1
|
Pike B, Zhao J, Hicks JA, Wang F, Hagen R, Liu HC, Odle J, Lin X. Intestinal Carnitine Status and Fatty Acid Oxidation in Response to Clofibrate and Medium-Chain Triglyceride Supplementation in Newborn Pigs. Int J Mol Sci 2023; 24:ijms24076066. [PMID: 37047049 PMCID: PMC10094207 DOI: 10.3390/ijms24076066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
To investigate the role of peroxisome proliferator-activated receptor alpha (PPARα) in carnitine status and intestinal fatty acid oxidation in neonates, a total of 72 suckled newborn piglets were assigned into 8 dietary treatments following a 2 (±0.35% clofibrate) × 4 (diets with: succinate+glycerol (Succ), tri-valerate (TC5), tri-hexanoate (TC6), or tri-2-methylpentanoate (TMPA)) factorial design. All pigs received experimental milk diets with isocaloric energy for 5 days. Carnitine statuses were evaluated, and fatty acid oxidation was measured in vitro using [1-14C]-palmitic acid (1 mM) as a substrate in absence or presence of L659699 (1.6 µM), iodoacetamide (50 µM), and carnitine (1 mM). Clofibrate increased concentrations of free (41%) and/or acyl-carnitine (44% and 15%) in liver and plasma but had no effects in the intestine. The effects on carnitine status were associated with the expression of genes involved in carnitine biosynthesis, absorption, and transportation. TC5 and TMPA stimulated the increased fatty acid oxidation rate induced by clofibrate, while TC6 had no effect on the increased fatty acid oxidation induced by clofibrate (p > 0.05). These results suggest that dietary clofibrate improved carnitine status and increased fatty acid oxidation. Propionyl-CoA, generated from TC5 and TMPA, could stimulate the increased fatty acid oxidation rate induced by clofibrate as anaplerotic carbon sources.
Collapse
Affiliation(s)
- Brandon Pike
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinan Zhao
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Julie A Hicks
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Feng Wang
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Rachel Hagen
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
3
|
Li N, Zhao H. Role of Carnitine in Non-alcoholic Fatty Liver Disease and Other Related Diseases: An Update. Front Med (Lausanne) 2021; 8:689042. [PMID: 34434943 PMCID: PMC8381051 DOI: 10.3389/fmed.2021.689042] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Carnitine is an amino acid-derived substance that coordinates a wide range of biological processes. Such functions include transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix, regulation of acetyl-CoA/CoA, control of inter-organellar acyl traffic, and protection against oxidative stress. Recent studies have found that carnitine plays an important role in several diseases, including non-alcoholic fatty liver disease (NAFLD). However, its effect is still controversial, and its mechanism is not clear. Herein, this review provides current knowledge on the biological functions of carnitine, the “multiple hit” impact of carnitine on the NAFLD progression, and the downstream mechanisms. Based on the “multiple hit” hypothesis, carnitine inhibits β-oxidation, improves mitochondrial dysfunction, and reduces insulin resistance to ameliorate NAFLD. L-carnitine may have therapeutic role in liver diseases including non-alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, alcoholic fatty liver disease, and viral hepatitis. We also discuss the prospects of L-carnitine supplementation as a therapeutic strategy in NAFLD and related diseases, and the factors limiting its widespread use.
Collapse
Affiliation(s)
- Na Li
- Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of General Practice, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Liu Y, Li J, Liu Y. Effects of epoxy stearic acid on lipid metabolism in HepG2 cells. J Food Sci 2020; 85:3644-3652. [PMID: 32885409 DOI: 10.1111/1750-3841.15405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023]
Abstract
In the present study, effects of cis-9,10-epoxystearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including intracellular lipid accumulation, fatty acid composition, and lipid metabolism, were investigated. Our results revealed that ESA increased the number and size of cellular lipid droplets. Intracellular triacylglycerol and total cholesterol content demonstrated that ESA induced lipid accumulation in HepG2 cells in a dose- and time-dependent manner. Results of fatty acid composition further indicated that ESA could lead to intracellular lipid accumulation. Our results also revealed that ESA may suppress the fatty acid oxidation in peroxisomes and mitochondria, including PPARα, Cpt1α, and Acox1, whereas the expression of genes involved in lipid synthesis, including Srebp-1c and Scd1, was enhanced. These findings provide critical information on the effects of ESA on HepG2 cells, particularly lipid accumulation and metabolism, which is important for evaluating the biosafety of the oxidative product of oleic acid. PRACTICAL APPLICATION: The administration of cis-9,10-epoxystearic acid to HepG2 cells could lead to disorder of lipid metabolism of cells by enhancing the intracellular lipid content, as well as suppressing the fatty acid oxidation in peroxisomes and mitochondria. These findings could provide information for the evaluation of the biosafety of the oxidative product of oleic acid.
