1
|
Attaye I, Bird JK, Nieuwdorp M, Gül S, Seegers JFML, Morrison S, Hofkens S, Herrema H, Bui N, Puhlmann ML, de Vos WM. Anaerobutyricum soehngenii improves glycemic control and other markers of cardio-metabolic health in adults at risk of type 2 diabetes. Gut Microbes 2025; 17:2504115. [PMID: 40371708 PMCID: PMC12087665 DOI: 10.1080/19490976.2025.2504115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/11/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
Anaerobutyricum soehngenii (previously Eubacterium hallii) is a butyrate-producing next-generation beneficial microbe generally recognized as safe. Several short-term intervention trials by A. soehngenii L2-7 have shown improvement of insulin sensitivity in prediabetic subjects and type 2 diabetes patients. To determine the long-term cardiometabolic benefits and safety, we performed a 3-month double-blind, randomized placebo-controlled intervention in 98 prediabetic insulin-resistant adults in Europe and U.S. with daily administration of encapsulated cells of A. soehngenii CH-106, a tetracycline-sensitive isogenic derivative of strain L2-7. Compared to placebo, A. soehngenii-treated subjects showed significantly reduced glycemic variability (1% reduction in the coefficient of variation; p = 0.01) and improved glycemic control (6% reduction in the overall net glycemic action-1; p < 0.05), including reduced serum glycated hemoglobin (HbA1c) levels when including the 4-week washout period (1 mmol/mol reduction; p < 0.05). Moreover, diastolic blood pressure was significantly reduced in all A. soehngenii-treated subjects (3 mm Hg; p < 0.05). The study product was well-tolerated and had no effect on the global intestinal microbiota composition, including alpha and beta-diversity, besides an increased abundance of A. soehngenii in the treatment group, indicative of compliance. The U.S. participants, compared to those in Europe, responded best, notably in the oral glucose tolerance tests (15% improvement in the area-under-the curve of plasma glucose levels; p = 0.039) or coefficient of variation (reduction of 3.1%; p < 0.05). This potentially relates to a more severe prediabetic state in U.S. subjects, associated with significantly reduced (1.5-3.5-fold) relative abundance of Bifidobacterium, Coprococcus, Ruminococcus spp. and two-fold increased relative abundance of Lachnoclostridium spp. In conclusion, daily oral supplementation with A. soehngenii was safe and improved various markers of glycemic control, reduced HbA1c levels and diastolic blood pressure, indicating a novel microbiome-based approach to improve cardio-metabolic health in adults at risk for developing type 2 diabetes.Clinical trial reg. no. NCT04529473, clinicaltrials.govSocial media summary 120 characters: Anaerobutyricum soehngenii supplementation improves #cardio-metabolic health in subjects at risk for type 2 #diabetes.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
| | | | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, The Netherlands
| | - Sahin Gül
- Caelus Health, Zegveld, The Netherlands
| | | | | | | | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
| | - Nam Bui
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
| | | | - Willem M. de Vos
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, The Netherlands
- Caelus Health, Zegveld, The Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
2
|
Neacsu M, Sayegh M, Vaughan NJ, Duncan GJ, Cantlay L, Anderson S, Henderson D, Fyfe C, Farquharson F, Saibu S, Horgan G, Louis P, Johnstone AM, Russell WR. Fava bean and buckwheat are sustainable food sources which support satiety and beneficially modulate several biomarkers, bacteria and metabolites associated with human health. Eur J Nutr 2025; 64:211. [PMID: 40481954 PMCID: PMC12145301 DOI: 10.1007/s00394-025-03726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/23/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND The world's population requires adequate food supply, satisfying specific nutrient requirements to meet dietary recommendations, promote nutrition security and sustain health, while stimulating agriculture biodiversity. This study assessed the potential of buckwheat and fava bean to diversify the source of dietary nutrients. METHODS Twenty healthy volunteers (n = 6 men, n = 14 women; 42.08 ± 12.12 years; body mass index 24.72 ± 4.69 kg/m2) were recruited in a randomised controlled crossover study consisting of two seven-day intervention periods, buckwheat- and fava bean-based diets were provided to meet individual volunteers resting metabolic rate requirements. The study assessed subjective hunger and the impact of the diets on the gut microbiota composition and the plasma profiles of lipids, glucose, insulin, urea and homocysteine. Plasma, urine and faecal metabolites were also measured before and after consumption of each diet using targeted metabolomics (LC- and GC-MS). RESULTS Both intervention diets were as satiating as the volunteers' habitual diets (p = 0.234). The fava bean diet significantly reduced fasted plasma glucose and insulin and increased plasma homocysteine (p < 0.05). Buckwheat diet decreased plasma homocysteine (p < 0.01) and increased plasma, urine and faecal concentrations of salicylic acid and 2,3-dihydroxybenzoic acid. Both diets significantly increased plasma non-esterified fatty acids values, reduced plasma urea and faecal deoxycholic acid concentrations (p < 0.05). The fava bean diet provided significantly higher amounts of dietary fibre (both in comparison with habitual and buckwheat diet) significantly increasing the urine indole-3-propionic acid concentration (p < 0.01) (Day 0 vs. Day 7) and the faecal, plasma and urine indole-3-propionic acid concentrations (p < 0.01) (on Day 7 buckwheat vs. Day 7 fava bean diet). Furthermore, the fava bean diet promoted the growth of the gut bacterium Coprococcus eutactus (p < 0.05). CONCLUSION Buckwheat and fava bean contribute in a sustainable way to meet dietary recommendations and to promote dietary diversification. Diets rich in buckwheat and fava bean were found to be satiating and to beneficially modulate several biomarkers, bacteria and metabolites which are correlated with prevention of metabolic disorders such as cardiovascular disease and type 2 diabetes.
Collapse
Affiliation(s)
- Madalina Neacsu
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Marietta Sayegh
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | | | - Gary J Duncan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Louise Cantlay
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Susan Anderson
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Donna Henderson
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Claire Fyfe
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Freda Farquharson
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Salifu Saibu
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Graham Horgan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
- Biomathematics and Statistics Scotland, AB25 2ZD, Aberdeen, UK
| | - Petra Louis
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | | | - Wendy R Russell
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
3
|
Cerva C, de Lima FM, Varela APM, Breyer GM, Vicenzi JM, Bertagnolli AC, Klain VF, Siqueira FM, Mayer FQ. Gut bacterial diversity in bovines infected with Mycobacterium tuberculosis var. bovis: insights on tuberculosis pathogenesis. Tuberculosis (Edinb) 2025; 153:102652. [PMID: 40449474 DOI: 10.1016/j.tube.2025.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/11/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Bovine tuberculosis susceptibility and pathogenesis are influenced by host immunity, which may be modulated by the host microbiota. While intestinal microbiota composition affects pulmonary diseases in humans, its role in bovine tuberculosis remains unclear. This study explores the intestinal microbiota of cattle and its association with tuberculosis to better understand disease pathophysiology. A case-control study was conducted using small intestine content samples from cattle with and without tuberculosis, slaughtered in Rio Grande do Sul, Brazil. DNA extraction, 16S rRNA (V4) sequencing, and bioinformatics analyses assessed alpha and beta diversity, taxa characterization, differential abundance, and metabolic pathways. No significant differences in alpha and beta diversities between the groups were detected. However, the Bacillota/Bacteroidota ratio suggested dysbiosis associated with bovine tuberculosis. Differential abundance analysis showed that microorganisms belonging to the Bacillota phylum, the Eubacterium cellulosolvens group, Colidextribacter and Coprococcus genera were enriched in healthy cattle. Conversely, animals with tuberculosis showed higher abundances of Verrucomicrobiota phylum, Sphingomonadaceae and Eubacteriaceae families, and Solobacterium and Clostridia-UCG-014 genera. Moreover, metabolic pathways related to carbohydrate degradation were enriched in healthy animals, and biosynthetic pathways related to disease were enriched in tuberculosis animals. This study highlights associations between intestinal microbiota and bovine tuberculosis, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Cristine Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Fabio Marcelo de Lima
- Laboratório Federal de Defesa Agropecuária, Ministério da Agricultura, Pecuária e Abastecimento, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Gabriela Merker Breyer
- Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jerônimo Miguel Vicenzi
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Angélica Cavalheiro Bertagnolli
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Vinícius Freitas Klain
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Franciele Maboni Siqueira
- Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Mlangeni T, Jian C, Häkkinen HK, de Vos WM, Salonen A, Kantele A. Travel to the tropics: Impact on gut microbiota. Travel Med Infect Dis 2025; 66:102869. [PMID: 40409390 DOI: 10.1016/j.tmaid.2025.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Visitors to low- and middle-income countries (LMICs) encounter numerous new intestinal microbes, including diarrhoeal pathogens and multidrug-resistant (MDR) bacteria, such as extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE). Consequently, many develop travellers' diarrhoea (TD) and/or become colonised by ESBL-PE. We explored the impact of LMIC travel, TD, and ESBL-PE/diarrheal pathogen colonisation on gut microbiota. METHODS The present study included 92 participants from the clinical vaccine trial OEV123, who spent 12 days in Benin, West Africa, and provided exploratory pre- and post-travel stool microbiota samples. The samples were subjected to quantitative polymerase chain reaction (qPCR) to detect diarrhoeal pathogens and 16S rRNA gene amplicon sequencing for microbiota profiling. RESULTS Travel significantly altered gut microbiota, showing reduced richness, decreased α-diversity, and a 40-fold increase in Escherichia/Shigella. qPCR detected diarrhoeagenic Escherichia coli (DEC) in post-travel stools of 89 % of the 92 participants. No specific microbiota signatures were linked to TD or ESBL-PE acquisition. Participants acquiring multiple DEC pathotypes had higher pre-travel levels of Ruminococcaceae and Coprococcus spp., while their post-travel microbiota was enriched with oxygen-tolerant and oral and upper gastrointestinal tract-associated taxa. CONCLUSION Travel to an LMIC significantly impacted intestinal microbiota. Individuals with high pre-travel proportions of Ruminococcaceae and Coprococcus spp. acquired a greater DEC pathotype diversity. However, no specific pre-travel microbiota profile was identified as protective against or predisposing to TD or acquisition of MDR bacteria.
