1
|
Chen E, Zhang S. Structural bioinformatic study of human mitochondrial respiratory integral membrane megacomplex and its AlphaFold3 predicted water-soluble QTY megacomplex analog. QRB DISCOVERY 2025; 6:e12. [PMID: 40160982 PMCID: PMC11950790 DOI: 10.1017/qrd.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 04/02/2025] Open
Abstract
Human mitochondrial Complex I is one of the largest multi-subunit membrane protein megacomplexes, which plays a critical role in oxidative phosphorylation and ATP production. It is also involved in many neurodegenerative diseases. However, studying its structure and the mechanisms underlying proton translocation remains challenging due to the hydrophobic nature of its transmembrane parts. In this structural bioinformatic study, we used the QTY code to reduce the hydrophobicity of megacomplex I, while preserving its structure and function. We carried out the structural bioinformatics analysis of 20 key enzymes in the integral membrane parts. We compare their native structure, experimentally determined using Cryo-electron microscopy (CryoEM), with their water-soluble QTY analogs predicted using AlphaFold 3. Leveraging AlphaFold 3's advanced capabilities in predicting protein-protein complex interactions, we further explore whether the QTY-code integral membrane proteins maintain their protein-protein interactions necessary to form the functional megacomplex. Our structural bioinformatics analysis not only demonstrates the feasibility of engineering water-soluble integral membrane proteins using the QTY code, but also highlights the potential to use the water-soluble membrane protein QTY analogs as soluble antigens for discovery of therapeutic monoclonal antibodies, thus offering promising implications for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Chen E, Pan E, Zhang S. Structure Bioinformatics of Six Human Integral Transmembrane Enzymes and their AlphaFold3 Predicted Water-Soluble QTY Analogs: Insights into FACE1 and STEA4 Binding Mechanisms. Pharm Res 2025; 42:291-305. [PMID: 39966220 PMCID: PMC11880043 DOI: 10.1007/s11095-025-03822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/11/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE Human integral membrane enzymes are essential for catalyzing a wide range of biochemical reactions and regulating key cellular processes. However, studying these enzymes remains challenging due to their hydrophobic nature, which necessitates the use of detergents. This study explores whether applying the QTY code can reduce the hydrophobicity of these enzymes while preserving their structures and functions, thus facilitating bioinformatics analysis of six key integral membrane enzymes: MGST2, LTC4S, PTGES, FACE1, STEA4, and SCD. METHODS The water-soluble QTY analogs of the six membrane enzymes were predicted using AlphaFold3. The predicted structures were superposed with CyroEM determined native structures in PyMOL to observe changes in structure and protein-ligand binding ability. RESULTS The native membrane enzymes superposed well with their respective QTY analogs, with the root mean square deviation (RMSD) ranging from 0.273 Å to 0.875 Å. Surface hydrophobic patches on the QTY analogs were significantly reduced. Importantly, the protein-ligand interactions in FACE1 and STEA4 were largely preserved, indicating maintained functionality. CONCLUSION Our structural bioinformatics studies using the QTY code and AlphaFold3 not only provide the opportunities of designing more water-soluble integral membrane enzymes, but also use these water-soluble QTY analogs as antigens for therapeutic monoclonal antibody discovery to specifically target the key integral membrane enzymes.
Collapse
Affiliation(s)
- Edward Chen
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Emily Pan
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Smorodina E, Tao F, Qing R, Yang S, Zhang S. Computational engineering of water-soluble human potassium ion channels through QTY transformation. Sci Rep 2024; 14:28159. [PMID: 39548172 PMCID: PMC11568286 DOI: 10.1038/s41598-024-76603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Transmembrane potassium ion channels are crucial for ion transport, metabolism, and signaling, and serve as promising targets for anti-cancer therapies. However, their hydrophobic transmembrane nature requires detergents, posing a major bottleneck for experimental handling. In this paper, we present a structural bioinformatics study of six experimentally determined and twelve modeled potassium channel structures, in which hydrophobic amino acids (L, I/V, and F) were systematically replaced with neutral hydrophilic ones (Q, T, and Y), making the proteins more water-soluble. QTY (computationally predicted) and native (experimental and repredicted) variants show remarkable structural similarity (RMSD: ~0.50 Å - ~2.14 Å) despite significant sequence differences. QTY variants, both rigid and refined with MD simulations, maintain comparable to native variants stability, solvent-accessible surface area (SASA), and ionic, aromatic, and van der Waals interactions but differ in the grand average of hydropathy (GRAVY), solubility, and hydrophobic contacts. Overall, our study presents a computational approach for designing hydrophilic potassium ion channels while maintaining the native global structure that could potentially simplify their practical use by eliminating the need for detergents.
