1
|
De Pol MA, Rafiei D, Meyer JH, Desmond KL, McMain S, Boileau I, Warsh J, Rusjan P, Schmahl C, Vasdev N, Gray LR, Aloysius R, Kolla NJ. Fatty acid amide hydrolase in comorbid borderline personality disorder and major depressive disorder: Imaging with [ 11C]CURB PET. Neuropharmacology 2025; 273:110436. [PMID: 40158843 DOI: 10.1016/j.neuropharm.2025.110436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Borderline personality disorder (BPD) is highly comorbid with major depressive disorder (MDD), and the comorbid condition is associated with poorer treatment outcomes, which necessitates the investigation of transdiagnostic biomarkers. Previous research suggests that fatty acid amide hydrolase (FAAH), an endocannabinoid enzyme, is elevated in the prefrontal cortex (PFC) in BPD; however, no study has examined FAAH density in individuals with comorbid conditions. We hypothesized that FAAH level would be elevated in the prefrontal cortex, anterior cingulate cortex and hippocampus of comorbid BPD + MDD compared to healthy controls, as these brain regions are linked to the pathobiology of both disorders. For an exploratory analysis, we hypothesized that brain FAAH would be positively correlated with symptom severity, aggression, and impulsivity. Fifteen unmedicated BPD + MDD cases and 15 age- and sex-matched healthy controls underwent a [11C]CURB positron emission tomography scan to measure λk3, an index of available FAAH. No significant group differences in [11C]CURB λk3 were observed between BPD + MDD patients and controls. Negative correlations were found between [11C]CURB λk3 and physical aggression scores in the dorsolateral PFC (r = -0.64, p = 0.04), ventrolateral PFC (r = -0.75, p = 0.01), medial PFC (r = -0.64, p = 0.03), and orbitofrontal cortex (r = -0.66, p = 0.03) in the BPD + MDD group. A positive correlation was found between [11C]CURB λk3 and impulsivity, as measured by the Barratt Impulsiveness Scale-11, in the ventrolateral PFC (r = 0.62, p = 0.04) of the BPD + MDD group. We suggest that the negative correlations between [11C]CURB λk3 and physical aggression could reflect a relationship between FAAH and planned aggression whereas the latter findings may reflect a positive relationship with impulsivity.
Collapse
Affiliation(s)
- Michelle A De Pol
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Dorsa Rafiei
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Kimberly L Desmond
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shelley McMain
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jerry Warsh
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pablo Rusjan
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; German Center for Mental Health (DZPG), Partner Site Manheim-Heidelberg-Ulm, Germany
| | - Neil Vasdev
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Lauren R Gray
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ryan Aloysius
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nathan J Kolla
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Centre for Forensic Behavioural Science, Swinburne University of Technology & Forensicare, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Wang Y, Xie Y, Liu P, Lv H, Guan M, Cong J, Wang Y, Xu Y. Metformin attenuated depressive-like behaviors by suppressing TRPV1/NLRP3 mediated neuroinflammation in the hypothalamus of allergic rhinitis mice. Neuroscience 2025; 571:52-61. [PMID: 39848563 DOI: 10.1016/j.neuroscience.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
In addition to nasal symptoms, allergic rhinitis (AR) has increasingly been reported to be associated with depression-like behaviors. Recent evidence suggests that neuroinflammation in the hypothalamus may cause these depressive symptoms in AR. However, the precise mechanisms and effective treatments remain to be elucidated. This study investigated the ameliorative effects of metformin on neuroinflammation in the hypothalamus, depressive-like behavior and the underlying molecular mechanisms of AR mice. Mice were administered ovalbumin (OVA) intranasally to induce allergic rhinitis and subsequently subjected to behavioral experiments to detect depressive-like behavior. The roles of the TRPV1/NLRP3 pathway in depression-like behaviors in AR were examined in vivo. Additionally, the mechanism of TRPV1/NLRP3-mediated neuroinflammation was investigated in vitro. Finally, metformin was utilized to explore its possible mechanisms and efficacy in treating depressive-like behavior in AR. AR mice exhibited significant depressive-like behavior, which was attenuated by metformin. The number of Iba-1+ microglia significantly increased in the hypothalamus of AR mice. The expression of NLRP3 was significantly upregulated in the hypothalamus, activating microglia. Metformin ameliorated the neuropsychiatric symptoms by reducing NLRP3 expression in the hypothalamus. Moreover, metformin inhibited LPS-induced upregulation of the TRPV1/NLRP3 signaling pathway in microglial cell line, an effect that can be reversed by the TRPV1-specific agonist capsaicin. Increased TRPV1 expression activates the NLRP3 inflammasome in hypothalamic microglia, promoting the pathological process of depressive-like behavior in AR mice. Metformin could effectively treat neuroinflammation by regulating microglia via TRPV1 downregulation, indicating its potential as a treatment for depressive-like behaviors in AR.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yulie Xie
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengting Guan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China.