Collapse
Affiliation(s)
- T Mlangeni
- Meilahti Vaccine Research Center, MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - C Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - H K Häkkinen
- Meilahti Vaccine Research Center, MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - W M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - A Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - A Kantele
- Meilahti Vaccine Research Center, MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Travel Clinic, Aava Medical Center, Helsinki, Finland; FIMAR, Finnish Center of Excellence in Antimicrobial Resistance Research, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
van Deuren T, Umanets A, Venema K, Moreno LL, Zoetendal EG, Canfora EE, Blaak EE. Specific dietary fibers steer toward distal colonic saccharolytic fermentation using the microbiota of individuals with overweight/obesity. Food Res Int 2025; 209:116271. [PMID: 40253188 DOI: 10.1016/j.foodres.2025.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Evidence suggests that increased distal short-chain fatty acid (SCFA) production beneficially impacts metabolic health. However, indigestible carbohydrate availability is limited in the distal colon; consequently, microbes shift toward protein fermentation, often linked to adverse metabolic health effects. We aimed to identify specific fiber(s) that promote saccharolytic fermentation in the distal colon and thereby may (partially) inhibit proteolytic fermentation. METHODS Potato-fiber, pectin, and inulin were studied individually and in combination against a high (predigested) protein background using an in vitro model of the colon (TIM-2) inoculated with pooled, standardized fecal microbiota from individuals with overweight/obesity. Microbiota composition and activity were assessed at different timepoints to simulate the travel throughout the colon (proximal: 0-8 h, distal: 8-24 h) and compared to a high protein (HP)_control, receiving only proteins. RESULTS Fiber addition increased total SCFA production compared to HP_control (52.11 ± 1.49 vs 27.07 ± 0.26 mmol) whereas total branched-chain fatty acids (BCFA; a marker for protein fermentation) production only slightly decreased (3.31 ± 0.10 vs 4.18 ± 0.40 mmol). Combining potato-fiber and pectin led to the highest total and distal SCFA production and distal SCFA:BCFA. Fiber addition attenuated HP-induced increases in several bacterial taxa including Mogibacterium and Coprococcus, independent of fiber type. Additionally, time- and fiber-specific microbial signatures were identified: inulin increased Bifidobacterium (proximal) relative abundance and pectin and/or potato-fiber increased Prevotella 9 (distal) relative abundance. CONCLUSION The most marked increase in distal colonic SCFA production was induced by combining potato-fiber and pectin. Further research should elucidate whether this switch toward saccharolytic fermentation translates into beneficial metabolic health effects in humans.
Collapse
Affiliation(s)
- Thirza van Deuren
- Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands'
| | - Alexander Umanets
- Chair Group Youth Food and Health, Faculty of Science and Engineering, Maastricht University-Campus Venlo, Venlo, the Netherlands; Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Venlo, the Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Venlo, the Netherlands
| | - Luis L Moreno
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Emanuel E Canfora
- Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands'
| | - Ellen E Blaak
- Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands'.
| |
Collapse
|
6
|
Rampelotto PH, Taufer CR, da Silva J. The Role of Beneficial Microbiota in COVID-19: Insights from Key Bacterial Genera. Microorganisms 2025; 13:1029. [PMID: 40431202 PMCID: PMC12113938 DOI: 10.3390/microorganisms13051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The COVID-19 pandemic has highlighted the need for a comprehensive understanding of the factors influencing disease severity and progression. Emerging research indicates that the human microbiota, particularly beneficial bacteria, significantly impacts immune responses and health outcomes in COVID-19 patients. While existing studies provide general insights into the relationship between the microbiota and probiotics with COVID-19, they often lack a detailed exploration of how specific bacterial taxa might be used as adjunctive treatments. This review aims to address this gap by focusing on ten key genera of beneficial bacteria, discussing their roles in COVID-19 and evaluating their potential as probiotics for prevention and treatment. The review covers the impact of these microbes on human health, their population alterations in COVID-19 patients, and their interactions with other viral infections. Among these microbes, several exhibit distinct patterns of abundance in COVID-19 patients, influencing disease outcomes and highlighting their potential roles in infection dynamics. In COVID-19 patients, populations of Akkermansia, Ruminococcus, and Roseburia are consistently reduced, while those of Faecalibacterium show a significant decline in more severe cases. Bacteroides presents varying effects depending on the species involved. Alterations in the abundance of Blautia and Lachnospiraceae are associated with increased inflammation and disease severity. Likewise, the depletion of Lachnospira and Coprococcus populations, both linked to anti-inflammatory effects, may exacerbate symptom severity. Oscillospira, though less studied, is connected to overall health and could have implications for viral infections. This review synthesizes the current understanding of these beneficial microbes to highlight the importance of maintaining a healthy microbiota to alleviate the impact of COVID-19 and contribute to the development of novel therapeutic strategies involving microbiota modulation.
Collapse
Affiliation(s)
- Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Juliana da Silva
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Health and Human Development, Universidade La Salle, Canoas 92010-000, Brazil
| |
Collapse
|
7
|
Norsuwan T, Kumrungsee T, Yanaka N, Nagao T, Thongngam M. Effects of RBX oleogel and heat-moisture-treated rice flour in food matrices on digestibility and microbiota. NPJ Sci Food 2025; 9:54. [PMID: 40263295 PMCID: PMC12015495 DOI: 10.1038/s41538-025-00418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Recently, oleogel and heat-moisture-treated (HMT) modified starch have gained much attention as a potential margarine replacement and a low-digestible starch, respectively. To date, most studies have investigated oleogel and HMT starch as individual components, while information regarding their physiological properties as a food matrix form is scarce. Here, we demonstrated that the HMT starch-oleogel food matrix exhibited the lowest plasma lipid and glucose levels, but high lipid and fecal excretion in mice, indicating that the food matrix possibly lowered lipid and carbohydrate digestibility. The resistant starch (RS) content was markedly decreased in the food matrix, suggesting other factors, such as lipid barriers and gel viscosity, in lowering the food-matrix digestibility. Roseburia, Adlercreutzia, and rc4-4 were enriched, while Bifidobacterium and Clostridium were reduced in the food matrix group. The present study provides insights into the in vivo physiological properties and the health benefits of oleogel and HMT starch in food matrix forms.
Collapse
Affiliation(s)
- Tidarat Norsuwan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, Japan.