Collapse
Affiliation(s)
- Ying Liu
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, People's Republic of China
| | - Jinwei Li
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, People's Republic of China
| |
Collapse
|
5
|
Ringseis R, Keller J, Eder K. Basic mechanisms of the regulation of L-carnitine status in monogastrics and efficacy of L-carnitine as a feed additive in pigs and poultry. J Anim Physiol Anim Nutr (Berl) 2018; 102:1686-1719. [PMID: 29992642 DOI: 10.1111/jpn.12959] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Abstract
A great number of studies have investigated the potential of L-carnitine as feed additive to improve performance of different monogastric and ruminant livestock species, with, however, discrepant outcomes. In order to understand the reasons for these discrepant outcomes, it is important to consider the determinants of L-carnitine status and how L-carnitine status is regulated in the animal's body. While it is a long-known fact that L-carnitine is endogenously biosynthesized in certain tissues, it was only recently recognized that critical determinants of L-carnitine status, such as intestinal L-carnitine absorption, tissue L-carnitine uptake, endogenous L-carnitine synthesis and renal L-carnitine reabsorption, are regulated by specific nutrient sensing nuclear receptors. This review aims to give a more in-depth understanding of the basic mechanisms of the regulation of L-carnitine status in monogastrics taking into account the most recent evidence on nutrient sensing nuclear receptors and evaluates the efficacy of L-carnitine as feed additive in monogastric livestock by providing an up-to-date overview about studies with L-carnitine supplementation in pigs and poultry.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Janine Keller
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
6
|
Li X, Yu X, Sun D, Li J, Wang Y, Cao P, Liu Y. Effects of Polar Compounds Generated from the Deep-Frying Process of Palm Oil on Lipid Metabolism and Glucose Tolerance in Kunming Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:208-215. [PMID: 27973789 DOI: 10.1021/acs.jafc.6b04565] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the present study, effects of deep-fried palm oil, specifically polar compounds generated during the frying process, on animal health including lipid and glucose metabolism and liver functions were investigated. Kunming mice were fed a high-fat diet containing deep-fried palm oil or purified polar compounds for 12 weeks. Their effects on animal health including hepatic lipid profile, antioxidant enzyme activity, serum biochemistry, and glucose tolerance were analyzed. Our results revealed that the consumption of polar compounds was related to the change of lipid deposition in liver and adipose tissue, as well as glucose tolerance alteration in Kunming mice. Correspondingly, the transcription study of genes involved in lipid metabolism including PPARα, Acox1, and Cpt1α indicated that polar compounds probably facilitated the fatty acid oxidation on peroxisomes, whereas lipid oxidation in mitochondria was suppressed. Furthermore, glucose tolerance test (GTT) revealed that a high amount of polar compound intake impaired glucose tolerance, indicating its effect on glucose metabolism in vivo. Our results provide critical information on the effects of polar compounds generated from the deep-frying process of palm oil on animal health, particularly liver functions and lipid and glucose metabolism, which is important for the evaluation of the biosafety of frying oil.
Collapse
Affiliation(s)
- Xiaodan Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Xiaoyan Yu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Dewei Sun
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University , Guangzhou 510632, China
| | - Peirang Cao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| |
Collapse
|
7
|
Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H, Gustina D, Loza E, Zharkova-Malkova O, Grinberga S, Pugovics O, Dambrova M. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sci 2014; 117:84-92. [PMID: 25301199 DOI: 10.1016/j.lfs.2014.09.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/28/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
AIMS Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO. MAIN METHODS Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-carnitine, GBB, choline and TMAO using UPLC-MS/MS. Meldonium effects on TMA production by intestinal bacteria from L-carnitine and choline were tested. KEY FINDINGS Treatment with meldonium significantly decreased intestinal microbiota-dependent production of TMA/TMAO from L-carnitine, but not from choline. 24hours after the administration of meldonium, the urinary excretion of TMAO was 3.6 times lower in the combination group than in the L-carnitine-alone group. In addition, the administration of meldonium together with L-carnitine significantly increased GBB concentration in blood plasma and in isolated rat small intestine perfusate. Meldonium did not influence bacterial growth and bacterial uptake of L-carnitine, but TMA production by the intestinal microbiota bacteria K. pneumoniae was significantly decreased. SIGNIFICANCE We have shown for the first time that TMA/TMAO production from quaternary amines could be decreased by targeting bacterial TMA-production. In addition, the production of pro-atherogenic TMAO can be suppressed by shifting the microbial degradation pattern of supplemental/dietary quaternary amines.
