC 25923 compared to levofloxacin.
Collapse
Affiliation(s)
- Rikeshwer Prasad Dewangan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Ankit Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saman Habib
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
48
|
Tang Y, Zhu L, Chen H, Meng S. Metabolomics analysis reveals Oct4 overexpression drives metabolic reprogramming and enhanced glycolysis and pentose phosphate pathway in lung adenocarcinoma cells. Biomed Chromatogr 2022; 36:e5367. [PMID: 35274324 DOI: 10.1002/bmc.5367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
Poor prognosis in the underlying mechanisms involved in lung adenocarcinoma and its treatment leads to low survival rates in patients. Emerging evidence indicates that cancer is primarily a metabolic disease and metabolic reprogramming is a well-established hallmark and driving force of cancer. Oct4, acting as an oncogene, is a major regulator of cell pluripotency. It can reprogram the differentiated cells into cancer stem cells (CSCs) and plays an oncogenic role when pathologically hijacked. However, data that Oct4, the genetic reprogramming factor, could induce metabolic reprogramming has been very limited and the direct evidence in metabolic level whether Oct4 reprograms metabolome is lacking. In the present study, integrated untargeted and targeted metabolomics analyses were utilized to investigate metabolic changes induced by Oct4 overexpression in lung adenocarcinoma cells. The results suggested that elevated expression levels of Oct4 drives metabolic reprogramming. Oct4 overexpression redirects glucose catabolism to glycolysis pathway and to the oxidative pentose phosphate pathway (PPP). This study identifies unique pathways that are candidate therapeutic targets for the treatment of lung adenocarcinoma. This study also aims to improve our understanding of the cancer-promoting activity of Oct4 and help identify novel diagnostic and therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Yabin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Meng
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China.,Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China
| |
Collapse
|
49
|
Gladilina YA, Bey L, Hilal A, Neborak EV, Blinova VG, Zhdanov DD. Cytoprotective Activity of Polyamines Is Associated with the Alternative Splicing of RAD51A Pre-mRNA in Normal Human CD4 + T Lymphocytes. Int J Mol Sci 2022; 23:1863. [PMID: 35163785 PMCID: PMC8837172 DOI: 10.3390/ijms23031863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Physiological polyamines are ubiquitous polycations with pleiotropic biochemical activities, including regulation of gene expression and cell proliferation as well as modulation of cell signaling. They can also decrease DNA damage and promote cell survival. In the present study, we demonstrated that polyamines have cytoprotective effects on normal human CD4+ T lymphocytes but not on cancer Jurkat or K562 cells. Pretreatment of lymphocytes with polyamines resulted in a significant reduction in cells with DNA damage induced by doxorubicin, cisplatin, or irinotecan, leading to an increase in cell survival and viability. The induction of RAD51A expression was in response to DNA damage in both cancer and normal cells. However, in normal cells, putrescin pretreatment resulted in alternative splicing of RAD51A and the switch of the predominant expression from the splice variant with the deletion of exon 4 to the full-length variant. Induction of RAD51A alternative splicing by splice-switching oligonucleotides resulted in a decrease in DNA damage and cell protection against cisplatin-induced apoptosis. The results of this study suggest that the cytoprotective activity of polyamines is associated with the alternative splicing of RAD51A pre-mRNA in normal human CD4+ T lymphocytes. The difference in the sensitivity of normal and cancer cells to polyamines may become the basis for the use of these compounds to protect normal lymphocytes during lymphoblastic chemotherapy.
Collapse
Affiliation(s)
- Yulia A. Gladilina
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (A.H.); (V.G.B.)
| | - Lylia Bey
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia; (L.B.); (E.V.N.)
| | - Abdullah Hilal
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (A.H.); (V.G.B.)
| | - Ekaterina V. Neborak
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia; (L.B.); (E.V.N.)
| | - Varvara G. Blinova
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (A.H.); (V.G.B.)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (A.H.); (V.G.B.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia; (L.B.); (E.V.N.)
| |
Collapse
|
50
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|