1
|
Ahire ED, Surana KR, Khairnar SJ, Laddha UD, Kshirsagar SJ, Rajora AK, Keservani RK. Role of protein-rich diet in brain functions. NUTRACEUTICAL FRUITS AND FOODS FOR NEURODEGENERATIVE DISORDERS 2024:505-523. [DOI: 10.1016/b978-0-443-18951-7.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Whey Versus Casein as a Protein Source during the Weaning Period: Impact on Growth and Later Adiposity and Glucose Homeostasis in a Rat Model of Intrauterine Growth Restriction. Nutrients 2020; 12:nu12113399. [PMID: 33167459 PMCID: PMC7694472 DOI: 10.3390/nu12113399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
The impact of early life protein source (whey vs. casein) on short- and long-term glucose homeostasis and adiposity is unknown and was investigated in this study. At the end of the suckling period, non-IUGR (intrauterine growth restriction) and IUGR pups were separated from dams and were randomized into four groups. From age 21-49 days, non-IUGR and IUGR pups were fed ad-libitum chow or a semi-synthetic diet (20% from protein; casein or whey) and from age 50-199 days, all groups were fed ad-libitum chow. Food intake, body composition, glucose, and insulin homeostasis were assessed. Among the chow groups, IUGR had slower growth and higher fasting glucose at age 42 days, as well as higher fasting and AUC glucose at age 192 days relative to non-IUGR. The whey IUGR group had a slower growth rate and higher fasting glycemia in early life (age 21-49 days) and higher HOMA-IR later in life (age 120-122 and 190-192 days) relative to casein IUGR. This study shows the potential advantage of casein relative to whey during weaning on short term energy intake, growth, and glucose homeostasis in an IUGR model and reveals, for the first time, its long term impact on insulin sensitivity, which may have implications for later metabolic health, particularly in small-for-gestational-age populations at risk of type 2 diabetes.
Collapse
|
3
|
Shafie A, Rahimi AM, Ahmadi I, Nabavizadeh F, Ranjbaran M, Ashabi G. High-protein and low-calorie diets improved the anti-aging Klotho protein in the rats' brain: the toxic role of high-fat diet. Nutr Metab (Lond) 2020; 17:86. [PMID: 33072166 PMCID: PMC7559193 DOI: 10.1186/s12986-020-00508-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the current study, our specific aim was to characterize the Klotho protein and expression levels in the hippocampus and prefrontal cortex of old rats treated with different diets (high-fat, high-protein, low-calorie, high-protein and low-calorie). METHODS Rats were treated with high-fat, high-protein, low-calorie, low-calorie high-protein diets for 10 weeks and then behavioral and molecular assessments were evaluated. RESULTS Statistical analysis showed the percentage of open arm time was increased in the high-protein, low-calorie and low-calorie high-protein groups compared with old control (old-C) rats. The percentage of open arm entries was increased in the low-calorie and low-calorie high-protein group compared with old-C rats. The body weight and serum triglyceride were decreased in the low-calorie and low-calorie high-protein groups in comparison to control old rats. Low-calorie and low-calorie high-protein treatments statistically enhanced caspase-3 level compared with old-C rats in the hippocampus and prefrontal cortex. Treatment of old rats with high-protein, low-calorie and low-calorie high-protein could increase Klotho-α level compared with control old rats. The levels of Klotho-α, c-fos and brain-derived neurotrophic factors were decreased in the low-calorie high-protein group in Klotho inhibitor's presence compared with the low-calorie high-protein group. CONCLUSION According to our findings, Klotho-α level was reduced in old rats. Low-calorie, high-protein and particularly low-calorie high-protein diets increased this protein level and consequently increased neuronal plasticity and improved memory function. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Anahid Shafie
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, P.O.box: 1417613151, Tehran, Iran
| | - Ahmad Mustafa Rahimi
- Department of Physiology, School of Medicine, Alberoni University, Kohestan, Afghanistan
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, P.O.box: 1417613151, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, P.O.box: 1417613151, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, P.O.box: 1417613151, Tehran, Iran