Collapse
Affiliation(s)
- Eva Smorodina
- Laboratory for Computational and Systems Immunology, Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Fei Tao
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Rui Qing
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Steve Yang
- PT Metiska Farma, Daerah Khusus Ibukota, Jakarta, 12220, Indonesia
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 PMCID: PMC11536462 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism DepartmentJohn Innes CentreNorwichUK
| | | | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| | - Yao Huang
- School of Life ScienceNanChang UniversityNanchangJiangxiChina
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
| | - Gaili Fan
- Xiamen Greening Administration CentreXiamenChina
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| |
Collapse
|
5
|
Karagöl A, Karagöl T, Zhang S. Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters. Pharm Res 2024; 41:1965-1977. [PMID: 39322794 PMCID: PMC11530497 DOI: 10.1007/s11095-024-03769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Glutamate transporters play a crucial role in neurotransmitter homeostasis, but studying their structure and function is challenging due to their membrane-bound nature. This study aims to investigate whether water-soluble QTY-variants of glutamate transporters EAA1, EAA2 and EAA3 retain the conformational characteristics and dynamics of native membrane-bound transporters. METHODS Molecular dynamics simulations and comparative genomics were used to analyze the structural dynamics of both native transporters and their QTY-variants. Native transporters were simulated in lipid bilayers, while QTY-variants were simulated in aqueous solution. Lipid distortions, relative solvent accessibilities, and conformational changes were examined. Evolutionary conservation profiles were correlated with structural dynamics. Statistical analyses included multivariate analysis to account for confounding variables. RESULTS QTY-variants exhibited similar residue-wise conformational dynamics to their native counterparts, with correlation coefficients of 0.73 and 0.56 for EAA1 and EAA3, respectively (p < 0.001). Hydrophobic interactions of native helices correlated with water interactions of QTY- helices (rs = 0.4753, p < 0.001 for EAA1). QTY-variants underwent conformational changes resembling the outward-to-inward transition of native transporters. CONCLUSIONS Water-soluble QTY-variants retain key structural properties of native glutamate transporters and mimic aspects of native lipid interactions, including conformational flexibility. This research provides valuable insights into the conformational changes and molecular mechanisms of glutamate transport, potentially offering a new approach for studying membrane protein dynamics and drug interactions.
Collapse
Affiliation(s)
- Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Karagöl A, Karagöl T, Smorodina E, Zhang S. Structural bioinformatics studies of glutamate transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS One 2024; 19:e0289644. [PMID: 38598436 PMCID: PMC11006163 DOI: 10.1371/journal.pone.0289644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/22/2023] [Indexed: 04/12/2024] Open
Abstract
Glutamate transporters play key roles in nervous physiology by modulating excitatory neurotransmitter levels, when malfunctioning, involving in a wide range of neurological and physiological disorders. However, integral transmembrane proteins including the glutamate transporters remain notoriously difficult to study, due to their localization within the cell membrane. Here we present the structural bioinformatics studies of glutamate transporters and their water-soluble variants generated through QTY-code, a protein design strategy based on systematic amino acid substitutions. These include 2 structures determined by X-ray crystallography, cryo-EM, and 6 predicted by AlphaFold2, and their predicted water-soluble QTY variants. In the native structures of glutamate transporters, transmembrane helices contain hydrophobic amino acids such as leucine (L), isoleucine (I), and phenylalanine (F). To design water-soluble variants, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, namely glutamine (Q), threonine (T) and tyrosine (Y). The QTY variants exhibited water-solubility, with four having identical isoelectric focusing points (pI) and the other four having very similar pI. We present the superposed structures of the native glutamate transporters and their water-soluble QTY variants. The superposed structures displayed remarkable similarity with RMSD 0.528Å-2.456Å, despite significant protein transmembrane sequence differences (41.1%->53.8%). Additionally, we examined the differences of hydrophobicity patches between the native glutamate transporters and their QTY variants. Upon closer inspection, we discovered multiple natural variations of L->Q, I->T, F->Y and Q->L, T->I, Y->F in these transporters. Some of these natural variations were benign and the remaining were reported in specific neurological disorders. We further investigated the characteristics of hydrophobic to hydrophilic substitutions in glutamate transporters, utilizing variant analysis and evolutionary profiling. Our structural bioinformatics studies not only provided insight into the differences between the hydrophobic helices and hydrophilic helices in the glutamate transporters, but they are also expected to stimulate further study of other water-soluble transmembrane proteins.