| |
Collapse
|
3
|
Xu R, Liu H, Shu C, Li Y, Wang S, Xiong Y, Chen F, Wang X, Huang H, Liu Z, Wang G, Wang H. Association of TRPV1 and the SIRT3/SOD2 Signaling Pathway in Mononuclear Cells and Astrocyte-Derived Extracellular Vesicles in Patients with Schizophrenia. Brain Sci 2025; 15:339. [PMID: 40309794 PMCID: PMC12025208 DOI: 10.3390/brainsci15040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVES The transient receptor potential vanilloid type 1 (TRPV1) is a factor that mediates glial cell response with effects on mitochondrial function. It may affect the occurrence and development of schizophrenia. The aim of this study is to further explore schizophrenia biomarkers by analyzing TRPV1 and oxidative stress in astrocyte-derived extracellular vesicles (ADEs) and peripheral blood mononuclear cells (PBMCs). METHODS A case-control study was conducted. The Positive and Negative Syndrome Scale and the Brief Assessment of Cognition in Schizophrenia (BACS) clinical data were obtained from 50 symptomatic patients with schizophrenia and 50 controls, and fasting peripheral blood samples were collected for the isolation of PBMCs and ADEs. Western blotting was used to assess TRPV1, Sirtuin3 (Sirt3), SOD2, and acetyl-SOD2. RESULTS The patient group exhibited significantly reduced TRPV1 and Sirt3 expression levels in PBMCs and ADEs compared with the control group. In addition, there was a marked increase in SOD2 and acetyl-SOD2 levels. TRPV1 was negatively correlated with the negative symptom score in the patient PBMCs and ADEs. SOD2 showed positive correlations with the general psychopathology symptom score, and acetyl-SOD2 was positively correlated with the negative symptom score. The BACS total score was positively correlated with TRPV1 levels and negatively correlated with acetyl-SOD2 levels in the patient group. CONCLUSION TRPV1 expressions in PBMCs and ADEs were reduced and closely correlated, and TRPV1 levels were associated with psychiatric symptoms and cognitive function in patients with schizophrenia. It was indicated that TRPV1 could be a biomarker for schizophrenia and reflect the disease severity.