| |
Collapse
|
4
|
Effects of biscuit fortified with whey protein isolate and wheat bran on weight loss, energy intake, appetite score, and appetite regulating hormones among overweight or obese adults. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Althwab SA, Alsudais MA, Mousa HM, Ashoush IS, Hamad EM. Reduction of Lipid Profile and Adipocyte Size in Rats Fed on High-fat Diet Using Camel Milk and Whey Protein Mixture. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sami A. Althwab
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University
| | - Monther A. Alsudais
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University
| | - Hassan M. Mousa
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University
| | - Ihab S. Ashoush
- Food Science Department, Faculty of Agriculture, Ain Shams University
| | - Essam M. Hamad
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University
- Dairy Sci. Dept., Faculty of Agriculture, Cairo University
| |
Collapse
|
6
|
Li S, Liu L, He G, Wu J. Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food Funct 2018; 9:42-52. [PMID: 29188845 DOI: 10.1039/c7fo01323j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioactive peptides are present in all living organisms and have critical roles ranging from protection against infection as the key element of innate immunity, regulating blood pressure and glucose levels, to reducing signs of ageing by killing senescent cells. Bioactive peptides are also encrypted within food protein sequences that can be released during proteolysis or food processing. These specific food protein fragments are reported to have potential for improving human health and preventing metabolic diseases through their impact on inflammation, blood pressure, obesity, and type-2 diabetes. This review mainly focuses on the molecular targets and the underlying mechanisms of bioactive peptides against various metabolic syndromes including inflammation, high blood pressure, obesity, and type-2 diabetes, to provide new insights and perspectives on the potential of bioactive peptides for management of metabolic syndromes.
Collapse
Affiliation(s)
- Shanshan Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | | | | | | |
Collapse
|
7
|
Foegeding EA, Plundrich N, Schneider M, Campbell C, Lila MA. Reprint of ‘Protein-polyphenol particles for delivering structural and health functionality’. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Shimano RC, Yanagihara GR, Macedo AP, Yamanaka JS, Shimano AC, Tavares JMRS, Issa JPM. Effects of high-impact exercise on the physical properties of bones of ovariectomized rats fed to a high-protein diet. Scand J Med Sci Sports 2018; 28:1523-1531. [PMID: 29345841 DOI: 10.1111/sms.13058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the effects of high-impact physical exercise as a prophylactic and therapeutic means in osteopenic bones of rats submitted to ovariectomy and protein diet intake. A total of 64 Wistar rats were divided into eight groups (n = 8 each), being: OVX, ovx, standard diet and sedentary; OVXE, ovx, standard diet and jump; OVXP, ovx, high-protein diet and sedentary; and OVXEP, ovx, high-protein diet and jump; SH, sham, standard diet and sedentary; SHE, sham, standard diet and jump; SHP, sham, high-protein diet and sedentary; and SHEP, sham, high-protein diet and jump. OVX surgery consists of ovariectomy, and sham was the control surgery. The jumping protocol consisted of 20 jumps/day, 5 days/week. The bone structure was evaluated by densitometry, mechanical tests, histomorphometric, and immunohistochemical analyses. A high-protein diet resulted in increased bone mineral density (P = .049), but decreased maximal load (P = .026) and bone volume fraction (P = .023). The benefits of physical exercise were demonstrated by higher values of the maximal load in the trained groups compared to the sedentary groups (P < .001). The sham groups had decreased immunostaining of osteocalcin (P = .004) and osteopontin (P = .010) compared to ovx groups. However, the high-protein diet (P = .005) and jump exercise (P = .017) resulted in lower immunostaining of osteopontin compared to the standard diet and sedentary groups, respectively. In this experimental model, it was concluded that ovariectomy and a high-fat diet can negatively affect bone tissue and the high-impact exercise was not enough to suppress the deleterious effects caused by the protein diet and ovariectomy.