Collapse
Affiliation(s)
- Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia; Rigas Stradins University, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Janis Liepins
- University of Latvia, Institute of Microbiology and Biotechnology, Kronvalda Blvd. 4, Riga LV-1586, Latvia
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Daina Gustina
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Einars Loza
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | | | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Osvalds Pugovics
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia; Rigas Stradins University, Dzirciema Str. 16, Riga, LV-1007, Latvia
| |
Collapse
|
8
|
Liepinsh E, Makrecka M, Kuka J, Cirule H, Makarova E, Sevostjanovs E, Grinberga S, Vilskersts R, Lola D, Loza E, Stonans I, Pugovics O, Dambrova M. Selective inhibition of OCTN2 is more effective than inhibition of gamma-butyrobetaine dioxygenase to decrease the availability of l-carnitine and to reduce myocardial infarct size. Pharmacol Res 2014; 85:33-8. [DOI: 10.1016/j.phrs.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/09/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
|
9
|
Intestinal drug transporters: an overview. Adv Drug Deliv Rev 2013; 65:1340-56. [PMID: 23041352 DOI: 10.1016/j.addr.2012.09.042] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 02/07/2023]
Abstract
The importance of drug transporters as one of the determinants of pharmacokinetics has become increasingly evident. While much research has been conducted focusing the role of drug transporters in the liver and kidney less is known about the importance of uptake and efflux transporters identified in the intestine. Over the past years the effects of intestinal transporters have been studied using in vivo models, in situ organ perfusions, in vitro tissue preparations and cell lines. This review aims to describe up to date findings regarding the importance of intestinal transporters on drug absorption and bioavailability, highlighting areas in need of further research. Wu and Benet proposed a Biopharmaceutics Drug Disposition Classification System (BDDCS) that allows the prediction of transporter effects on the drug disposition of orally administered drugs. This review also discusses BDDCS predictions with respect to the role of intestinal transporters and intestinal transporter-metabolizing enzyme interplay on oral drug pharmacokinetics.
Collapse
|
10
|
Fardet A, Chardigny JM. Plant-Based Foods as a Source of Lipotropes for Human Nutrition: A Survey of In Vivo Studies. Crit Rev Food Sci Nutr 2013; 53:535-90. [DOI: 10.1080/10408398.2010.549596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Shibani M, Keller J, König B, Kluge H, Hirche F, Stangl G, Ringseis R, Eder K. Effects of fish oil and conjugated linoleic acids on carnitine homeostasis in laying hens. Br Poult Sci 2012; 53:431-8. [DOI: 10.1080/00071668.2012.713464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M. Shibani
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - J. Keller
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - B. König
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - H. Kluge
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - F. Hirche
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - G.I. Stangl
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - R. Ringseis
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - K. Eder
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| |
Collapse
|
12
|
Ringseis R, Wen G, Eder K. Regulation of Genes Involved in Carnitine Homeostasis by PPARα across Different Species (Rat, Mouse, Pig, Cattle, Chicken, and Human). PPAR Res 2012; 2012:868317. [PMID: 23150726 PMCID: PMC3486131 DOI: 10.1155/2012/868317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies in rodents convincingly demonstrated that PPARα is a key regulator of genes involved in carnitine homeostasis, which serves as a reasonable explanation for the phenomenon that energy deprivation and fibrate treatment, both of which cause activation of hepatic PPARα, causes a strong increase of hepatic carnitine concentration in rats. The present paper aimed to comprehensively analyse available data from genetic and animal studies with mice, rats, pigs, cows, and laying hens and from human studies in order to compare the regulation of genes involved in carnitine homeostasis by PPARα across different species. Overall, our comparative analysis indicates that the role of PPARα as a regulator of carnitine homeostasis is well conserved across different species. However, despite demonstrating a well-conserved role of PPARα as a key regulator of carnitine homeostasis in general, our comprehensive analysis shows that this assumption particularly applies to the regulation by PPARα of carnitine uptake which is obviously highly conserved across species, whereas regulation by PPARα of carnitine biosynthesis appears less well conserved across species.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
