1
|
Rašković A, Martić N, Tomas A, Andrejić-Višnjić B, Bosanac M, Atanasković M, Nemet M, Popović R, Krstić M, Vukmirović S, Stilinović N. Carob Extract ( Ceratonia siliqua L.): Effects on Dyslipidemia and Obesity in a High-Fat Diet-Fed Rat Model. Pharmaceutics 2023; 15:2611. [PMID: 38004588 PMCID: PMC10674595 DOI: 10.3390/pharmaceutics15112611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Dyslipidemia and obesity are recognized as two of the major global health issues and main risk factors for coronary heart disease and cerebrovascular disease. In recent years, carob has shown certain antioxidant and anti-dyslipidemic potential. In this study, Wistar rats were fed with a standard and cholesterol-enriched diet and treated orally with carob extract and simvastatin for four weeks. After sacrifice, blood samples were collected for biochemical analysis, and liver tissue was taken for histological and immunohistochemical assessment. Weight gain was significantly higher in groups fed with cholesterol-fortified granules; total cholesterol was found to be significantly lower in the hypercholesterolemic groups treated with simvastatin and simvastatin/carob combined regimens compared with hypercholesterolemic animals treated with saline (p < 0.05). The same was true for low-density lipoprotein cholesterol and the LDL/HDL ratio (p < 0.05). Adiponectin was remarkably higher in animals treated with simvastatin compared to all other groups (p < 0.05). Leptin was significantly lower in groups treated with carob and simvastatin compared to the hypercholesterolemic group treated with saline (p < 0.05). Carob/simvastatin co-administration reduced hepatocyte damage and improved liver morphology. A study confirmed the anti-dyslipidemic, anti-obesity, and hepatoprotective potential of carob pulp alone or in combination with simvastatin in the treatment of high-fat diet-fed rats.
Collapse
Affiliation(s)
- Aleksandar Rašković
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (S.V.); (N.S.)
| | - Nikola Martić
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (S.V.); (N.S.)
| | - Ana Tomas
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (S.V.); (N.S.)
| | - Bojana Andrejić-Višnjić
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.A.-V.); (M.B.)
| | - Milana Bosanac
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.A.-V.); (M.B.)
| | - Marko Atanasković
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (M.N.); (R.P.)
| | - Marko Nemet
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (M.N.); (R.P.)
| | - Radmila Popović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (M.N.); (R.P.)
- Clinical Department for Anesthesia, Intensive Care and Pain Management, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia
| | - Marko Krstić
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (S.V.); (N.S.)
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (S.V.); (N.S.)
| |
Collapse
|
2
|
Vitali M, Gandía M, Garcia-Llatas G, Tamayo-Ramos JA, Cilla A, Gamero A. Exploring the Potential of Rice, Tiger Nut and Carob for the Development of Fermented Beverages in Spain: A Comprehensive Review on the Production Methodologies Worldwide. BEVERAGES 2023; 9:47. [DOI: 10.3390/beverages9020047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rice, tiger nut and carob are Mediterranean products suitable for developing new foods, such as fermented beverages, due to their nutritional properties. These crops have a high carbohydrate content, are gluten and lactose-free and have a low allergenicity index. The development of fermented beverages from these crops can contribute to the Sustainable Development Goals by promoting human health and sustainable production and consumption. A narrative review of the nutritional value and potential functional activity of fermented beverages made from these crops was carried out. This literature review of existing studies on fermented and non-fermented beverages highlights their composition, production methodology, and health benefits. Fermented beverages made from these crops are high in fiber, essential fatty acids, vitamins (group B), and minerals. Fermentation increases the bioaccessibility of these nutrients while decreasing possible anti-nutritional factors. These fermented beverages offer several health benefits due to their antioxidant effects, modulating the intestinal microbiota and reducing the incidence of chronic degenerative diseases such as metabolic syndrome. Therefore, fermented rice, tiger nut and carob beverages can improve the Spanish diet by offering improved nutritional value and beneficial health effects. Additionally, these local crops promote sustainability, making them an appropriate choice for developing new fermented beverages.