Collapse
Affiliation(s)
- Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Hao Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Yuan Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Shijing Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Ying Xiong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Fashuai Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Xiaowei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
- Hubei Institute of Neurology and Psychiatry Research, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
4
|
Silva NR, Arjmand S, Domingos LB, Chaves-Filho AM, Mottin M, Real CC, Waszkiewicz AL, Gobira PH, Ferraro AN, Landau AM, Andrade CH, Müller HK, Wegener G, Joca SRL. Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression. Pharmacol Res 2025; 211:107545. [PMID: 39667543 DOI: 10.1016/j.phrs.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology. Changes in eCB receptors and enzymes were assessed at mRNA and protein levels (qPCR and western blot), CB1 binding ([3H]SR141716A autoradiography) and endocannabinoid content (lipidomics). The results demonstrated that the depressive behavior in FSL was negatively correlated with 2-AG levels, which were restored upon acute S-KET treatment. Although S-KET decreased CB1 and FAAH gene expression in FSL, there were no significant changes at protein levels. [3H]SR141716A binding to CB1 receptors was increased by S-KET and in silico analysis suggested that it binds to CB1, CB2, GPR55 and FAAH. Overall, S-KET effects correlated with an increased endocannabinoid signaling in the PFC, but systemic treatment with rimonabant failed to block its behavioral effects. Altogether, our results indicate that S-KET facilitates eCB signaling in the PFC of FSL. The inability of rimonabant to block the antidepressant effect of S-KET highlights the complexity of its interaction with the ECS, warranting further investigation into the molecular pathways.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Luana B Domingos
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Adriano M Chaves-Filho
- Division of Medical Sciences, University of Victoria, Canada; Neuropharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Brazil
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Caroline C Real
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | | | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Sâmia R L Joca
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| |
Collapse
|
5
|
Sharma V, Sharma P, Singh TG. Therapeutic potential of transient receptor potential (TRP) channels in psychiatric disorders. J Neural Transm (Vienna) 2024; 131:1025-1037. [PMID: 39007920 DOI: 10.1007/s00702-024-02803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Psychiatric disorders such as Bipolar disorder, Anxiety, Major depressive disorder, Schizophrenia, Attention-deficit/hyperactivity disorder, as well as neurological disorders such as Migraine, are linked by the evidence of altered calcium homeostasis. The disturbance of intra-cellular calcium homeostasis disrupts the activity of numerous ion channels including transient receptor potential (TRP) channels. TRP channel families comprise non-selective calcium-permeable channels that have been implicated in variety of physiological processes in the brain, as well as in the pathogenesis of psychiatric disorders. Through a comprehensive review of current research and experimentation, this investigation elucidates the role of TRP channels in psychiatric disorders. Furthermore, this review discusses about the exploration of epigenetics and TRP channels in psychiatric disorders.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
6
|
Medina-Saldivar C, Pardo GVE, Pacheco-Otalora LF. Effect of MCH1, a fatty-acid amide hydrolase inhibitor, on the depressive-like behavior and gene expression of endocannabinoid and dopaminergic-signaling system in the mouse nucleus accumbens. Braz J Med Biol Res 2024; 57:e12857. [PMID: 38381881 PMCID: PMC10880885 DOI: 10.1590/1414-431x2024e12857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.
Collapse
Affiliation(s)
- C Medina-Saldivar
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| | - G V E Pardo
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| | - L F Pacheco-Otalora
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| |
Collapse
|
7
|
Fusse EJ, Scarante FF, Vicente MA, Marrubia MM, Turcato F, Scomparin DS, Ribeiro MA, Figueiredo MJ, Brigante TAV, Guimarães FS, Campos AC. Anxiogenic doses of rapamycin prevent URB597-induced anti-stress effects in socially defeated mice. Neurosci Lett 2024; 818:137519. [PMID: 37852528 DOI: 10.1016/j.neulet.2023.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.
Collapse
Affiliation(s)
- Eduardo J Fusse
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Franciele F Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria A Vicente
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Mariana M Marrubia
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Flávia Turcato
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Davi S Scomparin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Melissa A Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria J Figueiredo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Tamires A V Brigante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
9
|
Bright U, Akirav I. Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. Int J Mol Sci 2022; 23:5526. [PMID: 35628337 PMCID: PMC9146799 DOI: 10.3390/ijms23105526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Depression is characterized by continuous low mood and loss of interest or pleasure in enjoyable activities. First-line medications for mood disorders mostly target the monoaminergic system; however, many patients do not find relief with these medications, and those who do suffer from negative side effects and a discouragingly low rate of remission. Studies suggest that the endocannabinoid system (ECS) may be involved in the etiology of depression and that targeting the ECS has the potential to alleviate depression. ECS components (such as receptors, endocannabinoid ligands, and degrading enzymes) are key neuromodulators in motivation and cognition as well as in the regulation of stress and emotions. Studies in depressed patients and in animal models for depression have reported deficits in ECS components, which is motivating researchers to identify potential diagnostic and therapeutic biomarkers within the ECS. By understanding the effects of cannabinoids on ECS components in depression, we enhance our understanding of which brain targets they hit, what biological processes they alter, and eventually how to use this information to design better therapeutic options. In this article, we discuss the literature on the effects of cannabinoids on ECS components of specific depression-like behaviors and phenotypes in rodents and then describe the findings in depressed patients. A better understanding of the effects of cannabinoids on ECS components in depression may direct future research efforts to enhance diagnosis and treatment.