| | - Noriyuki Yanaka
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoka Nagao
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masubon Thongngam
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
8
|
Sabit H, Abouelnour S, Hassen BM, Magdy S, Yasser A, Wadan AHS, Abdel-Ghany S, Radwan F, Alqosaibi AI, Hafiz H, Awlya OFA, Arneth B. Anticancer Potential of Prebiotics: Targeting Estrogen Receptors and PI3K/AKT/mTOR in Breast Cancer. Biomedicines 2025; 13:990. [PMID: 40299687 PMCID: PMC12025111 DOI: 10.3390/biomedicines13040990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptors (ERs) play a critical role in breast cancer (BC) development and progression, with ERα being oncogenic and ERβ exhibiting tumor-suppressive properties. The interaction between ER signaling and other molecular pathways, such as PI3K/AKT/mTOR, influences tumor growth and endocrine resistance. Emerging research highlights the role of prebiotics in modulating gut microbiota, which may influence estrogen metabolism, immune function, and therapeutic responses in BC. This review explores the impact of prebiotics on estrogen receptor modulation, gut microbiota composition, immune regulation, and metabolic pathways in breast cancer. The potential of prebiotics as adjunctive therapies to enhance treatment efficacy and mitigate chemotherapy-related side effects is discussed. A comprehensive analysis of recent preclinical and clinical studies was conducted, examining the role of prebiotics in gut microbiota modulation, immune regulation, and metabolic reprogramming in breast cancer. The impact of short-chain fatty acids (SCFAs) derived from prebiotic fermentation on epigenetic regulation and endocrine resistance was also evaluated. Prebiotics were found to modulate the gut microbiota-estrogen axis, reduce inflammation, and influence immune responses. SCFAs demonstrated selective estrogen receptor downregulation and metabolic reprogramming, suppressing tumor growth. Synbiotic interventions mitigate chemotherapy-related side effects, improving the quality of life in breast cancer patients. Prebiotics offer a promising avenue for breast cancer prevention and therapy by modulating estrogen metabolism, immune function, and metabolic pathways. Future clinical trials are needed to validate their efficacy as adjunctive treatments in breast cancer management.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Sama Abouelnour
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Bassel M. Hassen
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Salma Magdy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Ahmed Yasser
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate 15888, Egypt;
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Faisal Radwan
- Center for Coastal Environmental Health and Biomolecular Research, NCCOS/NOS/NOAA, Charleston, SC 29412, USA
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hala Hafiz
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ohaad F. A. Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| |
Collapse
|
9
|
Jonjić A, Dolanc I, Slivšek G, Bočkor L, Tarle M, Mustapić S, Kmet M, Orehovec B, Kučan Brlić P, Cokarić Brdovčak M, Obad A, Walenta M, Dražić I, Bilić-Zulle L, Lukšić I, Bulić N, Goessler W, Jonjić S, Čoklo M, Žučko J. Relationship Between Gut Microbiota and the Clinical Course of COVID-19 Disease. Viruses 2025; 17:520. [PMID: 40284963 PMCID: PMC12031135 DOI: 10.3390/v17040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Possible early detection of people at increased risk for severe COVID-19 clinical course is extremely important so that appropriate therapy can be initiated promptly to prevent numerous deaths. Our study included 45 patients treated for COVID-19 at Dubrava University Hospital, with clinical course analysed from medical records and stool samples collected for determination of the gut microbiota diversity using 16S rRNA analysis. Sequencing was successful for 41 samples belonging to four clinical course groups (WHO guidelines): 12 samples-critical, 12-severe, 9-moderate and 8-mild group. Microbial composition was assessed between groups using two approaches-ANCOM (QIIME2) and Kruskal-Wallis (MicrobiomeAnalyst). On the genus level, two taxa were found to be differentially abundant: archaeal Halococcus and Coprococcus (for both W = 37)-the two were most abundant in the critical group (10% and 0.94% of entire abundance, respectively). Coprococcus catus was the only species identified by both methods to be differentially abundant between groups and was most abundant in the critical group. Alpha diversity indicated greater evenness of features in the critical group. Beta diversity showed clustering of samples from the critical group. A relationship between gut microbiota composition and the clinical course of COVID-19 disease was indicated, pointing towards specific distinct features of the critical group. In a broader sense, our findings might be useful in combating potential future similar pandemics and emerging virus outbreaks.
Collapse
Affiliation(s)
- Antonija Jonjić
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (I.D.); (G.S.); (L.B.)
| | - Ivan Dolanc
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (I.D.); (G.S.); (L.B.)
| | - Goran Slivšek
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (I.D.); (G.S.); (L.B.)
| | - Luka Bočkor
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (I.D.); (G.S.); (L.B.)
| | - Marko Tarle
- Dubrava University Hospital, 10000 Zagreb, Croatia; (M.T.); (M.K.); (B.O.); (I.L.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanda Mustapić
- Dubrava University Hospital, 10000 Zagreb, Croatia; (M.T.); (M.K.); (B.O.); (I.L.)
| | - Marta Kmet
- Dubrava University Hospital, 10000 Zagreb, Croatia; (M.T.); (M.K.); (B.O.); (I.L.)
| | - Biserka Orehovec
- Dubrava University Hospital, 10000 Zagreb, Croatia; (M.T.); (M.K.); (B.O.); (I.L.)
| | - Paola Kučan Brlić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (P.K.B.); (M.C.B.); (L.B.-Z.); (S.J.)
| | - Maja Cokarić Brdovčak
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (P.K.B.); (M.C.B.); (L.B.-Z.); (S.J.)
| | - Ante Obad
- University Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Martin Walenta
- Institute of Chemistry, Analytical Chemistry, University of Graz, 8010 Graz, Austria; (M.W.); (W.G.)
| | - Ivan Dražić
- Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; (I.D.); (N.B.)
| | - Lidija Bilić-Zulle
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (P.K.B.); (M.C.B.); (L.B.-Z.); (S.J.)
- Rijeka University Hospital Centre, 51000 Rijeka, Croatia
| | - Ivica Lukšić
- Dubrava University Hospital, 10000 Zagreb, Croatia; (M.T.); (M.K.); (B.O.); (I.L.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neven Bulić
- Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; (I.D.); (N.B.)
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry, University of Graz, 8010 Graz, Austria; (M.W.); (W.G.)
| | - Stipan Jonjić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (P.K.B.); (M.C.B.); (L.B.-Z.); (S.J.)
| | - Miran Čoklo
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (I.D.); (G.S.); (L.B.)
| | - Jurica Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
10
|
Lu J, You Z, Zhang Y, Wang F, Wang L, Xiong L, Song H, Shen X. Structural Characterization and In Vitro Fermentation Properties of Polysaccharides from Dragon Fruit ( Hylocereus undatus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5981-5995. [PMID: 39999298 DOI: 10.1021/acs.jafc.4c11795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Dragon fruit offers numerous health benefits and is widely consumed. However, research on its polysaccharides, crucial constituents of the fruit, remains limited. The study aimed to characterize the structural and biological properties of SDFP-2, a polysaccharide isolated from dragon fruit. Structural analyses revealed that SDFP-2, with a molecular mass of 8.08 × 104 Da, consisted of mannose, glucosamine hydrochloride, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose in a molar ratio of 0.181:0.250:16.544:12.762:3.793:0.739:51.014:14.716. SDFP-2 comprises HG-type and RG-I-type pectic structures, along with an arabinogalactan structure characterized by a main chain of →6)-β-D-Galp-(1→6)-β-D-Galp-(1→, with side chains attached at the O-3 position of the 1,6-β-galactose residues. Functionally, SDFP-2 exhibited notable hypolipidemic and hypoglycemic properties in HepG2 cell assays, significantly reducing lipid accumulation and enhancing glucose metabolism by restoring key glycolytic enzyme activities. In vitro fermentation with fecal microbiota demonstrated SDFP-2's ability to modulate gut microbial composition, elevating beneficial short-chain fatty acid production, including acetate, propionate, and butyrate. This microbial shift favored SCFA producers, such as Coprococcus eutactus and Roseburia intestinalis, while diminishing pro-inflammatory bacteria like Escherichia-Shigella, underscoring SDFP-2's prebiotic potential. These findings elucidated SDFP-2 as a promising dietary intervention for metabolic regulation and intestinal health enhancement.
Collapse
Affiliation(s)
- Jing Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zishen You
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yanhui Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
11
|
Bomar MC, Ewell TR, Brown RL, Brown DM, Kwarteng BS, Abbotts KSS, Butterklee HM, Williams NNB, Wrigley SD, Walsh MA, Hamilton KL, Thomson DP, Weir TL, Bell C. Short-Term Magnesium Supplementation Has Modest Detrimental Effects on Cycle Ergometer Exercise Performance and Skeletal Muscle Mitochondria and Negligible Effects on the Gut Microbiota: A Randomized Crossover Clinical Trial. Nutrients 2025; 17:915. [PMID: 40077784 PMCID: PMC11901567 DOI: 10.3390/nu17050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Although the importance of magnesium for overall health and physiological function is well established, its influence on exercise performance is less clear. The primary study objective was to determine the influence of short-term magnesium supplementation on cycle ergometer exercise performance. The hypothesis was that magnesium would elicit an ergogenic effect. Methods: A randomized, double-blind, placebo-controlled, two-period crossover design was used to study men and women who were regular exercisers. Fifteen participants ingested either a placebo or magnesium chloride (MgCl2 300 mg) twice per day, for 9 days, separated by a 3-week washout. During days 8 and 9, participants completed a battery of cycle ergometer exercise tests, and whole blood, vastus lateralis, and stools were sampled. The primary outcomes were the maximal oxygen uptake (VO2max), a simulated 10 km time trial, and the sprint exercise performance. Additional outcomes included skeletal muscle mitochondrial respiration, and, on account of the known laxative effects of magnesium, the gut microbiota diversity. Results: Compared with a placebo, MgCl2 supplementation increased the circulating ionized Mg concentration (p < 0.03), decreased the VO2max (44.4 ± 7.7 vs. 41.3 ± 8.0 mL/kg/min; p = 0.005), and decreased the mean power output during a 30 s sprint (439 ± 88 vs. 415 ± 88 W; p = 0.03). The 10 km time trial was unaffected (1282 ± 126 vs. 1281 ± 97 s; p = 0.89). In skeletal muscle, MgCl2 decreased mitochondrial respiration in the presence of fatty acids at complex II (p = 0.04). There were no significant impacts on the gut microbiota richness (CHAO1; p = 0.68), Shannon's Diversity (p = 0.23), or the beta-diversity (Bray-Curtis distances; p = 0.74). Conclusions: In summary, magnesium supplementation had modest ergolytic effects on cycle ergometer exercise performance and mitochondrial respiration. We recommend that regular exercisers, free from hypomagnesemia, should not supplement their diet with magnesium.