Collapse
Affiliation(s)
- Matteo Vitali
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Mónica Gandía
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Guadalupe Garcia-Llatas
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Juan Antonio Tamayo-Ramos
- Biotechnology Management, Instituto Tecnológico del Embalaje, Transporte y Logística (ITENE), Carrer d’Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - Antonio Cilla
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Amparo Gamero
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
3
|
de la Fuente-Fernández M, de la Fuente-Muñoz M, Román-Carmena M, Amor S, García-Redondo AB, Blanco-Rivero J, González-Hedström D, Espinel AE, García-Villalón ÁL, Granado M. Carob Extract Supplementation Together with Caloric Restriction and Aerobic Training Accelerates the Recovery of Cardiometabolic Health in Mice with Metabolic Syndrome. Antioxidants (Basel) 2022; 11:antiox11091803. [PMID: 36139877 PMCID: PMC9495762 DOI: 10.3390/antiox11091803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Carob, the fruit of Ceratonia siliqua L. exerts antidiabetic, anti-inflammatory, and antioxidant effects and could be a useful strategy for the treatment and/or prevention of metabolic syndrome (MetS). The aim of this study was to analyze whether supplementation with a carob fruit extract (CSAT+®), alone or in combination with aerobic training, accelerates the recovery of cardiometabolic health in mice with MetS subjected to a caloric restriction. For this purpose, mice were fed with a high fat (58% kcal from fat)/high sugar diet for 23 weeks to induce MetS. During the next two weeks, mice with MetS were switched to a diet with a lower caloric content (25% kcal from fat) supplemented or not with CSAT+® (4.8%) and/or subjected to aerobic training. Both caloric reduction and aerobic training improved the lipid profile and attenuated MetS-induced insulin resistance measured as HOMA-IR. However, only supplementation with CSAT+® enhanced body weight loss, increased the circulating levels of adiponectin, and lowered the plasma levels of IL-6. Moreover, CSAT+® supplementation was the only effective strategy to reduce the weight of epidydimal adipose tissue and to improve insulin sensitivity in the liver and in skeletal muscle. Although all interventions improved endothelial function in aorta segments, only supplementation with CSAT+® reduced obesity-induced hypertension, prevented endothelial dysfunction in mesenteric arteries, and decreased the vascular response of aorta segments to the vasoconstrictor AngII. The beneficial cardiometabolic effects of CSAT+® supplementation, alone or in combination with aerobic training, were associated with decreased mRNA levels of pro-inflammatory markers such as MCP-1, TNFα, IL-1β, and IL-6 and with increased gene expression of antioxidant enzymes, such as GSR, GPX-3, and SOD-1 in the liver, gastrocnemius, retroperitoneal adipose tissue, and aorta. In conclusion, supplementation with CSAT+®, alone or in combination with aerobic training, to mice with MetS subjected to caloric restriction for two weeks enhances body weight loss, improves the lipid profile and insulin sensitivity, and exerts antihypertensive effects through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
| | - Mario de la Fuente-Muñoz
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Marta Román-Carmena
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ana Belén García-Redondo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- CIBER Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- CIBER Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel González-Hedström
- R&D Department, Pharmactive Biotech Products S.L.U., Parque Científico de Madrid, Calle Faraday 7, 28049 Madrid, Spain
| | - Alberto E. Espinel
- R&D Department, Pharmactive Biotech Products S.L.U., Parque Científico de Madrid, Calle Faraday 7, 28049 Madrid, Spain
| | | | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Mahmoudi S, Mahmoudi N, Benamirouche K, Estévez M, Mustapha MA, Bougoutaia K, Djoudi NEHB. Effect of feeding carob (Ceratonia siliqua L.) pulp powder to broiler chicken on growth performance, intestinal microbiota, carcass traits, and meat quality. Poult Sci 2022; 101:102186. [PMID: 36252501 PMCID: PMC9579416 DOI: 10.1016/j.psj.2022.102186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 12/01/2022] Open
Abstract
In this study, the influence of a partial substitution of corn with carob (Ceratonia siliqua L.) pulp powder on broiler performance, intestinal microbiota, carcass traits, and meat quality, was investigated. Two dietary treatments were compared: the control group received a diet containing basically corn, soybean meal, and wheat bran for all the breeding periods while the experimental group received the same starter diet as the control group and grower and finisher diets containing 3% and 7% of carob pulp powder, respectively. Growth performance (weight gain, feed intake, and feed conversion ratio), carcass traits, lactic acid bacteria, and total coliforms were determined. Physicochemical parameters, proximate composition, fatty acid profiles, lipid oxidation index, and sensory characteristics of broiler thigh and breast muscles were determined. Dietary supplementation with carob pulp powder did not show an effect (P > 0.05) on growth performance and carcass traits except for slaughter yield and breast relative weight. An increase in sum lactic acid bacteria count and a decrease in total coliforms were observed in the experimental group. No effect (P > 0.05) of dietary carob was observed on pH, cooking losses, ash, mineral, and protein contents in breast and thigh muscles from broilers. However, the experimental diet decreased (P < 0.05) moisture and fat contents in thigh muscles but not in breast muscles. Both muscles from the experimental group of birds exhibited lower palmitic and oleic acids contents, and higher linoleic and linolenic acids levels than those from the control group. Whereas the polyunsaturated fatty acid contents in broiler breast and thigh meat was increased by dietary carob, the concentration of lipid oxidation products decreased in this group. The dietary intervention had no significant effect on the sensory profile of breast and thigh muscles. Thus, carob pulp powder can be applied to broiler diet at 7% as a nonconventional feed with no negative impact on growth performance and carcass traits and to increase the degree of unsaturation with no negative impact on oxidative stability or sensory traits.