Collapse
Affiliation(s)
- Uri Bright
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
10
|
Brand ALM, Lima FA, Tinoco NAB, Mota JC, Moreira IGS, Novaes FJM, Garrett R, Giorno TBS, Fernandes PD, Rezende CM. ΒN-Alkanoyl-5-Hydroxytryptamines (C n-5HTs) in Coffee: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2059807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A. L. M. Brand
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F. A. Lima
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - N. A. B. Tinoco
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. C. Mota
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - I. G. S. Moreira
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F. J. M. Novaes
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. Garrett
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T. B. S. Giorno
- Biological Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P. D. Fernandes
- Biological Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C. M. Rezende
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
12
|
Silote GP, Gatto MC, Eskelund A, Guimarães FS, Wegener G, Joca SRL. Strain-, Sex-, and Time-Dependent Antidepressant-like Effects of Cannabidiol. Pharmaceuticals (Basel) 2021; 14:1269. [PMID: 34959670 PMCID: PMC8709491 DOI: 10.3390/ph14121269] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating compound extracted from Cannabis sativa, showing antidepressant-like effects in different rodent models. However, inconsistent results have been described depending on the species and the strain used to assess depressive-like behavior. Moreover, only a few studies investigated the effect of CBD in female rodents. Therefore, we aimed to (i) investigate the effects of CBD in two different strains of mice (Swiss and C57BL/6) and a rat model of depression based on selective breeding (Flinders Sensitive and Resistant Lines, FSL and FRL) subjected to tests predictive of antidepressant-like effects and (ii) investigate the influence of sex in the effects of CBD in both mice and rats. CBD induced an antidepressant-like effect in male Swiss but not in female Swiss or C57BL/6 mice in the tail suspension test (TST). In male FSL rats, CBD produced an antidepressant-like effect 1 h post injection. However, in female FSL, CBD induced a bimodal effect, increasing the immobility time at 1 h and decreasing it at 2 h. In conclusion, strain, sex, and administration time affect CBD's behavioral response to rodents exposed to tests predictive of antidepressant effects.
Collapse
Affiliation(s)
- Gabriela P. Silote
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Michelle C. Gatto
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
| | - Amanda Eskelund
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil;
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Sâmia R. L. Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Elevated Brain Fatty Acid Amide Hydrolase Induces Depressive-Like Phenotypes in Rodent Models: A Review. Int J Mol Sci 2021; 22:ijms22031047. [PMID: 33494322 PMCID: PMC7864498 DOI: 10.3390/ijms22031047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Altered activity of fatty acid amide hydrolase (FAAH), an enzyme of the endocannabinoid system, has been implicated in several neuropsychiatric disorders, including major depressive disorder (MDD). It is speculated that increased brain FAAH expression is correlated with increased depressive symptoms. The aim of this scoping review was to establish the role of FAAH expression in animal models of depression to determine the translational potential of targeting FAAH in clinical studies. A literature search employing multiple databases was performed; all original articles that assessed FAAH expression in animal models of depression were considered. Of the 216 articles that were screened for eligibility, 24 articles met inclusion criteria and were included in this review. Three key findings emerged: (1) FAAH expression is significantly increased in depressive-like phenotypes; (2) genetic knockout or pharmacological inhibition of FAAH effectively reduces depressive-like behavior, with a dose-dependent effect; and (3) differences in FAAH expression in depressive-like phenotypes were largely localized to animal prefrontal cortex, hippocampus and striatum. We conclude, based on the animal literature, that a positive relationship can be established between brain FAAH level and expression of depressive symptoms. In summary, we suggest that FAAH is a tractable target for developing novel pharmacotherapies for MDD.