Collapse
Affiliation(s)
- R C Shimano
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - G R Yanagihara
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A P Macedo
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J S Yamanaka
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A C Shimano
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J M R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - J P M Issa
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Stender EGP, Koutina G, Almdal K, Hassenkam T, Mackie A, Ipsen R, Svensson B. Isoenergic modification of whey protein structure by denaturation and crosslinking using transglutaminase. Food Funct 2018; 9:797-805. [DOI: 10.1039/c7fo01451a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural effect of denaturation of whey protein by heat or pH and subsequent crosslinking by transglutaminase.
Collapse
Affiliation(s)
- Emil G. P. Stender
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- Denmark
| | - Glykeria Koutina
- Department of Food Science
- University of Copenhagen
- Copenhagen
- Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
| | - Tue Hassenkam
- Department of Chemistry
- University of Copenhagen
- Copenhagen
- Denmark
| | - Alan Mackie
- Institute of Food Research
- Norwich Research Park
- Colney
- UK
- School of Food Science and Nutrition
| | - Richard Ipsen
- Department of Food Science
- University of Copenhagen
- Copenhagen
- Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- Denmark
| |
Collapse
|
10
|
Hadri Z, Rasoamanana R, Fromentin G, Azzout-Marniche D, Even PC, Gaudichon C, Darcel N, Bouras AD, Tomé D, Chaumontet C. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet. Physiol Behav 2017; 182:114-120. [PMID: 29030250 DOI: 10.1016/j.physbeh.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/17/2022]
Abstract
The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity.
Collapse
Affiliation(s)
- Zouheyr Hadri
- Laboratoire de Bioressources Naturelles Locales, Département de biologie, Faculté des sciences de la nature et de la vie, Université Hassiba Ben Bouali - Chlef, Algeria
| | - Rojo Rasoamanana
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16, rue Claude Bernard, F-75005 Paris, France
| | - Gilles Fromentin
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16, rue Claude Bernard, F-75005 Paris, France
| | - Dalila Azzout-Marniche
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16, rue Claude Bernard, F-75005 Paris, France
| | - Patrick C Even
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16, rue Claude Bernard, F-75005 Paris, France
| | - Claire Gaudichon
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16, rue Claude Bernard, F-75005 Paris, France
| | - Nicolas Darcel
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16, rue Claude Bernard, F-75005 Paris, France
| | - Abdelkader Dilmi Bouras
- Laboratoire de Bioressources Naturelles Locales, Département de biologie, Faculté des sciences de la nature et de la vie, Université Hassiba Ben Bouali - Chlef, Algeria
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16, rue Claude Bernard, F-75005 Paris, France
| | - Catherine Chaumontet
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16, rue Claude Bernard, F-75005 Paris, France.