Collapse
Affiliation(s)
- Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Eva Smorodina
- Laboratory for Computational and Systems Immunology, Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
7
|
Li M, Wang Y, Tao F, Xu P, Zhang S. QTY code designed antibodies for aggregation prevention: A structural bioinformatic and computational study. Proteins 2024; 92:206-218. [PMID: 37795805 DOI: 10.1002/prot.26603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Therapeutic monoclonal antibodies are the most rapidly growing class of molecular medicine, and they are beneficial to the treatment of a broad spectrum of human diseases. However, the aggregation of antibodies during the process of manufacture, distribution, and storage poses significant challenges, potentially compromising efficacy and inducing adverse immune responses. We previously conceived a QTY (glutamine, threonine, tyrosine) code, a simple tool for enhancing protein water-solubility by systematically pairwise replacing hydrophobic residues L (leucine), V (valine)/I (isoleucine), and F (phenylalanine). The QTY code offers a promising alternative to traditional methods of controlling aggregation in integral transmembrane proteins. In this study, we designed variants of four antibodies applying the QTY code, changing only the β-sheets. Through the structure-based aggregation analysis, we found that these QTY antibody variants demonstrated significantly decreased aggregation propensity compared to their wild-type counter parts. Our results of molecular dynamics simulations showed that the design by QTY code is capable of maintaining the antigen-binding affinity and structural stability. Our structural informatic and computational study suggests that the QTY code offers a significant potential in mitigating antibody aggregation.
Collapse
Affiliation(s)
- Mengke Li
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yanze Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ping Xu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Pan E, Tao F, Smorodina E, Zhang S. Structural bioinformatics studies of six human ABC transporters and their AlphaFold2-predicted water-soluble QTY variants. QRB DISCOVERY 2024; 5:e1. [PMID: 38577032 PMCID: PMC10988169 DOI: 10.1017/qrd.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 04/06/2024] Open
Abstract
Human ATP-binding cassette (ABC) transporters are one of the largest families of membrane proteins and perform diverse functions. Many of them are associated with multidrug resistance that often results in cancer treatment with poor outcomes. Here, we present the structural bioinformatics study of six human ABC membrane transporters with experimentally determined cryo-electron microscopy (CryoEM) structures including ABCB7, ABCC8, ABCD1, ABCD4, ABCG1, ABCG5, and their AlphaFold2-predicted water-soluble QTY variants. In the native structures, there are hydrophobic amino acids such as leucine (L), isoleucine (I), valine (V), and phenylalanine (F) in the transmembrane alpha helices. These hydrophobic amino acids are systematically replaced by hydrophilic amino acids glutamine (Q), threonine (T), and tyrosine (Y). Therefore, these QTY variants become water soluble. We also present the superposed structures of native ABC transporters and their water-soluble QTY variants. The superposed structures show remarkable similarity with root mean square deviations between 1.064 and 3.413 Å despite significant (41.90-54.33%) changes to the protein sequence of the transmembrane domains. We also show the differences in hydrophobicity patches between the native ABC transporters and their QTY variants. We explain the rationale behind why the QTY membrane protein variants become water soluble. Our structural bioinformatics studies provide insight into the differences between the hydrophobic helices and hydrophilic helices and will likely further stimulate designs of water-soluble multispan transmembrane proteins and other aggregated proteins. The water-soluble ABC transporters may be useful as soluble antigens to generate therapeutic monoclonal antibodies for combating multidrug resistance in clinics.
Collapse
Affiliation(s)
- Emily Pan
- The Lawrenceville School, Lawrenceville, NJ, USA
| | - Fei Tao
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Eva Smorodina
- Laboratory for Computational and Systems Immunology, Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Ma L, Zhang S, Liang Q, Huang W, Wang H, Pan E, Xu P, Zhang S, Tao F, Tang J, Qing R. CrMP-Sol database: classification, bioinformatic analyses and comparison of cancer-related membrane proteins and their water-soluble variant designs. BMC Bioinformatics 2023; 24:360. [PMID: 37743473 PMCID: PMC10518928 DOI: 10.1186/s12859-023-05477-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Membrane proteins are critical mediators for tumor progression and present enormous therapeutic potentials. Although gene profiling can identify their cancer-specific signatures, systematic correlations between protein functions and tumor-related mechanisms are still unclear. We present here the CrMP-Sol database ( https://bio-gateway.aigene.org.cn/g/CrMP ), which aims to breach the gap between the two. Machine learning was used to extract key functional descriptions for protein visualization in the 3D-space, where spatial distributions provide function-based predictive connections between proteins and cancer types. CrMP-Sol also presents QTY-enabled water-soluble designs to facilitate native membrane protein studies despite natural hydrophobicity. Five examples with varying transmembrane helices in different categories were used to demonstrate the feasibility. Native and redesigned proteins exhibited highly similar characteristics, predicted structures and binding pockets, and slightly different docking poses against known ligands, although task-specific designs are still required for proteins more susceptible to internal hydrogen bond formations. The database can accelerate therapeutic developments and biotechnological applications of cancer-related membrane proteins.