Collapse
|
14
|
Di Marzo V. The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:259-269. [PMID: 33162769 PMCID: PMC7605024 DOI: 10.31887/dcns.2020.22.3/vdimarzo] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endocannabinoid (eCB) system encompasses the eCBs anandamide and 2-arachidonoylglycerol, their anabolic/catabolic enzymes, and the cannabinoid CB1 and CB2 receptors. Its expansion to include several eCB-like lipid mediators, their metabolic enzymes, and their molecular targets, forms the endocannabinoidome (eCBome). This complex signaling system is deeply involved in the onset, progress, and symptoms of major neuropsychiatric disorders and provides a substrate for future therapeutic drugs against these diseases. Such drugs may include not only THC, the major psychotropic component of cannabis, but also other, noneuphoric plant cannabinoids. These compounds, unlike THC, possess a wide therapeutic window, possibly due to their capability of hitting several eCBome and non-eCBome receptors. This is particularly true for cannabidiol, which is one of the most studied cannabinoids and shows promise for the treatment of a wide range of mental and mood disorders. The eCBome plays a role also in the microbiota-gut-brain axis, which is emerging as an important actor in the control of affective and cognitive functions and in their pathological alterations.
.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Canada; Joint International Unit between Université Laval and Consiglio Nazionale delle Ricerche of Italy on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| |
Collapse
|
15
|
Escelsior A, Sterlini B, Murri MB, Serafini G, Aguglia A, da Silva BP, Corradi A, Valente P, Amore M. Red-hot chili receptors: A systematic review of TRPV1 antagonism in animal models of psychiatric disorders and addiction. Behav Brain Res 2020; 393:112734. [DOI: 10.1016/j.bbr.2020.112734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
|
16
|
Chen S, Guo W, Qi X, Zhou J, Liu Z, Cheng Y. Natural alkaloids from lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation. Food Funct 2019; 10:6062-6073. [PMID: 31486445 DOI: 10.1039/c9fo01092k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Depression is a mental disorder that brings severe burdens to patients and their families. Neuroinflammation and neurotrophins are involved in depression. Lotus plumule is a nutritional food with medicinal values. In the present study, we tried to clarify the anti-depressive effect and molecular mechanism of lotus plumule. Network pharmacological analysis, behavior tests, qRT-PCR and western blotting were used. We found 7 potential active components and 91 targets from the TCMSP database. KEGG analysis suggested that lotus plumule significantly affected nitrogen metabolism, calcium signaling, and inflammatory mediator regulation signaling pathways. Consistent with those effects, total alkaloids of lotus plumule (TLA) and active alkaloids differently suppressed the nitric oxide (NO) production and pro-inflammatory mediators. TLA and higenamine significantly ameliorated LPS-induced depression-like behavior, increased BDNF levels, suppressed microglia activation, and inhibited the expression of ER stress-related proteins. Meanwhile, TLA and higenamine activated microglia autophagy by increasing the beclin-1 and LC3B-II expression. Additionally, in the presence of autophagy inhibitor 3-MA, TLA and higenamine did not reduce the LPS-induced NO production or pro-inflammatory mediators. Collectively, TLA and higenamine attenuated LPS-induced depression-like behavior by regulating BDNF-mediated ER stress and autophagy. Therefore, drinking tea of lotus plumule may provide a potential strategy for preventing depression.