Collapse
Affiliation(s)
- Matthew C. Bomar
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - Taylor R. Ewell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - Reagan L. Brown
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - David M. Brown
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - Beatrice S. Kwarteng
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - Kieran S. S. Abbotts
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - Hannah M. Butterklee
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - Natasha N. B. Williams
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Scott D. Wrigley
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Maureen A. Walsh
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - David P. Thomson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA
| |
Collapse
|
12
|
Kiouri DP, Batsis GC, Mavromoustakos T, Giuliani A, Chasapis CT. Structure-Based Modeling of the Gut Bacteria-Host Interactome Through Statistical Analysis of Domain-Domain Associations Using Machine Learning. BIOTECH 2025; 14:13. [PMID: 40227324 PMCID: PMC11940256 DOI: 10.3390/biotech14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome's influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein-protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial-human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study's findings contribute to the understanding of the intricate gut microbiome-host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios C. Batsis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| |
Collapse
|
13
|
Santamarina AB, Filho VN, de Freitas JA, Franco LAM, Martins RC, Fonseca JV, Orellana Turri JA, Hufnagel MT, Demarque DP, da Silva BFRB, Gusmão AF, Olivieri EHR, de Souza E, de Souza EA, Otoch JP, Pessoa AFM. Nutraceutical Blends Promote Weight Loss, Inflammation Reduction, and Better Sleep: The Role of Faecalibacterium prausnitzii in Overweight Adults-A Double-Blind Trial. Mol Nutr Food Res 2025:e202400806. [PMID: 39981988 DOI: 10.1002/mnfr.202400806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025]
Abstract
This study explores the effects of a nutraceutical blend with prebiotics, β-glucans, essential minerals, and silymarin on gut microbiota, inflammation, and sleep quality in obesity through microbiota reshaping and metabolic improvements over 90 days. A double-blind, randomized trial was conducted on 77 participants divided into two groups receiving either a standard nutraceutical blend (NSupple) or a silymarin-enriched blend (NSupple_Silybum). Fecal and plasma samples were collected at baseline and post-supplementation for gut microbiota, metabolic, and inflammatory marker analysis. The results showed a reduction in body weight, waist-to-height ratio, total cholesterol, and fractions in the NSupple_Silybum group. There was a dysbiosis recovery shown by the increase in beneficial gut bacteria, such as Lentisphaerae phylum, Lactobacillus and Faecalibacterium genera, and Faecalibacterium prausnitzii in the NSupple group, with a concurrent reduction in Adlercreutzia and Sutterella in the NSupple_Silybum group. Both groups demonstrated improved inflammatory profiles by the reduced TNF-α/IL-10 ratio, reduced cortisol levels, and reduced Firmicutes/Bacteroides ratio. Additionally, improvements in sleep quality were associated with reductions in pro-inflammatory cytokines and improved microbiota composition. The nutraceutical blend reshaped gut microbiota, enhanced anti-inflammatory species, and improved metabolic and sleep parameters, highlighting its potential as a nutritional strategy for managing obesity and reducing inflammation.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Pesquisa e Desenvolvimento, Efeom Nutrição S/A, São Paulo, Brazil
| | - Victor Nehmi Filho
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Pesquisa e Desenvolvimento, Efeom Nutrição S/A, São Paulo, Brazil
| | - Jéssica Alves de Freitas
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Pesquisa e Desenvolvimento, Efeom Nutrição S/A, São Paulo, Brazil
| | - Lucas Augusto Moysés Franco
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberta Cristina Martins
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Joyce Vanessa Fonseca
- Laboratório de Investigação Médica em Protozoologia, Bacteriologia e Resistência Antimicrobiana (LIM-49), Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José Antônio Orellana Turri
- Departamento de Ginecologia e Obstetrícia, Universidade de São Paulo Faculdade de Medicina, São Paulo, Brazil
| | - Mariana Tedesco Hufnagel
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Pecoraro Demarque
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fernanda Rio Branco da Silva
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório Interdisciplinar em Fisiologia e Exercício, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | | | | | - Erica de Souza
- Ambulatório Médico Monte Azul, Associação Comunitária Monte Azul, São Paulo, Brazil
| | - Esther Alves de Souza
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Pesquisa e Desenvolvimento, Efeom Nutrição S/A, São Paulo, Brazil
| | - José Pinhata Otoch
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Pesquisa e Desenvolvimento, Efeom Nutrição S/A, São Paulo, Brazil
- Hospital Universitário da Universidade de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Flávia Marçal Pessoa
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Pesquisa e Desenvolvimento, Efeom Nutrição S/A, São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Fei T, Donovan V, Funnell T, Baichoo M, Waters NR, Paredes J, Dai A, Castro F, Haber J, Gradissimo A, Raj SS, Lesokhin AM, Shah UA, van den Brink MRM, Peled JU. Correlating High-dimensional longitudinal microbial features with time-varying outcomes with FLORAL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638558. [PMID: 40027751 PMCID: PMC11870566 DOI: 10.1101/2025.02.17.638558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Correlating time-dependent patient characteristics and matched microbiome samples can be helpful to identify biomarkers in longitudinal microbiome studies. Existing approaches typically repeat a pre-specified modeling approach for all taxonomic features, followed by a multiple testing adjustment step for false discovery rate (FDR) control. In this work, we develop an alternative strategy of using logratio penalized generalized estimating equations, which directly models the longitudinal patient characteristic of interest as the outcome variable and treats microbial features as high-dimensional compositional covariates. A cross validation procedure is developed for variable selection and model selection among different working cor-relation structures. In extensive simulations, the proposed method achieved superior sensitivity over the state-of-the-art methods with robustly controlled FDR. In the analyses of correlating longitudinal dietary intake and microbial features from matched samples of cancer patients, the proposed method effectively identified gut health indicators and clinically relevant microbial markers, showing robust utilities in real-world applications. The method is implemented under the open-source R package FLORAL , which is available at ( https://vdblab.github.io/FLORAL/ ).
Collapse
|
15
|
Holle J, Reitmeir R, Behrens F, Singh D, Schindler D, Potapenko O, McParland V, Anandakumar H, Kanzelmeyer N, Sommerer C, Hartleif S, Andrassy J, Heemann U, Neuenhahn M, Forslund-Startceva SK, Gerhard M, Oh J, Wilck N, Löber U, Bartolomaeus H. Gut microbiome alterations precede graft rejection in kidney transplantation patients. Am J Transplant 2025:S1600-6135(25)00093-0. [PMID: 39978595 DOI: 10.1016/j.ajt.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Kidney transplantation (KT) is the best treatment for end-stage kidney disease, with graft survival critically affected by the recipient's immune response. The role of the gut microbiome in modulating this immune response remains underexplored. Our study investigates how microbiome alterations might associate with allograft rejection by analyzing the gut microbiome using 16S rRNA gene amplicon sequencing of a multicenter prospective study involving 562 samples from 245 individuals of which 217 received KT. Overall, gut microbiome composition showed gradual recovery post-KT, mirroring CKD-to-health transition as indicated by an increase of Shannon diversity. Prior to graft rejection, we observed a decrease in microbial diversity and SCFA-producing taxa. Functional analysis highlighted a decreased potential for SCFA production in patients preceding the rejection event, validated by quantitative PCR for the production potential of propionate and butyrate. Post-rejection analysis revealed normalization of these microbiome features. Comparison to published microbiome signatures from CKD patients demonstrated a partial overlap of the microbiome alterations preceding graft rejection with the alterations typically found in CKD. Our findings suggest that alterations in gut microbiome composition and function may precede and influence KT rejection, suggesting potential implications as biomarkers or for early therapeutic microbiome-targeting interventions.
Collapse
Affiliation(s)
- Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of General Pediatrics and Hematology/Oncology, University Children's Hospital, University Hospital Tübingen, Tübingen, Germany.