Collapse
Affiliation(s)
- Souhila Mahmoudi
- Department of Agronomic Sciences, University of Mohamed Boudiaf, PB-166 Msila 28000, Algeria; Institute of Applied Science and Technology, University of Saâd Dahlab, Blida, Algeria
| | - Nacéra Mahmoudi
- Department of Biotechnology, University of Saâd Dahlab, Blida, Algeria
| | - Karima Benamirouche
- Scientific and Technical Research Center in Physicochemical Analyses, Bousmail, Algeria
| | - Mario Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, Universidad de Extremadura, 10003 Cáceres, Spain.
| | - Mohamed Abou Mustapha
- Scientific and Technical Research Center in Physicochemical Analyses, Bousmail, Algeria
| | - Khadidja Bougoutaia
- Department of Agronomic Sciences, University of Mohamed Boudiaf, PB-166 Msila 28000, Algeria
| | | |
Collapse
|
5
|
Carob: A Sustainable Opportunity for Metabolic Health. Foods 2022; 11:foods11142154. [PMID: 35885396 PMCID: PMC9325207 DOI: 10.3390/foods11142154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/06/2023] Open
Abstract
Carob (Ceratonia siliqua L.) is an evergreen tree that belongs to the Leguminosae family and grows in the arid and semi-arid regions of the Mediterranean basin. The carob tree is resistant to droughts and salinity, while its deep root systems allow CO2 to sink, mitigating global warming effects. Traditionally, carob has been used to produce animal feed, but for many years, it was excluded from the human diet. Nowadays, agricultural and industrial sectors exploit carob fruit, also referred to as carob pod, and its primary products (i.e., flour, powder and syrup) to develop a variety of foods and beverages. The nutritional composition varies depending on the carob part but also on genetic, cultivar, seasonal and environmental factors. Despite the high sugar content, the carob pod is rich in insoluble fiber and microconstituents including phenolic compounds, inositols (mainly d-pinitol) and vitamins. In the present review article, we aimed to (a) highlight the role of carob cultivation in addressing climate change challenges and the need for sustainability, and (b) summarize the effects of carob consumption on obesity and related metabolic disorders.
Collapse
|
6
|
Nemet M, Vasilić M, Tomas A. Lipid-Lowering Effects of Carob Extracts (Ceratonia siliqua): Proposed Mechanisms and Clinical Importance. Front Pharmacol 2022; 13:921123. [PMID: 35847051 PMCID: PMC9277349 DOI: 10.3389/fphar.2022.921123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 01/20/2023] Open
Abstract
The global prevalence of dyslipidemia (elevated plasma levels of total cholesterol, LDL-Cholesterol, triglycerides, and lower plasma levels of HDL-Cholesterol) is constantly on the rise. Lately, carob pulp has been recognized as an effective natural product for the treatment of dyslipidemia. The two main components of the carob pulp, polyphenols, and insoluble fiber are believed to have beneficial effects on lipid metabolism. Studies on humans and animals confirmed its lipid-lowering effects. Several mechanisms have been proposed to explain this phenomenon, namely by affecting three organ systems: 1) gastrointestinal tract, 2) liver and 3) adipose tissue. Also, carob products have antioxidative, anti-inflammatory, and vascular-protective activity.
Collapse
Affiliation(s)
- Marko Nemet
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- *Correspondence: Marko Nemet,
| | - Milica Vasilić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ana Tomas
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
7
|
Tsaban G, Yaskolka Meir A, Zelicha H, Rinott E, Kaplan A, Shalev A, Katz A, Brikner D, Blüher M, Ceglarek U, Stumvoll M, Stampfer MJ, Shai I. Diet-induced Fasting Ghrelin Elevation Reflects the Recovery of Insulin Sensitivity and Visceral Adiposity Regression. J Clin Endocrinol Metab 2022; 107:336-345. [PMID: 34643713 DOI: 10.1210/clinem/dgab681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/15/2023]
Abstract
CONTEXT Lower fasting ghrelin levels (FGL) are associated with obesity and metabolic syndrome. OBJECTIVE We aimed to explore the dynamics of FGL during weight loss and its metabolic and adiposity-related manifestations beyond weight loss. METHODS This was a secondary analysis of a clinical trial that randomized participants with abdominal obesity/dyslipidemia to 1 of 3 diets: healthy dietary guidelines (HDG), Mediterranean diet (MED), or green-MED diet, all combined with physical activity (PA). Both MED diets were similarly hypocaloric and included 28 g/day walnuts. The green-MED group further consumed green tea (3-4 cups/day) and a Wolffia globosa (Mankai) plant green shake. We measured FGL and quantified body fat depots by magnetic resonance imaging at baseline and after 18 months. RESULTS Among 294 participants (body mass index = 31.3 kg/m2; FGL = 504 ± 208 pg/mL; retention rate = 89.8%), lower FGL was associated with unfavorable cardiometabolic parameters such as higher visceral adipose tissue (VAT), intrahepatic fat, leptin, and blood pressure (P < 0.05 for all; multivariate models). The ∆FGL18-month differed between men (+7.3 ± 26.6%) and women (-9.2% ± 21.3%; P = 0.001). After 18 months of moderate and similar weight loss among the MED groups, FGL increased by 1.3%, 5.4%, and 10.5% in HDG, MED, and green-MED groups, respectively (P = 0.03 for green-MED vs HDG); sex-stratified analysis revealed similar changes in men only. Among men, FGL18-month elevation was associated with favorable changes in insulin resistance profile and VAT regression, after adjusting for relative weight loss (HbA1c: r = -0.216; homeostatic model of insulin resistance: r = -0.154; HDL-c: r = 0.147; VAT: r = -0.221; P < 0.05 for all). Insulin resistance and VAT remained inversely related with FGL elevation beyond that explained by weight loss (residual regression analyses; P < 0.05). CONCLUSION Diet-induced FGL elevation may reflect insulin sensitivity recovery and VAT regression beyond weight loss, specifically among men. Green-MED diet is associated with greater FGL elevation.