Collapse
Affiliation(s)
- Sixuan Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Wanyi Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Jiuyao Zhou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
17
|
Prelimbic neuronal nitric oxide synthase inhibition exerts antidepressant-like effects independently of BDNF signalling cascades. Acta Neuropsychiatr 2019; 31:143-150. [PMID: 30890202 DOI: 10.1017/neu.2018.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES NMDA antagonists and nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects and may represent treatment options for depression. The behavioural effects of NMDA antagonists seem to depend on Tyrosine kinase B receptor (TrkB) activation by BDNF and on mechanistic target of rapamycin (mTOR), in the medial prefrontal cortex (mPFC). However, it is unknown whether similar mechanisms are involved in the behavioural effects of NOS inhibitors. Therefore, this work aimed at determining the role of TrkB and mTOR signalling in the prelimbic area of the ventral mPFC (vmPFC-PL) in the antidepressant-like effect of NOS inhibitors. METHODS Pharmacological treatment with LY235959 or ketamine (NMDA antagonists), NPA or 7-NI (NOS inhibitors), BDNF, K252a (Trk antagonist) and rapamycin (mTOR inhibitor) injected systemically or into vmPFC-PL followed by behavioural assessment. RESULTS We found that bilateral injection of BDNF into the vmPFC-PL induced an antidepressant-like effect, which was blocked by pretreatment with K252a and rapamycin. Microinjection of LY 235959 into the vmPFC-PL induced antidepressant-like effect that was suppressed by local rapamycin but not by K252a pretreatment. Microinjection of NPA induced an antidepressant-like effect insensitive to both K252a and rapamycin. Similarly, the antidepressant-like effects of a systemic injection of ketamine or 7-NI were not affected by blockade of mTOR or Trk receptors in the vmPFC-PL. CONCLUSION Our data support the hypothesis that NMDA blockade induces an antidepressant-like effect that requires mTOR but not Trk signalling into the vmPFC-PL. The antidepressant-like effect induced by local NOS inhibition is independent on both Trk and mTOR signalling in the vmPFC-PL.
Collapse
|
18
|
Zhao N, Zhang H, Clark JJ, Maity A, Wu MC. Composite kernel machine regression based on likelihood ratio test for joint testing of genetic and gene–environment interaction effect. Biometrics 2019; 75:625-637. [DOI: 10.1111/biom.13003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ni Zhao
- Department of BiostatisticsJohns Hopkins UniversityBaltimore, Maryland
| | - Haoyu Zhang
- Department of BiostatisticsJohns Hopkins UniversityBaltimore, Maryland
| | - Jennifer J. Clark
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Arnab Maity
- Department of StatisticsNorth Carolina State UniversityRaleigh, North Carolina
| | - Michael C. Wu
- Public Health Sciences Division,Fred Hutchinson Cancer Research CenterSeattle, Washington
| |
Collapse
|
19
|
Winther G, Elfving B, Müller HK, Lund S, Wegener G. Maternal High-fat Diet Programs Offspring Emotional Behavior in Adulthood. Neuroscience 2018; 388:87-101. [DOI: 10.1016/j.neuroscience.2018.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 01/28/2023]
|
20
|
Lee S, Kim HB, Hwang ES, Kim ES, Kim SS, Jeon TD, Song MC, Lee JS, Chung MC, Maeng S, Park JH. Antidepressant-like Effects of p-Coumaric Acid on LPS-induced Depressive and Inflammatory Changes in Rats. Exp Neurobiol 2018; 27:189-199. [PMID: 30022870 PMCID: PMC6050412 DOI: 10.5607/en.2018.27.3.189] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Depression causes mental and physical changes which affect quality of life. It is estimated to become the second most prevalent disease, but despite its commonness, the pathophysiology of depression remains unclear and medicine is not sufficiently protective. p-Coumaric acid (p-CA) is a dietary phenolic acid which has been proven to have antifungal, anti-HIV, anti-melanogenic, antioxidant and anti-inflammatory effects. Considering these effects, we investigated whether p-CA can prevent depressive symptoms by reducing inflammatory cytokines in animals injected with lipopolysaccharide (LPS). Changes in despair-related behaviors, inflammatory cytokines, neurotrophic factors and synaptic activity were measured. In these animals, p-CA improved despair-related behavioral symptoms induced by LPS in the forced swim test (FST), tail suspension test (TST) and sucrose splash test (SST). p-CA also prevented the increase of inflammatory cytokines in the hippocampus such as cycloxigenase-2 and tumor necrosis factor-α due to LPS. Similarly, it prevented the reduction of brain-derived neurotrophic factor (BDNF) by LPS. Electrophysiologically, p-CA blocked the reduction of long-term depression in LPS-treated organotypic tissue slices. In conclusion, p-CA prevented LPS-induced depressive symptoms in animals, as determined by behavioral, biochemical and electrophysiological measures. These findings suggest the potential use of p-CA as a preventive and therapeutic medicine for depression.