| | - Rosa Reitmeir
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Felix Behrens
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dharmesh Singh
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Daniela Schindler
- German Center for Infection Research (DZIF), Partner Site Braunschweig, Germany
| | - Olena Potapenko
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Children's Hospital, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover, Germany
| | - Claudia Sommerer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, Germany
| | - Steffen Hartleif
- Paediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Germany
| | - Joachim Andrassy
- German Center for Infection Research (DZIF), Partner Site München, Germany; Klinik für Allgemeine, Viszeral, und Transplantationschirurgie, Klinikum der Universität München, Munich, Germany
| | - Uwe Heemann
- German Center for Infection Research (DZIF), Partner Site München, Germany; Department of Nephrology, Technical University of Munich, Munich, Germany
| | - Michael Neuenhahn
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Gerhard
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Jun Oh
- Department of Pediatric Nephrology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hendrik Bartolomaeus
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| |
Collapse
|
16
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [PMID: 39839986 PMCID: PMC11745983 DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Schizophrenia is a chronic psychiatric disorder characterized by a variety of symptoms broadly categorized into positive, negative, and cognitive domains. Its etiology is multifactorial, involving a complex interplay of genetic, neurobiological, and environmental factors, and its neurobiology is associated with abnormalities in different neurotransmitter systems. Due to this multifactorial etiology and neurobiology, leading to a wide heterogeneity of symptoms and clinical presentations, current antipsychotic treatments face challenges, underscoring the need for novel therapeutic approaches. Recent studies have revealed differences in the gut microbiome of individuals with schizophrenia compared to healthy controls, establishing an intricate link between this disorder and gastrointestinal health, and suggesting that microbiota-targeted interventions could help alleviate clinical symptoms. Therefore, this meta-analysis investigates whether gut microbiota manipulation can ameliorate psychotic outcomes in patients with schizophrenia receiving pharmacological treatment. Nine studies (n = 417 participants) were selected from 81 records, comprising seven randomized controlled trials and two open-label studies, all with a low risk of bias, included in this systematic review and meta-analysis. The overall combined effect size indicated significant symptom improvement following microbiota treatment (Hedges' g = 0.48, 95% CI = 0.09 to 0.88, p = 0.004, I2 = 62.35%). However, according to Hedges' g criteria, the effect size was small (approaching moderate), and study heterogeneity was moderate based on I2 criteria. This review also discusses clinical and preclinical studies to elucidate the neural, immune, and metabolic pathways by which microbiota manipulation, particularly with Lactobacillus and Bifidobacterium genera, may exert beneficial effects on schizophrenia symptoms via the gut-brain axis. Finally, we address the main confounding factors identified in our systematic review, highlight key limitations, and offer recommendations to guide future high-quality trials with larger participant cohorts to explore microbiome-based therapies as a primary or adjunctive treatment for schizophrenia.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alexandre Kanashiro
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sayuri Higa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alceu Afonso Jordão
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | |
Collapse
|
17
|
Lee DB, Hwang IS. Macronutrient balance determines the human gut microbiome eubiosis: insights from in vitro gastrointestinal digestion and fermentation of eight pulse species. Front Microbiol 2025; 15:1512217. [PMID: 39949350 PMCID: PMC11823474 DOI: 10.3389/fmicb.2024.1512217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025] Open
Abstract
The interactions between macronutrients, the human gut microbiome, and their metabolites (short-chain fatty acids) were comprehensively investigated via an in vitro digestion and fermentation model subjected to eight pulse species. 16S rRNA sequencing and taxonomic analysis of pulse digesta fermented for up to 24 h revealed an increase in the relative abundance of gut health-detrimental genera represented by Escherichia-Shigella in kidney bean, soybean, cowpea, chickpea, and black bean samples. In contrast, the relative abundance of health-positive genera, including Bacteroides, Eubacterium, and Akkermansia, was elevated in red bean, mung bean, and Heunguseul. At the same time, the proportion of the pathogenic Escherichia-Shigella decreased. Concurrently, these three species exhibited an increase in microbial diversity as evidenced by the calculation of α-diversity (Shannon index) and β-diversity (Bray-Curtis distance). Despite the lower nutrient contents in the three pulses, represented by carbohydrates, amino acids, and fatty acids, network analysis revealed that the nutrient contents in the pulse digesta possess complex positive or negative correlations with a variety of bacteria, as well as their metabolites. These correlations were more pronounced in red bean, mung bean, and Heunguseul than in the other pulses. It was postulated that the overall potential to nourish gut environments in these species was due to the balance of their nutritional components. The linear regression analysis demonstrated that there was a negative association between carbohydrate and amino acid contents and the increase in Shannon indices. Furthermore, the ratio of carbohydrates to fatty acids and amino acids to fatty acids displayed negative correlations with the diversity increase. The ratio of carbohydrates to amino acids showed a weak positive correlation. It is noteworthy that a diet comprising foods with a balanced nutritional profile supports the growth of beneficial gut microbes, thereby promoting microbial eubiosis. Consistent work on different ingredients is essential for precise insight into the interplay between food and the human microbiome in complex dietary patterns.
Collapse
Affiliation(s)
| | - In Seon Hwang
- Food and Nutrition Division, Department of Agri-food Resources, National Institute of Agricultural Sciences, Wanju, Republic of Korea
| |
Collapse
|
18
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Sabaredzovic A, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Philippat C, Eggesbø M, Lepage P, Slama R. Associations between pre- and post-natal exposure to phthalate and DINCH metabolites and gut microbiota in one-year old children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125204. [PMID: 39490662 DOI: 10.1016/j.envpol.2024.125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The gut microbiota is a collection of symbiotic microorganisms in the gastrointestinal tract. Its sensitivity to chemicals with widespread exposure, such as phthalates, is little known. We aimed to investigate the impact of perinatal exposure to phthalates on the infant gut microbiota at 12 months of age. Within SEPAGES cohort (Suivi de l'Exposition à la Pollution Atmosphérique durant la Grossesse et Effet sur la Santé), we assessed 13 phthalate metabolites and 2 di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) metabolites in repeated urine samples collected in pregnant women and their offspring. We obtained stool samples from 356 children at 12 months of age and sequenced the V3-V4 region of the 16S rRNA gene, allowing gut bacterial profiling. We used single-chemical (linear regressions) and mixture (BKMR, Bayesian Kernel Machine Regression) models to examine associations of phthalates and DINCH metabolites, with gut microbiota indices of α-diversity (specific richness and Shannon diversity) and the relative abundances of the most abundant microbiota phyla and genera. After correction for multiple testing, di(2-ethylhexyl) phthalate (ΣDEHP), diethyl phthalate (DEP) and bis(2-propylheptyl) phthalate (DPHP) metabolites 12-month urinary concentrations were associated with higher Shannon α-diversity of the child gut microbiota in single-chemical models. The multiple-chemical model (BKMR) suggested higher α-diversity with exposure to the phthalate mixture at 12 months, driven by the same phthalates. There were no associations between phthalate and DINCH exposure biomarkers at other time points and α-diversity after correction for multiple testing. ΣDEHP metabolites concentration at 12 months was associated with higher Coprococcus genus. Finally, ΣDEHP exposure at 12 months tended to be associated with higher phylum Firmicutes, an association not maintained after correction for multiple testing. Infancy exposure to phthalate might disrupt children's gut microbiota. The observed associations were cross-sectional, so that reverse causality cannot be excluded.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France.
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Azemira Sabaredzovic
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Merete Eggesbø
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France; SMILE, Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France; PARSEC, Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| |
Collapse
|
19
|
FitzGerald G. Metabolomic Response to Non-Steroidal Anti-Inflammatory Drugs. RESEARCH SQUARE 2024:rs.3.rs-5530702. [PMID: 39711561 PMCID: PMC11661377 DOI: 10.21203/rs.3.rs-5530702/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are popular choices for the mitigation of pain and inflammation; however, they are accompanied by side effects in the gastrointestinal and cardiovascular systems. We compared the effects of naproxen, a traditional NSAID, and celecoxib, a cyclooxygenase - 2 (Cox-2) inhibitor, in humans. Our findings showed a decrease in tryptophan and kynurenine levels in plasma of volunteers treated with naproxen. We further validated this result in mice. Additionally, we find that the depression of tryptophan was independent of both Cox-1 and Cox-2 inhibition, but rather was due to the displacement of bound tryptophan by naproxen. Supplementation of tryptophan in naproxen-treated mice rescued fecal blood loss and inflammatory gene expression driven by IL-1β in the heart.
Collapse
|
20
|
Ghosh S, Lahens N, Barekat K, Tang SY, Theken KN, Ricciotti E, Sengupta A, Joshi R, Bushman FD, Weljie A, Grosser T, FitzGerald GA. Metabolomic Response to Non-Steroidal Anti-Inflammatory Drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625478. [PMID: 39677795 PMCID: PMC11642787 DOI: 10.1101/2024.11.26.625478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are popular choices for the mitigation of pain and inflammation; however, they are accompanied by side effects in the gastrointestinal and cardiovascular systems. We compared the effects of naproxen, a traditional NSAID, and celecoxib, a cyclooxygenase -2 (Cox-2) inhibitor, in humans. Our findings showed a decrease in tryptophan and kynurenine levels in plasma of volunteers treated with naproxen. We further validated this result in mice. Additionally, we find that the depression of tryptophan was independent of both Cox-1 and Cox-2 inhibition, but rather was due to the displacement of bound tryptophan by naproxen. Supplementation of tryptophan in naproxen-treated mice rescued fecal blood loss and inflammatory gene expression driven by IL-1β in the heart.
Collapse
Affiliation(s)
- Soumita Ghosh
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nick Lahens
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kayla Barekat
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Soon-Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine N Theken
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Robin Joshi
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Aalim Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Translational Pharmacology, EWL School of Medicine, Bielefeld University, Bielefeld, Germany
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
21
|
Pacheco AP, Cedernaes J, Benedict C. Insomnia, OSA, and Mood Disorders: The Gut Connection. Curr Psychiatry Rep 2024; 26:703-711. [PMID: 39400694 PMCID: PMC11706850 DOI: 10.1007/s11920-024-01546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW With the growing body of research examining the link between sleep disorders, including insomnia and obstructive sleep apnea (OSA), and the gut microbiome, this review seeks to offer a thorough overview of the most significant findings in this emerging field. RECENT FINDINGS Current evidence suggests a complex association between imbalances in the gut microbiome, insomnia, and OSA, with potential reciprocal interactions that may influence each other. Notably, specific gut microbiome species, whether over- or under-abundant, have been associated with variation in both sleep and mood in patients diagnosed with, e.g., major depressive disorder or bipolar disorder. Further studies are needed to explore the potential of targeting the gut microbiome as a therapeutic approach for insomnia and its possible effects on mood. The variability in current scientific literature highlights the importance of establishing standardized research methodologies.