Collapse
Affiliation(s)
- Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Soroka University Medical Center, Beer-Sheva, Israel
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ehud Rinott
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Aryeh Shalev
- Soroka University Medical Center, Beer-Sheva, Israel
| | - Amos Katz
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dov Brikner
- Nuclear Research Center Negev, Department of Medicine, Dimona, Israel
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Meir J Stampfer
- Harvard T.H. Chan School of Public Health and Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Harvard T.H. Chan School of Public Health and Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Barber TM, Kyrou I, Randeva HS, Weickert MO. Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. Int J Mol Sci 2021; 22:ijms22020546. [PMID: 33430419 PMCID: PMC7827338 DOI: 10.3390/ijms22020546] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity mediates most of its direct medical sequelae through the development of insulin resistance (IR). The cellular effects of insulin occur through two main postreceptor pathways that are the phosphatidylinositol 3-kinase (PI3-K) and the mitogen-activated protein kinase (MAP-K) pathways. Obesity-related IR implicates the PI3-K pathway that confers the metabolic effects of insulin. Numerous and complex pathogenic pathways link obesity with the development of IR, including chronic inflammation, mitochondrial dysfunction (with the associated production of reactive oxygen species and endoplasmic reticulum stress), gut microbiota dysbiosis and adipose extracellular matrix remodelling. IR itself plays a key role in the development of metabolic dysfunction, including hypertension, dyslipidaemia and dysglycaemia. Furthermore, IR promotes weight gain related to secondary hyperinsulinaemia, with a resulting vicious cycle of worsening IR and its metabolic sequelae. Ultimately, IR underlies obesity-related conditions such as type 2 diabetes mellitus (T2D) and polycystic ovary syndrome (PCOS). IR also underlies many obesity-related malignancies, through the effects of compensatory hyperinsulinaemia on the relatively intact MAP-K insulin pathway, which controls cellular growth processes and mitoses. Furthermore, the emergent data over recent decades support an important role of obesity- and T2D-related central IR in the development of cognitive dysfunction, including effects on hippocampal synaptic plasticity. Importantly, IR is largely reversible through the optimisation of lifestyle factors that include regular engagement in physical activity with the avoidance of sedentariness, improved diet including increased fibre intake and sleep sufficiency. IR lies at the key crossroad between obesity and both metabolic and cognitive dysfunction. Given the importance of IR in the pathogenesis of many 21st century chronic diseases and its eminent reversibility, it is important that we all embrace and facilitate optimised lifestyles to improve the future health and wellbeing of the populace.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Correspondence:
| |
Collapse
|
9
|
The Health Benefits of Dietary Fibre. Nutrients 2020; 12:nu12103209. [PMID: 33096647 PMCID: PMC7589116 DOI: 10.3390/nu12103209] [Citation(s) in RCA: 368] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dietary fibre consists of non-digestible forms of carbohydrate, usually as polysaccharides that originate from plant-based foods. Over recent decades, our diet within Westernised societies has changed radically from that of our hominid ancestors, with implications for our co-evolved gut microbiota. This includes increased ingestion of ultra-processed foods that are typically impoverished of dietary fibre, and associated reduction in the intake of fibre-replete plant-based foods. Over recent decades, there has been a transformation in our understanding of the health benefits of dietary fibre. Objective: To explore the current medical literature on the health benefits of dietary fibre, with a focus on overall metabolic health. Data Sources: We performed a narrative review, based on relevant articles written in English from a PubMed search, using the terms ‘dietary fibre and metabolic health’. Results: In the Western world, our diets are impoverished of fibre. Dietary fibre intake associates with overall metabolic health (through key pathways that include insulin sensitivity) and a variety of other pathologies that include cardiovascular disease, colonic health, gut motility and risk for colorectal carcinoma. Dietary fibre intake also correlates with mortality. The gut microflora functions as an important mediator of the beneficial effects of dietary fibre, including the regulation of appetite, metabolic processes and chronic inflammatory pathways. Conclusions: Multiple factors contribute to our fibre-impoverished modern diet. Given the plethora of scientific evidence that corroborate the multiple and varied health benefits of dietary fibre, and the risks associated with a diet that lacks fibre, the optimization of fibre within our diets represents an important public health strategy to improve both metabolic and overall health. If implemented successfully, this strategy would likely result in substantial future health benefits for the population.