Collapse
Affiliation(s)
- Seok Lee
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Hyun-Bum Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Eun-Sang Hwang
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Eun-Seok Kim
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Sung-Soo Kim
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Tae-Dong Jeon
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Min-Cheol Song
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Ji-Seung Lee
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Min-Chan Chung
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Sungho Maeng
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Ji-Ho Park
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea.,Research Institute of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
21
|
Sanchez C, El Khoury A, Hassan M, Wegener G, Mathé AA. Sex-dependent behavior, neuropeptide profile and antidepressant response in rat model of depression. Behav Brain Res 2018; 351:93-103. [PMID: 29857028 DOI: 10.1016/j.bbr.2018.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 01/27/2023]
Abstract
A plethora of animal models of depression is described in the literature, aiming at mimicking different aspects of depression. Understanding the link between depression and stress has been and remains a major focus area for development of animal models, but lines of research with a more mechanistic focus targeting deficiencies in neurotransmitter systems or dysfunctional neuronal circuitries and neuroinflammation are also pursued vigorously. The main objectives of the present study were systematically to evaluate strain and sex characteristics of a genetic animal model, the Flinders Sensitive Line (FSL)/ Flinders Resistant Line (FRL), by applying behavioral, molecular and pharmacological measures relevant to depression, and compare it with the outbred Sprague Dawley rat. In addition, we aimed at comparing across strains and sex the expression of NPY, CRF, CGRP in brain regions critically involved in mood regulation, and investigating the responses to escitalopram. In line with the comparisons of FSL and FRL rats, the FSL rats weighed significantly less than SD rats. Overall, escitalopram treatment for 5-6 weeks did not have a major impact on weight, but displayed a significant antidepressant-like effect, however without any changes in NPY, CRH and CGRP expression. Our comparative study of FSL and SD rat with respect to behavioral characteristic, neuropeptide levels in various brain regions (protein and mRNA levels), and response to long-term antidepressant treatment revealed that female FSL rats showed the most pronounced depressive-like phenotype and response to SSRI treatment. However, these findings were not paralleled by changes in measures of NPY, CRH and CGRP function.
Collapse
Affiliation(s)
- Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Lundbeck US Q10 LLC, Paramus, NJ, United States.
| | - Aram El Khoury
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Moustapha Hassan
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Huddinge, Sweden
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa; Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark
| | | |
Collapse
|
22
|
Liebenberg N, Jensen E, Larsen ER, Kousholt BS, Pereira VS, Fischer CW, Wegener G. A Preclinical Study of Casein Glycomacropeptide as a Dietary Intervention for Acute Mania. Int J Neuropsychopharmacol 2018; 21:473-484. [PMID: 29726996 PMCID: PMC5932479 DOI: 10.1093/ijnp/pyy012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 02/06/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Casein glycomacropeptide is a peptide that lacks phenylalanine, tyrosine, and tryptophan. This profile may enable it to deplete phenylalanine, tyrosine, and tryptophan, and subsequently the synthesis of dopamine and serotonin in the brain. Dopamine- and serotonin-depleting amino acid mixtures have shown promise as acute antimanic treatments. In this study, we explore the depleting effects on amino acids, dopamine and serotonin as well as its actions on manic-like and other behavior in rats. METHODS Casein glycomacropeptide and a selection of amino acid mixtures were administered orally at 2, 4, or 8 h or for 1 week chronically. Amino acid and monoamine levels were measured in plasma and brain and behavior was assessed in the amphetamine-hyperlocomotion, forced swim, prepulse inhibition, and elevated plus maze tests. RESULTS Casein glycomacropeptide induced a time-dependent reduction in tyrosine, tryptophan, and phenylalanine in brain and plasma which was augmented by supplementing with leucine. Casein glycomacropeptide +leucine reduced dopamine in the frontal cortex and serotonin in the hippocampus, frontal cortex, and striatum after 2 and 4 h. Casein glycomacropeptide+leucine also had antimanic activity in the amphetamine-induced hyperlocomotion test at 2 h after a single acute treatment and after 1 week of chronic treatment. CONCLUSIONS Casein glycomacropeptide-based treatments and a branched-chain amino acid mixture affected total tissue levels of dopamine in the frontal cortex and striatum and serotonin in the frontal cortex, striatum, and hippocampus of rats in a time-dependent fashion and displayed antimanic efficacy in a behavioral assay of mania.