Collapse
Affiliation(s)
- André P Pacheco
- Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Sognsvannsveien 21, Oslo, 0372, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden.
| |
Collapse
|
22
|
Bai H, Lai Z, Zhang J, Zheng X, Zhang J, Jin W, Lin L, Mao S. Host genetic regulation of specific functional groups in the rumen microbiome of dairy cows: Implications for lactation trait. J Adv Res 2024:S2090-1232(24)00531-9. [PMID: 39537026 DOI: 10.1016/j.jare.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Ruminants play a pivotal role in our society by transforming non-consumable substances from industrial by-products and plant fibers into valuable resources such as meat and milk. This remarkable conversion ability is primarily attributed to the rumen microbiota, which is influenced by various factors, including diet, climate, and geographical location. In recent years, increasing research has shown that host factors (breed, genetic variation, etc.) also play vital roles in shaping rumen microbial composition and function in cattle. OBJECTIVE This study aims to provide a theoretical basis and an opportunity for further investigating the regulation of lactation traits in dairy cows through host genetics and the interaction with the rumen microbiota. METHOD To investigate the interactions between host genotype, rumen microbiota, and animal phenotype, we curated and analyzed the dairy herd improvement data, single nucleotide polymorphisms (SNPs) genotypes, and 16S rumen microbiota data from 1,169 Holstein dairy cows. Heritability and microbiability estimation, along with genome-wide association studies, were performed to identify candidate microorganisms and host genetic loci. RESULT We identified thirty-one heritable taxa, whose functions were predominantly enriched in carbohydrate metabolism and energy metabolism. The genome-wide association study revealed that nine heritable bacteria were significantly associated with forty-three SNPs. Functional genes located within or near these SNPs were primarily associated with rumen epithelial development. Additionally, these nine heritable bacteria were primarily annotated as complex polysaccharide degraders and butyrate producers, such as Fibrobacter sp900143055 and Pseudoruminococcus massiliensis, which showed significant associations with milk yield and milk fat percentage. Compared to previous studies, we newly discovered the existence of a high heritability of Olsenella umbonate, Butyrivibrio hungatei, among others. CONCLUSION This study identified thirty-one heritable bacterial taxa in Holstein dairy cows' rumen microbiota, with nine showing significant associations with forty-three SNPs related to rumen epithelial development. The discovery of novel heritable species and their correlations with lactation traits provides valuable insights for future breeding strategies aimed at improving dairy cattle productivity through the manipulation of host genetics and rumen microbiota.
Collapse
Affiliation(s)
- Hao Bai
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Lai
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Zhang
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Zheng
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiyou Zhang
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Limei Lin
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Toomer OT, Redhead AK, Vu TC, Santos F, Malheiros R, Proszkowiec-Weglarz M. The effect of peanut skins as a natural antimicrobial feed additive on ileal and cecal microbiota in broiler chickens inoculated with Salmonella enterica Enteritidis. Poult Sci 2024; 103:104159. [PMID: 39153270 PMCID: PMC11471096 DOI: 10.1016/j.psj.2024.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
The consumption of poultry products contaminated with Salmonella species is one of the most common causes of Salmonella infections. In vivo studies demonstrated the potential application of peanut skins (PS) as an antimicrobial poultry feed additive to help mitigate the proliferation of Salmonella in poultry environments. Tons of PS, a waste by-product of the peanut industry, are generated and disposed in U.S. landfills annually. Peanut skins and extracts have been shown to possess antimicrobial and antioxidant properties. Hence, we aimed to determine the effect of PS as a feed additive on the gut microbiota of broilers fed a control or PS supplemented (4% inclusion) diet and inoculated with or without Salmonella enterica Enteritidis (SE). At hatch 160 male broilers were randomly assigned to 4 treatments: 1) CON-control diet without SE, 2) PS-PS diet without SE, 3) CONSE-control diet with SE, 4) PSSE-PS diet with SE. On d 3, birds from CONSE and PSSE treatments were inoculated with 4.2 × 109 CFU/mL SE. At termination (4 wk), 10 birds/treatment were euthanized and ileal and cecal contents were collected for 16S rRNA analysis using standard methodologies. Sequencing data were analyzed using QIIME2. No effect of PS or SE was observed on ileal alpha and beta diversity, while evenness, richness, number of amplicon sequence variants (ASV) and Shannon, as well as beta diversity were significantly (P < 0.05) affected in ceca. Similarly, more differentially abundant taxa between treatment groups were identified in ceca than in ileum. However, more microbiota functional changes, based on the PICRUST2 prediction, were observed in ileum. Overall, relatively minor changes in microbiota were observed during SE infection and PS treatment, suggesting that PS addition may not attenuate the SE proliferation, as shown previously, through modulation of microbiota in gastrointestinal tract. However, while further studies are warranted, these results suggest that PS may potentially serve as a functional feed additive for poultry for improvement of animal health.
Collapse
Affiliation(s)
- Ondulla T Toomer
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA.
| | - Adam K Redhead
- Math and Science Department, Andrew College, Cuthbert, GA 39840, USA
| | - Thien C Vu
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA
| | - Fernanda Santos
- Food, Bioprocessing and Nutrition Sciences Dept., NC State University, Raleigh, NC 27695, USA
| | - Ramon Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
24
|
Romero-Rodríguez A, Ruíz-Villafán B, Sánchez S, Paredes-Sabja D. Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Microbiol Res 2024; 288:127870. [PMID: 39173554 DOI: 10.1016/j.micres.2024.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.
Collapse
Affiliation(s)
- A Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México 04510, Mexico.
| | - B Ruíz-Villafán
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - S Sánchez
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
25
|
Ko GP, Jo H, Kim J, Kim JS, Boo KH, Kim CS. Enterotype-Specific Effects of Red Beetroot ( Beta vulgaris L.) Powder and Betanin on Human Gut Microbiota: A Preliminary Study Based on In Vitro Fecal Fermentation Model. Life (Basel) 2024; 14:1391. [PMID: 39598189 PMCID: PMC11595470 DOI: 10.3390/life14111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Red beetroots, rich in betanin, may act as prebiotics and impact gut microbiota. Because the human gut microbiota is unique to each person, the effectiveness of prebiotics varies with the enterotype. In this study, we hypothesized that the effects of red beetroot powder (RP) and betanin pigment (BP) would differ depending on the enterotype. Fecal samples from 30 subjects were analyzed and categorized into three enterotypes: Phocaeicola, Prevotella, and Bifidobacterium. Feces were collected from one representative subject from each enterotype cluster for fermentation. Results showed that RP and BP affected microbiota composition and short-chain fatty acid (SCFA) production differently across enterotypes. The Bifidobacterium cluster showed significantly reduced alpha diversity, with the direction of change in the gut microbiota composition being different from that of other subjects. Additionally, SCFAs significantly increased, with the highest increase in the Bifidobacterium cluster. In this cluster, metabolic pathways related to SCFAs (i.e., starch and sucrose metabolism and glycolysis/gluconeogenesis) were altered. Conversely, Prevotella-dominant feces exhibited fewer changes in SCFAs and a lower increase in Bifidobacterium abundance than the others. These findings highlight that RP and BP elicit enterotype-specific responses in the gut microbiota composition and SCFA production, emphasizing the importance of enterotypes in personalized nutrition.
Collapse
Affiliation(s)
- Gwang-Pyo Ko
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
| | - Hyejun Jo
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
| | - Jungman Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
- Jeju Institute of Korean Medicine, Jeju 63309, Republic of Korea
| | - Jeong Seon Kim
- Jeju Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si 63556, Republic of Korea;
| | - Kyung-Hwan Boo
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
| | - Chang Sook Kim
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
26
|
Marangelo C, Vernocchi P, Del Chierico F, Scanu M, Marsiglia R, Petrolo E, Fucà E, Guerrera S, Valeri G, Vicari S, Putignani L. Stratification of Gut Microbiota Profiling Based on Autism Neuropsychological Assessments. Microorganisms 2024; 12:2041. [PMID: 39458350 PMCID: PMC11510388 DOI: 10.3390/microorganisms12102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Investigations of gut microbiota (GM) play an important role in deciphering disease severity and symptoms. Overall, we stratified 70 ASD patients by neuropsychological assessment, based on Calibrated Severity Scores (CSSs) of the Autism Diagnostic Observation Schedule-Second edition (ADOS-2), Child Behavior Checklist (CBCL) and intelligent quotient/developmental quotient (IQ/DQ) parameters. Hence, metataxonomy and PICRUSt-based KEGG predictions of fecal GM were assessed for each clinical subset. Here, 60% of ASD patients showed mild to moderate autism, while the remaining 40% showed severe symptoms; 23% showed no clinical symptoms, 21% had a risk of behavior problems and 56% had clinical symptoms based on the CBCL, which assesses internalizing problems; further, 52% had no clinical symptoms, 21% showed risk, and 26% had clinical symptoms classified by CBCL externalizing problems. Considering the total CBCL index, 34% showed no clinical symptoms, 13% showed risk, and 52% had clinical symptoms. Here, 70% of ASD patients showed cognitive impairment/developmental delay (CI/DD). The GM of ASDs with severe autism was characterized by an increase in Veillonella, a decrease in Monoglobus pectinilyticus and a higher microbial dysbiosis index (MDI) when compared to mild-moderate ASDs. Patients at risk for behavior problems and showing clinical symptoms were characterized by a GM with an increase of Clostridium, Eggerthella, Blautia, Intestinibacter, Coprococcus, Ruminococcus, Onthenecus and Bariatricus, respectively. Peptidoglycan biosynthesis and biofilm formation KEGGs characterized patients with clinical symptoms, while potential microbiota-activated PPAR-γ-signaling was seen in CI/DD patients. This evidence derived from GM profiling may be used to further improve ASD understanding, leasing to a better comprehension of the neurological phenotype.