13
|
Selim ME, Rashed EHA, Aleisa NA, Daghestani MH. The protection role of heat shock protein 70 (HSP-70) in the testes of cadmium-exposed rats. Bioinformation 2012; 8:58-64. [PMID: 22359436 PMCID: PMC3282277 DOI: 10.6026/97320630008058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 02/08/2023] Open
Abstract
Cadmium (Cd) is an environmental carcinogenic pollutant known to inactivate several proteins involved in DNA repair systems while at the same time creating an oxidative stress that can result in additional DNA lesions. The testis and the lung are the target organs for cadmium carcinogenesis. Increased production of oxidants in vivo can cause damage to intracellular macromolecules such as DNA, proteins and lipids, which in turn lead to oxidative injury. So, this investigation aimed to evaluate the protective role of L-Carnitine through up regulation of HSPs against DNA damage induced by cadmium chloride. The current study was carried out on forty adult male rats, each with average weight 220-250g., were divided into 4 equal groups. 1(st) group was received saline solution (0.5 ml/100 g body weight) and kept as control. 2(nd) group was received 500mg / kg body weight L-Carnitine intraperitoneally (IP). 3(rd) group was administered 1.2 mg cadmium chloride IP. 4(th) group was received both cadmium chloride and L-Carnitine simultaneously. The comet assay parameters showed significantly increased HSP70 and DNA damage in testis cells after 10 and 56 days in the third group. Meanwhile, HSP70 showed significantly decreased levels after 10 days and 56 days in the fourth group after L-Carnitine treatment simultaneously with cadmium chloride. The results of the present study demonstrate a damaging effect of cadmium chloride on DNA of the testis cells (with low stress response). This damaging effect increases the synthesis of HSP70 that upregulated by L-Carnitine treatment and showed ameliorative effect of the cells for recovery.
Collapse
Affiliation(s)
- Manar E Selim
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA
- Zoology Department, Ain Shams University, Cairo, Egypt
| | - El Hamidi A Rashed
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA
| | - Nadia A Aleisa
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA
| | - Maha H Daghestani
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA
| |
Collapse
|
14
|
Casado C, Moya VJ, Pascual JJ, Blas E, Cervera C. Effect of oxidation state of dietary sunflower oil and dietary zinc and α -tocopheryl acetate supplementation on performance of fattening rabbits. WORLD RABBIT SCIENCE 2011. [DOI: 10.4995/wrs.2011.940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
König B, Fischer S, Schlotte S, Wen G, Eder K, Stangl GI. Monocarboxylate transporter 1 and CD147 are up-regulated by natural and synthetic peroxisome proliferator-activated receptor alpha agonists in livers of rodents and pigs. Mol Nutr Food Res 2011; 54:1248-56. [PMID: 20306479 DOI: 10.1002/mnfr.200900432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monocarboxylate transporter (MCT)-1 mediates the transport of ketone bodies and other monocarboxylic acids across the plasma membrane. MCT1 is up-regulated by peroxisome proliferator-activated receptor (PPAR)-alpha, a transcription factor that mediates the adaptive response to fasting by up-regulation of genes involved in fatty acid oxidation and ketogenesis. Here, we show for the first time that MCT1 is up-regulated by dietary natural PPAR-alpha agonists. Both, an oxidized fat and conjugated linoleic acids increased MCT1 mRNA concentration in the liver of rats. Also, in the liver of pigs as non-proliferating species MCT1 was up-regulated upon PPAR-alpha activation by clofibrate, oxidized fat and fasting. Concomitant with up-regulation of MCT1, mRNA level of CD147 was increased in livers of rats and pigs. CD147 is a plasma membrane glycoprotein that is required for translocation and transport activity of MCT1. CD147 mRNA increase upon PPAR-alpha activation could not be observed in mice lacking PPAR-alpha, which also fail in up-regulation of MCT1 indicating a co-regulation of MCT1 and CD147. Analysis of the 5'-flanking region of mouse MCT1 gene by reporter gene assay revealed that promoter activity of mouse MCT1 was not induced by PPAR-alpha, indicating that the 5'-flanking region is not involved in MCT1 regulation by PPAR-alpha.