Collapse
|
10
|
Glycaemic regulation, appetite and ex vivo oxidative stress in young adults following consumption of high-carbohydrate cereal bars fortified with polyphenol-rich berries. Br J Nutr 2020; 121:1026-1038. [PMID: 31062684 DOI: 10.1017/s0007114519000394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Consumption of certain berries appears to slow postprandial glucose absorption, attributable to polyphenols, which may benefit exercise and cognition, reduce appetite and/or oxidative stress. This randomised, crossover, placebo-controlled study determined whether polyphenol-rich fruits added to carbohydrate-based foods produce a dose-dependent moderation of postprandial glycaemic, glucoregulatory hormone, appetite and ex vivo oxidative stress responses. Twenty participants (eighteen males/two females; 24 (sd 5) years; BMI: 27 (sd 3) kg/m2) consumed one of five cereal bars (approximately 88 % carbohydrate) containing no fruit ingredients (reference), freeze-dried black raspberries (10 or 20 % total weight; LOW-Rasp and HIGH-Rasp, respectively) and cranberry extract (0·5 or 1 % total weight; LOW-Cran and HIGH-Cran), on trials separated by ≥5 d. Postprandial peak/nadir from baseline (Δmax) and incremental postprandial AUC over 60 and 180 min for glucose and other biochemistries were measured to examine the dose-dependent effects. Glucose AUC0-180 min trended towards being higher (43 %) after HIGH-Rasp v. LOW-Rasp (P=0·06), with no glucose differences between the raspberry and reference bars. Relative to reference, HIGH-Rasp resulted in a 17 % lower Δmax insulin, 3 % lower C-peptide (AUC0-60 min and 3 % lower glucose-dependent insulinotropic polypeptide (AUC0-180 min) P<0·05. No treatment effects were observed for the cranberry bars regarding glucose and glucoregulatory hormones, nor were there any treatment effects for either berry type regarding ex vivo oxidation, appetite-mediating hormones or appetite. Fortification with freeze-dried black raspberries (approximately 25 g, containing 1·2 g of polyphenols) seems to slightly improve the glucoregulatory hormone and glycaemic responses to a high-carbohydrate food item in young adults but did not affect appetite or oxidative stress responses at doses or with methods studied herein.
Collapse
|
11
|
Carbas B, Salinas MV, Serrano C, Passarinho JA, Puppo MC, Ricardo CP, Brites C. Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9945-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Changes in Plasma Acylcarnitine and Lysophosphatidylcholine Levels Following a High-Fructose Diet: A Targeted Metabolomics Study in Healthy Women. Nutrients 2018; 10:nu10091254. [PMID: 30200659 PMCID: PMC6165514 DOI: 10.3390/nu10091254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The consumption of high amounts of fructose is associated with metabolic diseases. However, the underlying mechanisms are largely unknown. Objective: To determine the effects of high fructose intake on plasma metabolomics. Study design: We enrolled 12 healthy volunteers (six lean and six obese women, age 24–35 years) in a crossover intervention study. All participants carried out three diets: (1) low fructose (<10 g/day); (2) high fructose (100 g/day) from natural food sources (fruit); and (3) high fructose (100 g/day) from high fructose syrup (HFS). Outcome measures: The primary outcome was changes in plasma metabolites measured by targeted metabolomics. Results: High compared to low fructose diets caused a marked metabolite class separation, especially because of changes in acylcarnitine and lysophosphatidylcholine levels. Both high fructose diets resulted in a decrease in mean acylcarnitine levels in all subjects, and an increase in mean lysophosphatidylcholine and diacyl-phosphatidylcholine levels in obese individuals. Medium chain acylcarnitines were negatively correlated with serum levels of liver enzymes and with the fatty liver index. Discussion: The metabolic shifts induced by high fructose consumption suggest an inhibition of mitochondrial β-oxidation and an increase in lipid peroxidation. The effects tended to be more pronounced following the HFS than the fruit diet.