Collapse
Affiliation(s)
- Chiara Marangelo
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Pamela Vernocchi
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Federica Del Chierico
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Matteo Scanu
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Riccardo Marsiglia
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Emanuela Petrolo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Silvia Guerrera
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Giovanni Valeri
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
- Life Sciences and Public Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
27
|
Yüksel E, Voragen AGJ, Kort R. The pectin metabolizing capacity of the human gut microbiota. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264366 DOI: 10.1080/10408398.2024.2400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Keep Food Simple, Driebergen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Liwinski T, Auer MK, Schröder J, Pieknik I, Casar C, Schwinge D, Henze L, Stalla GK, Lang UE, von Klitzing A, Briken P, Hildebrandt T, Desbuleux JC, Biedermann SV, Holterhus PM, Bang C, Schramm C, Fuss J. Gender-affirming hormonal therapy induces a gender-concordant fecal metagenome transition in transgender individuals. BMC Med 2024; 22:346. [PMID: 39218875 PMCID: PMC11367877 DOI: 10.1186/s12916-024-03548-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Limited data exists regarding gender-specific microbial alterations during gender-affirming hormonal therapy (GAHT) in transgender individuals. This study aimed to investigate the nuanced impact of sex steroids on gut microbiota taxonomy and function, addressing this gap. We prospectively analyzed gut metagenome changes associated with 12 weeks of GAHT in trans women and trans men, examining both taxonomic and functional shifts. METHODS Thirty-six transgender individuals (17 trans women, 19 trans men) provided pre- and post-GAHT stool samples. Shotgun metagenomic sequencing was used to assess the changes in gut microbiota structure and potential function following GAHT. RESULTS While alpha and beta diversity remained unchanged during transition, specific species, including Parabacteroides goldsteinii and Escherichia coli, exhibited significant abundance shifts aligned with affirmed gender. Overall functional metagenome analysis showed a statistically significant effect of gender and transition (R2 = 4.1%, P = 0.0115), emphasizing transitions aligned with affirmed gender, particularly in fatty acid-related metabolism. CONCLUSIONS This study provides compelling evidence of distinct taxonomic and functional profiles in the gut microbiota between trans men and women. GAHT induces androgenization in trans men and feminization in trans women, potentially impacting physiological and health-related outcomes. TRIAL REGISTRATION Clinicaltrials.gov NCT02185274.
Collapse
Affiliation(s)
- Timur Liwinski
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Matthias K Auer
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Johanna Schröder
- Department of Psychology, Institute for Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| | - Ina Pieknik
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Christian Casar
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dorothee Schwinge
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lara Henze
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Günter K Stalla
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Medicover Neuroendocrinology, Munich, Germany
| | - Undine E Lang
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Alina von Klitzing
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peer Briken
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Hildebrandt
- Department of Gynecology and Obstetrics, CCC Erlangen EMN, Friedrich Alexander University, Erlangen, Germany
| | - Jeanne C Desbuleux
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Sarah V Biedermann
- Department of Psychiatry and Psychotherapy, Social and Emotional Neuroscience Group, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul-Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Children and Adolescent Medicine I, University Hospital of Schleswig-Holstein, Campus Kiel/Christian-Albrechts University of Kiel, Kiel, D-24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, Kiel, 24105, Germany
| | - Christoph Schramm
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Fuss
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| |
Collapse
|
29
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
30
|
Kerstens R, Joyce P. The Gut Microbiome as a Catalyst and Emerging Therapeutic Target for Parkinson's Disease: A Comprehensive Update. Biomedicines 2024; 12:1738. [PMID: 39200203 PMCID: PMC11352163 DOI: 10.3390/biomedicines12081738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's Disease is the second most prevalent neurological disorder globally, and its cause is still largely unknown. Likewise, there is no cure, and existing treatments do little more than subdue symptoms before becoming ineffective. It is increasingly important to understand the factors contributing to Parkinson's Disease aetiology so that new and more effective pharmacotherapies can be established. In recent years, there has been an emergence of research linking gut dysbiosis to Parkinson's Disease via the gut-brain axis. Advancements in microbial profiling have led to characterisation of a Parkinson's-specific microbial signature, where novel treatments that leverage and correct gut dysbiosis are beginning to emerge for the safe and effective treatment of Parkinson's Disease. Preliminary clinical studies investigating microbiome-targeted therapeutics for Parkinson's Disease have revealed promising outcomes, and as such, the aim of this review is to provide a timely and comprehensive update of the most recent advances in this field. Faecal microbiota transplantation has emerged as a novel and potential frontrunner for microbial-based therapies due to their efficacy in alleviating Parkinson's Disease symptomology through modulation of the gut-brain axis. However, more rigorous clinical investigation, along with technological advancements in diagnostic and in vitro testing tools, are critically required to facilitate the widespread clinical translation of microbiome-targeting Parkinson's Disease therapeutics.
Collapse
Affiliation(s)
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
31
|
Valdés‐Bango M, Gracia M, Rubio E, Vergara A, Casals‐Pascual C, Ros C, Rius M, Martínez‐Zamora MÁ, Mension E, Quintas L, Carmona F. Comparative analysis of endometrial, vaginal, and gut microbiota in patients with and without adenomyosis. Acta Obstet Gynecol Scand 2024; 103:1271-1282. [PMID: 38661227 PMCID: PMC11168268 DOI: 10.1111/aogs.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Alterations in microbiota composition have been implicated in a variety of human diseases. Patients with adenomyosis present immune dysregulation leading to a persistent chronic inflammatory response. In this context, the hypothesis that alterations in the microbiota may be involved in the pathogenesis of adenomyosis, by affecting the epigenetic, immunologic, and biochemical functions of the host, has recently been postulated. The aim of the present study was to compare the microbiota composition in the vagina, endometrium, and gut of individuals with and without adenomyosis. MATERIAL AND METHODS Cross-sectional study including 38 adenomyosis patients and 46 controls, performed between September 2021 and October 2022 in a university hospital-based research center. The diagnosis of adenomyosis was based on sonographic criteria. Fecal, vaginal, and endometrial samples were collected. Study of the microbiota using 16S rRNA gene sequencing. RESULTS Patients with adenomyosis exhibited a significant reduction in the gut microbial alpha diversity compared with healthy controls (Chao1 p = 0.012, Fisher p = 0.005, Observed species p = 0.005). Beta-diversity analysis showed significant differences in the compositions of both gut and vaginal microbiota between adenomyosis patients and the control group (Adonis p-value = 0.001; R2 = 0.03 and Adonis p-value = 0.034; R2 = 0.04 respectively). Specific bacterial taxa were found to be either overrepresented (Rhodospirillales, Ruminococcus gauvreauii group, Ruminococcaceae, and Actinomyces) or underrepresented in the gut and endometrial microbiota of adenomyosis patients compared with controls. Distinct microbiota profiles were identified among patients with internal and external adenomyosis phenotypes. CONCLUSIONS The study revealed reduced gut microbiota diversity in adenomyosis patients, accompanied by distinct compositions in gut and vaginal microbiota compared with controls. Overrepresented or underrepresented bacterial taxa were noted in the gut and endometrial microbiota of adenomyosis patients, with variations in microbiota profiles among those with internal and external adenomyosis phenotypes. These findings suggest a potential association between microbiota and adenomyosis, indicating the need for further research to comprehensively understand the implications of these differences.
Collapse
Affiliation(s)
- Marta Valdés‐Bango
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Meritxell Gracia
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Elisa Rubio
- Department of Clinical Microbiology, Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Andrea Vergara
- Department of Clinical Microbiology, Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- CIBER Enfermedades Infecciosas (CIBERINFEC)Instituto Salud Carlos IIIMadridSpain
| | - Climent Casals‐Pascual
- Department of Clinical Microbiology, Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- CIBER Enfermedades Infecciosas (CIBERINFEC)Instituto Salud Carlos IIIMadridSpain
| | - Cristina Ros
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Mariona Rius
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Maria Ángeles Martínez‐Zamora
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Eduard Mension
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Lara Quintas
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Francisco Carmona
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
32
|
Leung HKM, Lo EKK, Zhang F, Felicianna, Ismaiah MJ, Chen C, El-Nezami H. Modulation of Gut Microbial Biomarkers and Metabolites in Cancer Management by Tea Compounds. Int J Mol Sci 2024; 25:6348. [PMID: 38928054 PMCID: PMC11203446 DOI: 10.3390/ijms25126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cancers are causing millions of deaths and leaving a huge clinical and economic burden. High costs of cancer drugs are limiting their access to the growing number of cancer cases. The development of more affordable alternative therapy could reach more patients. As gut microbiota plays a significant role in the development and treatment of cancer, microbiome-targeted therapy has gained more attention in recent years. Dietary and natural compounds can modulate gut microbiota composition while providing broader and more accessible access to medicine. Tea compounds have been shown to have anti-cancer properties as well as modulate the gut microbiota and their related metabolites. However, there is no comprehensive review that focuses on the gut modulatory effects of tea compounds and their impact on reshaping the metabolic profiles, particularly in cancer models. In this review, the effects of different tea compounds on gut microbiota in cancer settings are discussed. Furthermore, the relationship between these modulated bacteria and their related metabolites, along with the mechanisms of how these changes led to cancer intervention are summarized.