Collapse
Affiliation(s)
- Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Erik Roj Larsen
- Department Psychiatry Odense, Psychiatry in the Region of Southern Denmark, Denmark,Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Denmark
| | - Birgitte Saima Kousholt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark
| | - Vitor Silva Pereira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Christina Weide Fischer
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark,Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark,Centre for Pharmaceutical Excellence, School of Pharmacy, North-West University, South Africa,Correspondence: Gregers Wegener, Translational Neuropsychiatry Unit, Aarhus University Hospital, Skovagervej 2, 8240 Risskov, Denmark ()
| |
Collapse
|
23
|
Acta Neuropsychiatrica and social media. Acta Neuropsychiatr 2017; 29:323. [PMID: 29151405 DOI: 10.1017/neu.2017.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G. Role of N-Arachidonoyl-Serotonin (AA-5-HT) in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation. Front Mol Neurosci 2017; 10:152. [PMID: 28611585 PMCID: PMC5447686 DOI: 10.3389/fnmol.2017.00152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)], receptors (CB1 and CB2), enzymes such as [fatty acid amide hydrolase (FAHH) and monoacylglycerol lipase (MAGL)], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1), N-arachidonoyl-serotonin (AA-5-HT) in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p.) injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W) and increased slow wave sleep (SWS) as well as rapid eye movement sleep (REMS). Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT) whereas the levels of adenosine (AD) were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD) or modafinil (MOD) during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD). The injection of CBD or MOD increased alertness during sleep rebound period after TSD. However, AA-5-HT blocked this effect by allowing animals to display an enhancement in sleep across sleep rebound period. Overall, our findings provide evidence that AA-5-HT is an important modulator of sleep, sleep homeostasis and neurotransmitter contents.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación Desarrollos Tecnológicos para la Salud, División de Ingeniería y Ciencias Exactas, Universidad Anáhuac MayabMérida, Mexico.,Intercontinental Neuroscience Research Group
| | - Vincenzo Di Marzo
- Intercontinental Neuroscience Research Group.,Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Sergio Machado
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Postgraduate Program, Salgado de Oliveira UniversityRio de Janeiro, Brazil
| | - Nuno B Rocha
- Intercontinental Neuroscience Research Group.,Faculty of Health Sciences, Polytechnic Institute of PortoPorto, Portugal
| | - André B Veras
- Intercontinental Neuroscience Research Group.,Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Dom Bosco Catholic UniversityRio de Janeiro, Brazil
| | - Geraldo A M Neto
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group.,Faculty of Human Sciences, Medical School HamburgHamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering Reykjavik UniversityReykjavik, Iceland.,Department of Health, Physical and Social Education, Lithuanian Sports UniversityKaunas, Lithuania
| | - Oscar Arias-Carrión
- Intercontinental Neuroscience Research Group.,Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Gloria Arankowsky-Sandoval
- Intercontinental Neuroscience Research Group.,Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de YucatánMérida, Mexico
| |
Collapse
|