Collapse
Affiliation(s)
- Lina Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sitao Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Liang
- Zhejiang Lab, Research Center for Intelligent Computing Platforms, Hangzhou, 311121, Zhejiang, China
| | - Wenting Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Emily Pan
- The Lawrenceville School, 2500 Main Street, Lawrenceville, NJ, 08648, USA
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jin Tang
- Zhejiang Lab, Research Center for Intelligent Computing Platforms, Hangzhou, 311121, Zhejiang, China.
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Meng R, Hao S, Sun C, Hou Z, Hou Y, Wang L, Deng P, Deng J, Yang Y, Xia H, Wang B, Qing R, Zhang S. Reverse-QTY code design of active human serum albumin self-assembled amphiphilic nanoparticles for effective anti-tumor drug doxorubicin release in mice. Proc Natl Acad Sci U S A 2023; 120:e2220173120. [PMID: 37186820 PMCID: PMC10214157 DOI: 10.1073/pnas.2220173120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Human serum albumin (HSA) is a highly water-soluble protein with 67% alpha-helix content and three distinct domains (I, II, and III). HSA offers a great promise in drug delivery with enhanced permeability and retention effect. But it is hindered by protein denaturation during drug entrapment or conjugation that result in distinct cellular transport pathways and reduction of biological activities. Here we report using a protein design approach named reverse-QTY (rQTY) code to convert specific hydrophilic alpha-helices to hydrophobic to alpha-helices. The designed HSA undergo self-assembly of well-ordered nanoparticles with highly biological actives. The hydrophilic amino acids, asparagine (N), glutamine (Q), threonine (T), and tyrosine (Y) in the helical B-subdomains of HSA were systematically replaced by hydrophobic leucine (L), valine (V), and phenylalanine (F). HSArQTY nanoparticles exhibited efficient cellular internalization through the cell membrane albumin binding protein GP60, or SPARC (secreted protein, acidic and rich in cysteine)-mediated pathways. The designed HSArQTY variants displayed superior biological activities including: i) encapsulation of drug doxorubicin, ii) receptor-mediated cellular transport, iii) tumor cell targeting, and iv) antitumor efficiency compare to denatured HSA nanoparticles. HSArQTY nanoparticles provided superior tumor targeting and antitumor therapeutic effects compared to the albumin nanoparticles fabricated by antisolvent precipitation method. We believe that the rQTY code is a robust platform for specific hydrophobic modification of functional hydrophilic proteins with clear-defined binding interfaces.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Changfa Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Lili Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing400067, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Tumor Center, Chongqing Medical University, Chongqing400016, China
| | - Haijian Xia
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing400042, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
11
|
Smorodina E, Diankin I, Tao F, Qing R, Yang S, Zhang S. Structural informatic study of determined and AlphaFold2 predicted molecular structures of 13 human solute carrier transporters and their water-soluble QTY variants. Sci Rep 2022; 12:20103. [PMID: 36418372 PMCID: PMC9684436 DOI: 10.1038/s41598-022-23764-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Solute carrier transporters are integral membrane proteins, and are important for diverse cellular nutrient transports, metabolism, energy demand, and other vital biological activities. They have recently been implicated in pancreatic cancer and other cancer metastasis, angiogenesis, programmed cell death and proliferation, cell metabolism and chemo-sensitivity. Here we report the study of 13 human solute carrier membrane transporters using the highly accurate AlphaFold2 predictions of 3D protein structures. In the native structures, there are hydrophobic amino acids leucine (L), isoleucine (I), valine (V) and phenylalanine (F) in the transmembrane alpha-helices. These hydrophobic amino acids L, I, V, F are systematically replaced by hydrophilic amino acids glutamine (Q), threonine (T) and tyrosine (Y), thus the QTY code. Therefore, these QTY variant transporters become water-soluble without requiring detergents. We present the superposed structures of these native solute carrier transporters and their water-soluble QTY variants. The superposed structures show remarkable similarity with RMSD ~ 1 Å-< 3 Å despite > 46% protein sequence substitutions in transmembrane alpha-helices. We also show the differences of surface hydrophobicity between the native solute carrier transporters and their QTY variants. Our study may further stimulate designs of water-soluble transmembrane proteins and other aggregated proteins for drug discovery and biotechnological applications.
Collapse
Affiliation(s)
- Eva Smorodina
- Laboratory for Computational and Systems Immunology, Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Igor Diankin
- Department of Computer Science, American University of Armenia, Yerevan, Armenia
| | - Fei Tao
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Rui Qing
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Steve Yang
- PT Metiska Farma, Daerah Khusus Ibukota, Jakarta, 12220, Indonesia
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Comparing 2 crystal structures and 12 AlphaFold2-predicted human membrane glucose transporters and their water-soluble glutamine, threonine and tyrosine variants – CORRIGENDUM. QRB DISCOVERY 2022. [PMID: 37529291 PMCID: PMC10392616 DOI: 10.1017/qrd.2022.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
[This corrects the article DOI: 10.1017/qrd.2022.6.].
Collapse
|