Collapse
Affiliation(s)
- Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
33
|
Duan R, Liu Y, Zhang Y, Shi J, Xue R, Liu R, Miao Y, Zhou X, Lv Y, Shen H, Xie X, Ai X. The impact of exercise on the gut microbiota in middle-aged amateur serious runners: a comparative study. Front Physiol 2024; 15:1343219. [PMID: 38737829 PMCID: PMC11082653 DOI: 10.3389/fphys.2024.1343219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Exercise, health, and the gut microbiota (GM) are strongly correlated. Research indicates that professional athletes, especially ultra-marathon runners, have unique GM characteristics. However, more research has focused on elite athletes, with little attention given to amateur sports enthusiasts, especially those in the middle-aged population. Therefore, this study focuses on the impact of long-term running on the composition and potential functions of the GM in middle-aged individuals. Methods We compared the GM of 25 middle-aged serious runnerswith 22 sedentary healthy controls who had minimal exercise habitsusing 16S rRNA gene sequencing. Additionally, we assessed dietary habits using a food frequency questionnaire. Results and Discussion Statistical analysis indicates that there is no significant difference in dietary patterns between the control group and serious runners. Diversity analysis results indicate that there is no significant difference in α diversity between the two groups of GM, but there is a significant difference in β diversity. Analysis of the composition of GM reveals that Ruminococcus and Coprococcus are significantly enriched in serious runners, whereas Bacteroides, Lachnoclostridium, and Lachnospira are enriched in the control group. Differential analysis of functional pathway prediction results reveals significant differences in the functional metabolism levels of GM between serious runners and the control group. Further correlation analysis results indicate that this difference may be closely related to variations in GM. In conclusion, our results suggest that long-term exercise can lead to changes in the composition of the GM. These changes have the potential to impact the overall health of the individual by influencing metabolic regulation.
Collapse
Affiliation(s)
- Rui Duan
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yu Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yonglian Zhang
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Jinrong Shi
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Rong Xue
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Ruijie Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yuanxin Miao
- Research Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, Hubei, China
| | - Xianfeng Zhou
- School of Life Sciences and Health Engineering, Hubei University of Technology, Wuhan, China
- Maintainbiotech Ltd., Wuhan, Hubei, China
| | | | - Hexiao Shen
- Maintainbiotech Ltd., Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwei Xie
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Xu Ai
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| |
Collapse
|
34
|
Chang WL, Chen YE, Tseng HT, Cheng CF, Wu JH, Hou YC. Gut Microbiota in Patients with Prediabetes. Nutrients 2024; 16:1105. [PMID: 38674796 PMCID: PMC11053759 DOI: 10.3390/nu16081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Prediabetes is characterized by abnormal glycemic levels below the type 2 diabetes threshold, and effective control of blood glucose may prevent the progression to type 2 diabetes. While the association between the gut microbiota, glucose metabolism, and insulin resistance in diabetic patients has been established in previous studies, there is a lack of research regarding these aspects in prediabetic patients in Asia. We aim to investigate the composition of the gut microbiota in prediabetic patients and their differences compared to healthy individuals. In total, 57 prediabetic patients and 60 healthy adult individuals aged 18 to 65 years old were included in this study. Biochemistry data, fecal samples, and 3 days of food records were collected. Deoxyribonucleic acid extraction and next-generation sequencing via 16S ribosomal ribonucleic acid metagenomic sequencing were conducted to analyze the relationship between the gut microbiota and dietary habits. Prediabetic patients showed a lower microbial diversity than healthy individuals, with 9 bacterial genera being less abundant and 14 others more abundant. Prediabetic patients who consumed a low-carbohydrate (LC) diet exhibited higher diversity in the gut microbiota than those who consumed a high-carbohydrate diet. A higher abundance of Coprococcus was observed in the prediabetic patients on an LC diet. Compared to healthy individuals, the gut microbiota of prediabetic patients was significantly different, and adopting an LC diet with high dietary fiber consumption may positively impact the gut microbiota. Future studies should aim to understand the relationship between the gut microbiota and glycemic control in the Asian population.
Collapse
Affiliation(s)
- Wei-Lin Chang
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| | - Yu-En Chen
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| | - Hsiang-Tung Tseng
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien 970374, Taiwan
| | - Jing-Hui Wu
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| | - Yi-Cheng Hou
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| |
Collapse
|
35
|
Nikoloudaki O, Pinto D, Acin Albiac M, Celano G, Da Ros A, De Angelis M, Rinaldi F, Gobbetti M, Di Cagno R. Exploring the Gut Microbiome and Metabolome in Individuals with Alopecia Areata Disease. Nutrients 2024; 16:858. [PMID: 38542770 PMCID: PMC10975414 DOI: 10.3390/nu16060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 11/12/2024] Open
Abstract
In recent years, heightened attention has been devoted to unravelling the intricate interplay between genetic and environmental factors shaping the gut microbiota and its significance for human health. This study delves into exploring the plausible connection between Alopecia Areata (AA), an autoimmune disease, and the dynamics of the gut microbiome. Examining a cohort of healthy adults and individuals with AA, both the gut microbiota composition and volatile organic compound (VOC) metabolites from faeces and urine were analysed. While overall microbiota composition showed no significant differences, intra-individual variability revealed distinctions related to age, gender, and pathology status, with AA individuals exhibiting reduced species richness and evenness. Differential abundance analysis identified microbial biomarkers for AA, notably Firmicutes, Lachnospirales, and Blautia, while Coprococcus stood out for healthy individuals. The Data Integration Analysis for Biomarker discovery using Latent Components (DIABLO) method further supported these findings including metabolite biomarkers, such as esters of branched chain fatty acids and branched chain amino acids as predictors for AA, suggesting potential links to oxidative stress. Despite certain limitations, the study highlights the complexity of the gut microbiome and its metabolites in the context of AA, while the biomarkers identified could be useful starting points for upcoming studies.
Collapse
Affiliation(s)
- Olga Nikoloudaki
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy (M.G.); (R.D.C.)
| | - Daniela Pinto
- Human Microbiome Advanced Project (HMAP), Giuliani S.p.A, 20129 Milan, Italy; (D.P.); (F.R.)
| | - Marta Acin Albiac
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy (M.G.); (R.D.C.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy; (G.C.); (M.D.A.)
| | - Alessio Da Ros
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy (M.G.); (R.D.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy; (G.C.); (M.D.A.)
| | - Fabio Rinaldi
- Human Microbiome Advanced Project (HMAP), Giuliani S.p.A, 20129 Milan, Italy; (D.P.); (F.R.)
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy (M.G.); (R.D.C.)
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy (M.G.); (R.D.C.)
| |
Collapse
|
36
|
Holzhausen EA, Peppard PE, Sethi AK, Safdar N, Malecki KC, Schultz AA, Deblois CL, Hagen EW. Associations of gut microbiome richness and diversity with objective and subjective sleep measures in a population sample. Sleep 2024; 47:zsad300. [PMID: 37988614 PMCID: PMC10926107 DOI: 10.1093/sleep/zsad300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
STUDY OBJECTIVES Alterations in gut microbiota composition have been associated with several conditions, and there is emerging evidence that sleep quantity and quality are associated with the composition of the gut microbiome. Therefore, this study aimed to assess the associations between several measures of sleep and the gut microbiome in a large, population-based sample. METHODS Data were collected from participants in the Survey of the Health of Wisconsin from 2016 to 2017 (N = 720). Alpha diversity was estimated using Chao1 richness, Shannon's diversity, and Inverse Simpson's diversity. Beta diversity was estimated using Bray-Curtis dissimilarity. Models for each of the alpha-diversity outcomes were calculated using linear mixed effects models. Permutational multivariate analysis of variance tests were performed to test whether gut microbiome composition differed by sleep measures. Negative binomial models were used to assess whether sleep measures were associated with individual taxa relative abundance. RESULTS Participants were a mean (SD) age of 55 (16) years and 58% were female. The sample was 83% non-Hispanic white, 10.6% non-Hispanic black, and 3.5% Hispanic. Greater actigraphy-measured night-to-night sleep duration variability, wake-after-sleep onset, lower sleep efficiency, and worse self-reported sleep quality were associated with lower microbiome richness and diversity. Sleep variables were associated with beta-diversity, including actigraphy-measured night-to-night sleep duration variability, sleep latency and efficiency, and self-reported sleep quality, sleep apnea, and napping. Relative abundance of several taxa was associated with night-to-night sleep duration variability, average sleep latency and sleep efficiency, and sleep quality. CONCLUSIONS This study suggests that sleep may be associated with the composition of the gut microbiome. These results contribute to the body of evidence that modifiable health habits can influence the human gut microbiome.
Collapse
Affiliation(s)
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Ajay K Sethi
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Nasia Safdar
- Department of Medicine and the William S. Middleton Memorial Veterans Hospital, University of Wisconsin, Madison, WI, USA
| | - Kristen C Malecki
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Amy A Schultz
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | | | - Erika W Hagen
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|