Collapse
|
13
|
Papakonstantinou E, Chaloulos P, Papalexi A, Mandala I. Effects of bran size and carob seed flour of optimized bread formulas on glycemic responses in humans: A randomized clinical trial. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
14
|
Srikanta AH, Kumar A, Sukhdeo SV, Peddha MS, Govindaswamy V. The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin-induced diabetic Wistar rats. Food Funct 2018; 7:4422-4431. [PMID: 27711821 DOI: 10.1039/c6fo00372a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyphenols act by scavenging reactive oxygen species during oxidative stress and hence are useful in the treatment of metabolic disorders including diabetes. This study describes the effect of polyphenol rich mulberry and jamun wines fed to streptozotocin-induced diabetic rats. To male adult Wistar rats, divided into groups (n = 10 per group) intraperitoneal injection was administered with streptozotocin at 38 mg per kg body weight for inducing diabetes. After confirmation of diabetes, rats divided into groups were fed each day with 5.7 milliliter per kg body weight of mulberry, jamun, white and red grape wines for 6 weeks. One group of animals received resveratrol at 20 mg per kg body weight. After six weeks of treatment, blood glucose, urinary profile, lipid profile, plasma, liver, kidney, brain and eye antioxidant enzyme activities, lipid peroxidation, non-esterified fatty acids (NEFA) and hepatic glutathione (GSH) content were determined. Though wine and resveratrol feeding did not improve the glycemic status of diabetic rats, increases in antioxidant enzymes and GSH content accompanied by reduced NEFA and lipid peroxidation were observed. The kidneys and brains of resveratrol fed rats showed significant reduction in malondialdehyde equivalents, exhibited an improved antioxidant status of tissues and an increased glutathione content. The findings suggested that the wines can ameliorate the consequences of diabetes due to their antioxidants.
Collapse
Affiliation(s)
- Akshatha Hosahalli Srikanta
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India.
| | - Anbarasu Kumar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India.
| | - Shinde Vijay Sukhdeo
- Animal House Facility, CSIR-Central Food Technological Research Institute, Mysore, India
| | | | - Vijayalakshmi Govindaswamy
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
15
|
Papakonstantinou E, Orfanakos N, Farajian P, Kapetanakou AE, Makariti IP, Grivokostopoulos N, Ha MA, Skandamis PN. Short-term effects of a low glycemic index carob-containing snack on energy intake, satiety, and glycemic response in normal-weight, healthy adults: Results from two randomized trials. Nutrition 2017; 42:12-19. [PMID: 28870473 DOI: 10.1016/j.nut.2017.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The potential positive health effects of carob-containing snacks are largely unknown. Therefore, the aims of these studies were to determine the glycemic index (GI) of a carob snack compared with chocolate cookie containing equal amounts of available carbohydrates and to compare the effects of a carob versus chocolate cookie preload consumed as snack before a meal on (a) short-term satiety response measured by subsequent ad libitum meal intake, (b) subjective satiety as assessed by visual analog scales and (c) postprandial glycemic response. METHODS Ten healthy, normal-weight volunteers participated in GI investigation. Then, 50 healthy, normal-weight individuals consumed, crossover, in random order, the preloads as snack, with 1-wk washout period. Ad libitum meal (lunch and dessert) was offered. Capillary blood glucose samples were collected at baseline, 2 h after breakfast, just before preload consumption, 2 h after preload, 3 h after preload, just before meal (lunch and dessert), 1 h after meal, and 2 h after meal consumption. RESULTS The carob snack was a low GI food, whereas the chocolate cookie was a high GI food (40 versus 78, respectively, on glucose scale). Consumption of the carob preload decreased the glycemic response to a following meal and to the individual's feelings of hunger, desire to eat, preoccupation with food, and thirst between snack and meal, as assessed with the use of visual analog scales. Subsequently, participants consumed less amounts of food (g) and had lower total energy intake at mealtimes. CONCLUSIONS The carob snack led to increased satiety, lower energy intake at meal, and decreased postmeal glycemic response possibly due to its low GI value. Identifying foods that promote satiety and decrease glycemic response without increasing the overall energy intake may offer advantages to body weight and glycemic control.
Collapse
Affiliation(s)
- Emilia Papakonstantinou
- Unit of Human Nutrition, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Nickolaos Orfanakos
- Unit of Human Nutrition, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Paul Farajian
- Unit of Human Nutrition, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Anastasia E Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Ifigenia P Makariti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Nikolaos Grivokostopoulos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Marie-Ann Ha
- Medical Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
16
|
Kaliora AC, Kanellos PT, Gioxari A, Karathanos VT. Regulation of GIP and Ghrelin in Healthy Subjects Fed on Sun-Dried Raisins: A Pilot Study with a Crossover Trial Design. J Med Food 2017; 20:301-308. [PMID: 28170279 DOI: 10.1089/jmf.2016.0123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The comparative effects of glucose and fructose on appetite and specifically on hormones regulating appetite remain controversial, and the role of different types of sugars has not been investigated broadly. To estimate the effect of raisins, a dried fruit rich in fructose, fibers, and phenolics, on hormones involved in the postprandial response. Ten healthy normal-weight subjects received in a crossover design 74 g raisins or 50 g glucose as reference food. Glucose, insulin, and appetite hormones were measured at time 0 and 60, 120, and 180 min after consumption. Glucose and insulin peaked significantly at 60 min in both trials with no difference in two trials. Gastric inhibitory peptide peaked significantly at 60 min in both trials and was found lower in raisin compared to glucose at 60 and 120 min postprandially. Ghrelin was lower in raisin compared to glucose at 120 and at 180 min postingestion. Ghrelin/obestatin ratio was lower at 120 min in raisin compared to glucose. No differences were reported for glucagon-like peptide-1, apelin, and obestatin in either trial. Raisin consumption could be favorable in terms of regulating appetite compared to refined sugars or glucose-based products in normal-weight healthy subjects.