Collapse
Affiliation(s)
- Bettina König
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Regulation of genes involved in lipid metabolism by dietary oxidized fat. Mol Nutr Food Res 2010; 55:109-21. [DOI: 10.1002/mnfr.201000424] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 11/07/2022]
|
17
|
Blas E, Cervera C, Rodenas L, Martínez E, Pascual J. The use of recycled oils from the food industry in growing rabbit feeds in substitution of fresh oil does not affect performance. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2010.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond) 2010; 7:30. [PMID: 20398344 PMCID: PMC2861661 DOI: 10.1186/1743-7075-7-30] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/16/2010] [Indexed: 02/06/2023] Open
Abstract
Carnitine is a conditionally essential nutrient that plays a vital role in energy production and fatty acid metabolism. Vegetarians possess a greater bioavailability than meat eaters. Distinct deficiencies arise either from genetic mutation of carnitine transporters or in association with other disorders such as liver or kidney disease. Carnitine deficiency occurs in aberrations of carnitine regulation in disorders such as diabetes, sepsis, cardiomyopathy, malnutrition, cirrhosis, endocrine disorders and with aging. Nutritional supplementation of L-carnitine, the biologically active form of carnitine, is ameliorative for uremic patients, and can improve nerve conduction, neuropathic pain and immune function in diabetes patients while it is life-saving for patients suffering primary carnitine deficiency. Clinical application of carnitine holds much promise in a range of neural disorders such as Alzheimer's disease, hepatic encephalopathy and other painful neuropathies. Topical application in dry eye offers osmoprotection and modulates immune and inflammatory responses. Carnitine has been recognized as a nutritional supplement in cardiovascular disease and there is increasing evidence that carnitine supplementation may be beneficial in treating obesity, improving glucose intolerance and total energy expenditure.
Collapse
|
19
|
The role of peroxisome proliferator-activated receptor α in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628:1-5. [DOI: 10.1016/j.ejphar.2009.11.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 11/08/2009] [Accepted: 11/17/2009] [Indexed: 12/26/2022]
|
20
|
PPARα Mediates Transcriptional Upregulation of Novel Organic Cation Transporters-2 and -3 and Enzymes Involved in Hepatic Carnitine Synthesis. Exp Biol Med (Maywood) 2008; 233:356-65. [DOI: 10.3181/0706-rm-168] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We tested the hypothesis that transcription of novel organic cation transporters (OCTNs) is directly regulated by peroxisome proliferator–activated receptor (PPAR)-α. Therefore, wild-type mice and mice deficient in PPARα (PPARα−/−) were treated with the PPARα agonist WY 14,643. Wild-type mice treated with WY 14,643 had a greater abundance of OCTN2 mRNA in their liver, muscle, kidney, and small intestine and a greater abundance of OCTN3 mRNA in kidney and small intestine than did untreated wild-type mice ( P < 0.05). Moreover, wild-type mice treated with WY 14,643 had greater mRNA abundances of enzymes involved in hepatic carnitine synthesis (4-N-trimethylaminobutyraldehyde dehydrogenase, γ-butyrobetaine dioxygenase) and increased carnitine concentrations in liver and muscle than did untreated wild-type mice ( P < 0.05). Untreated PPARα−/− mice had a lower abundance of OCTN2 mRNA in liver, kidney, and small intestine and lower carnitine concentrations in plasma, liver, and kidney than did untreated wild-type mice ( P < 0.05). In PPARα−/− mice, treatment with WY 14,643 did not influence mRNA abundance of OCTN2 and OCTN3 and carnitine concentrations in all tissues analyzed. The abundance of OCTN1 mRNA in all the tissues analyzed was not changed by treatment with WY 14,643 in wild-type or PPARα−/− mice. In conclusion, this study shows that transcriptional upregulation of OCTN2 and OCTN3 in tissues and of enzymes involved in hepatic carnitine biosynthesis are mediated by PPARα. It also shows that PPARα mediates changes of whole-body carnitine homeostasis in mice by upregulation of carnitine transporters and enzymes involved in carnitine synthesis.
Collapse
|
21
|
Luci S, Hirche F, Eder K. Fasting and Caloric Restriction Increases mRNA Concentrations of Novel Organic Cation Transporter-2 and Carnitine Concentrations in Rat Tissues. ANNALS OF NUTRITION AND METABOLISM 2008; 52:58-67. [DOI: 10.1159/000118872] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/06/2007] [Indexed: 11/19/2022]
|