Collapse
Affiliation(s)
- Andriana C Kaliora
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University , Athens, Greece
| | - Panagiotis T Kanellos
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University , Athens, Greece
| | - Aristea Gioxari
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University , Athens, Greece
| | - Vaios T Karathanos
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University , Athens, Greece
| |
Collapse
|
17
|
Serrano J, Casanova-Martí À, Depoortere I, Blay MT, Terra X, Pinent M, Ardévol A. Subchronic treatment with grape-seed phenolics inhibits ghrelin production despite a short-term stimulation of ghrelin secretion produced by bitter-sensing flavanols. Mol Nutr Food Res 2016; 60:2554-2564. [PMID: 27417519 DOI: 10.1002/mnfr.201600242] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 12/26/2022]
Abstract
SCOPE Grape-seed phenolic compounds have recently been described as satiating agents in rats when administered as a whole phenolic extract (GSPE). This satiating effect may involve the release of satiating gut hormones such as GLP-1, although a short-term increase in the orexigenic hormone ghrelin was also reported. In this study, we investigated the short- and long-term effects of GSPE in rats, focusing on the role of the main grape-seed phenolics in ghrelin secretion. METHODS AND RESULTS GSPE produced a short-term increase in plasma ghrelin in rats after an acute treatment. A mouse ghrelinoma cell line was used to test the effects of the main pure grape-seed phenolic compounds on ghrelin release. Monomeric flavanols stimulated ghrelin secretion by activating bitter taste receptors. In contrast, gallic acid (GA) and oligomeric flavanols inhibited ghrelin release. The ghrelin-inhibiting effects of GA were confirmed in rats and in rat duodenal segments. One day after the last dose of a subchronic treatment, GSPE decreased plasma ghrelin in rats, ghrelin secretion in intestinal segments, and ghrelin mRNA expression in stomach. CONCLUSION The sustained satiating effects of GSPE are related to a long-term decrease in ghrelin expression. GA and oligomeric flavanols play a ghrelin-inhibiting role in this process.
Collapse
Affiliation(s)
- Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Àngela Casanova-Martí
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Maria Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
18
|
The effect of consuming low- versus high-glycemic index meals after exercise on postprandial blood lipid response following a next-day high-fat meal. Nutr Diabetes 2016; 6:e216. [PMID: 27376698 PMCID: PMC4973139 DOI: 10.1038/nutd.2016.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022] Open
Abstract
Background/Objectives: Exercise performed shortly before (that is, within half a day of) a high-fat meal is beneficial for stimulating fat oxidation after the meal and reducing postprandial triglycerides (TG). This benefit of exercise is unfortunately negated if the after-exercise food choice to replace the calories expended during exercise is one containing high-glycemic index (HGI) carbohydrates. We determined the effect of consuming low-glycemic index (LGI) carbohydrates after an exercise session on fat oxidation and TG after a subsequent high-fat meal. Subjects/Methods: Using a randomized, counterbalanced crossover design, 23 overweight or obese individuals (body mass index ⩾25 kg m−2) performed: walking exercise (90 min) at 1800 h followed by no meal (EX); exercise followed by a meal with LGI carbohydrates (that is, lentils, EX-LGI); exercise followed by a meal with HGI carbohydrates (that is, instant potatoes, white bread, EX-HGI); and a control condition with no exercise or meal. After a 10-h overnight fast, participants were given a standardized high-fat meal. Fat oxidation was estimated before and for 6 h after this meal from respiratory gas measures and TG determined from blood samples. Results: Fat oxidation (mean±s.d.) was higher with EX (6.9±1.7 g h−1) than EX-HGI (6.3±1.6 g h−1; P=0.007) and Control (5.9±1.7 g h−1; P=0.00002), and EX-LGI (6.6±1.7 g h−1) was higher than Control (P=0.002). TG total area under the curve was 18–32% lower with EX and EX-LGI compared with control (P=0.0005 and P=0.0001, respectively) and EX-HGI (P=0.05 and P=0.021, respectively). Conclusions: A meal containing HGI carbohydrates consumed after an evening exercise session cancels the beneficial effect of exercise for stimulating fat oxidation and lowering TG after a subsequent high-fat meal, whereas consuming a post-exercise meal with LGI carbohydrates retains the positive effect of exercise.
Collapse
|
19
|
Pinent M, Blay M, Serrano J, Ardévol A. Effects of flavanols on the enteroendocrine system: Repercussions on food intake. Crit Rev Food Sci Nutr 2015; 57:326-334. [DOI: 10.1080/10408398.2013.871221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Padayachee A, Day L, Howell K, Gidley MJ. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit Rev Food Sci Nutr 2015; 57:59-81. [DOI: 10.1080/10408398.2013.850652] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Padayachee
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| | - L. Day
- CSIRO Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - K. Howell
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| | - M. J. Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
21
|
Valero-Muñoz M, Martín-Fernández B, Ballesteros S, Lahera V, de las Heras N. Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through sirtuin-1 and peroxisome proliferator-activated receptor-γ coactivator-1α. J Nutr 2014; 144:1378-84. [PMID: 25031331 DOI: 10.3945/jn.114.196113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to evaluate the potential effects of an insoluble dietary fiber from carob pod (IFC) (1 g ⋅ kg(-1) ⋅ d(-1) in the diet) on alterations associated with atherosclerosis in rabbits with dyslipidemia. Male New Zealand rabbits (n = 30) were fed the following diets for 8 wk: 1) a control diet (SF412; Panlab) as a control group representing normal conditions; 2) a control supplemented with 0.5% cholesterol + 14% coconut oil (DL) (SF302; Panlab) for 8 wk as a dyslipidemic group; and 3) a control containing 0.5% cholesterol + 14% coconut oil plus IFC (1 g ⋅ kg(-1) ⋅ d(-1)) (DL+IFC) for 8 wk. IFC was administered in a pellet mixed with the DL diet. The DL-fed group developed mixed dyslipidemia and atherosclerotic lesions, which were associated with endothelial dysfunction, inflammation, and fibrosis. Furthermore, sirtuin-1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein expression in the aorta were reduced to 77% and 63% of the control group, respectively (P < 0.05), in these rabbits. Administration of IFC to DL-fed rabbits reduced the size of the aortic lesion significantly (DL, 15.2% and DL+IFC, 2.6%) and normalized acetylcholine-induced relaxation (maximal response: control, 89.3%; DL, 61.6%; DL+IFC, 87.1%; P < 0.05) and endothelial nitric oxide synthase expression (DL, 52% and DL+IFC, 104% of the control group). IFC administration to DL-fed rabbits also reduced cluster of differentiation 36 (DL, 148% and DL+IFC, 104% of the control group; P < 0.05), plasminogen activator inhibitor-1 (DL, 141% and DL+IFC, 107% of the control group), tumor necrosis factor-α (DL, 166% and DL+IFC, 120% of the control group), vascular cell adhesion molecule-1 (DL, 153% and DL+IFC, 110% of the control group), transforming growth factor-β (DL, 173% and DL+IFC, 99% of the control group), and collagen I (DL, 157% and DL+IFC, 112% of the control group) in the aorta. These effects were accompanied by an enhancement of SIRT1 and PGC-1α (160% and 121% of the control group, respectively; P < 0.05) vascular expression. In summary, we demonstrated for the first time, to our knowledge, that administration of IFC reduces the development of atherosclerosis in rabbits. This effect seems to be related to an improvement in endothelial function and a reduction of inflammation and fibrosis, most probably as a consequence of the reduction of serum concentrations of cholesterol and triglycerides. Increased expression of aortic SIRT1 and PGC-1α could play an important role in the observed effects of IFC in rabbits with dyslipidemia.
Collapse
Affiliation(s)
- María Valero-Muñoz
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Sandra Ballesteros
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Vicente Lahera
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Natalia de las Heras
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
22
|
Bernardo-Gil MG, Roque R, Roseiro LB, Duarte LC, Gírio F, Esteves P. Supercritical extraction of carob kibbles (Ceratonia siliqua L.). J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2011.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Cherniack EP. Polyphenols: planting the seeds of treatment for the metabolic syndrome. Nutrition 2011; 27:617-23. [PMID: 21367579 DOI: 10.1016/j.nut.2010.10.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 11/18/2022]
Abstract
Greater understanding about the pathogenesis of metabolic syndrome and potential causes suggests that plant polyphenols might be useful as a treatment. Dietary excess energy can be stored in adipocytes, leading to the release of proinflammatory cytokines and adipose-related hormones that cause vascular injury. Plant polyphenols, organic compounds found in numerous plant species and their fruits, are being actively studied as potential treatments for components of the metabolic syndrome. Individual polyphenols that have been examined include resveratrol, quercetin, epigallocathechin-3-gallate, and curcumin. Resveratrol lowers weight, blood pressure, glucose, and insulin resistance in rodents, and a human trial is currently underway. Quercetin decreases lipid and glucose levels in obese rats, and in a human investigation of subjects with the metabolic syndrome has lowered blood pressure without significant alteration of lipids. Epigallocathechin-3-gallate-induced weight loss has attenuated glucose levels and insulin resistance in rodents and improved hemoglobin A(1c) and lipid in human studies. Plant extracts also can be used. Grape seed and chokeberry extracts have decreased blood pressure and lipid levels in small human trials. Other human investigations have shown the beneficial effects of cocoa, coffee, carob, and Momordica charantia. Thus far, most studies have involved a small number of subjects and have been of short duration. Future studies should be designed to account for a disease process in which the pathogenic factors may take place for years before disease manifestations take place, the possibly limited bioavailability of polyphenols, and the potential need to provide combinations or modifications of polyphenols.
Collapse
Affiliation(s)
- E Paul Cherniack
- Geriatrics Institute, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|