| |
Collapse
|
11
|
|
12
|
Alshahrani A, Bin Khunayfir A, Al Rayih M, Al Sayed H, Alsadoon A, Al Dubayee M, Zahra M, Alrumayyan Y, Al Zayer M, Nasr A, Aljada A. Phenotypic Characterization of Human Monocytes following Macronutrient Intake in Healthy Humans. Front Immunol 2017; 8:1293. [PMID: 29109719 PMCID: PMC5660602 DOI: 10.3389/fimmu.2017.01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/26/2017] [Indexed: 01/04/2023] Open
Abstract
Background Three subsets of human monocytes in circulation have been identified and their characterization is still ill-defined. Although glucose and lipid intakes have been demonstrated to exert pro-inflammatory effects on mononuclear cells (MNCs) of healthy subjects, characterization of monocytes phenotypes following macronutrient (glucose, protein, and lipid) intake in humans remains to be determined. Methods Thirty-six healthy, normal weight volunteers were recruited in the study. Subjects were randomly assigned into three groups, each group consisting of 12 participants. Each group drank equal calories (300 kcal) of either glucose or lipids or whey proteins. Each subject served as his own control by drinking 300 mL of water 1 week before or after the caloric intake. Baseline blood samples were drawn at 0, 1, 2, and 3-h intervals post caloric or water intakes. MNCs were isolated, and the expression levels of different cluster of differentiation (CD) markers (CD86, CD11c, CD169, CD206, CD163, CD36, CD68, CD11b, CD16, and CD14) and IL-6 were measured by RT-qPCR. Results Equicaloric intake of either glucose or lipids or whey proteins resulted in different monocyte phenotypes as demonstrated by changes in the expression levels of CD and polarization markers. Whey proteins intake resulted in significant mRNA upregulation in MNCs of CD68 and CD11b at 1, 2, and 3 h post intake while mRNA of IL-6 was significantly inhibited at 1 h. Lipids intake, on the other hand, resulted in mRNA upregulation of CD11b at 2 and 3 h and CD206 at 1, 2, and 3 h. There were no significant changes in the other CD markers measured (CD86, CD163, CD169, CD36, CD16, and CD14) following either whey proteins or lipids intakes. Glucose intake did not alter mRNA expression of any marker tested except CD206 at 3 h. Conclusion Macronutrient intake alters the expression levels of polarization markers in MNCs of human subjects. A distinct population of different monocytes phenotypes may result in human circulation following the intake of different macronutrients. Further studies are required to characterize the immunomodulatory effects of macronutrients intake on monocytes phenotypes and their characteristics in humans.
Collapse
Affiliation(s)
- Awad Alshahrani
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdalmalik Bin Khunayfir
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammed Al Rayih
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hasan Al Sayed
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdullah Alsadoon
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammed Al Dubayee
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mahmoud Zahra
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Yousof Alrumayyan
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maha Al Zayer
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Amre Nasr
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmad Aljada
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Nilaweera KN, Cabrera-Rubio R, Speakman JR, O'Connor PM, McAuliffe A, Guinane CM, Lawton EM, Crispie F, Aguilera M, Stanley M, Boscaini S, Joyce S, Melgar S, Cryan JF, Cotter PD. Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression. Am J Physiol Endocrinol Metab 2017; 313:E1-E11. [PMID: 28325732 DOI: 10.1152/ajpendo.00356.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway.
Collapse
Affiliation(s)
- Kanishka N Nilaweera
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland;
| | - Raul Cabrera-Rubio
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Paula M O'Connor
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - AnneMarie McAuliffe
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Caitriona M Guinane
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Elaine M Lawton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Fiona Crispie
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Mònica Aguilera
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Maurice Stanley
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Serena Boscaini
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- Department of Anatomy and Neurosciences, University College Cork, Cork, Ireland; and
| | - Susan Joyce
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neurosciences, University College Cork, Cork, Ireland; and
| | - Paul D Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Technological tools to include whey proteins in cheese: Current status and perspectives. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Chungchunlam SMS, Henare SJ, Ganesh S, Moughan PJ. Effects of whey protein and its two major protein components on satiety and food intake in normal-weight women. Physiol Behav 2017; 175:113-118. [PMID: 28389248 DOI: 10.1016/j.physbeh.2017.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
Protein is the most satiating macronutrient and is source dependent, with whey protein thought to be particularly satiating. The purported satiating effect of whey protein may be due to the unique mixture of proteins in whey or to the major constituent individual proteins (β-lactoglobulin and α-lactalbumin). The objective of the study was to compare the effects of isoenergetic (~2100kJ, ~500kcal) preload meals enriched (~50g protein) with either whey protein isolate (WP), β-lactoglobulin (BL) isolate or α-lactalbumin (AL) isolate, on food intake at an ad libitum test meal 120min later and subjective ratings of appetite (hunger, desire to eat, prospective food consumption and fullness) using visual analogue scales (VAS). Twenty adult normal-weight women (mean age 24.2±0.8years; mean BMI 22.7±0.4kg/m2) participated in the study which used a single-blind completely randomised block design, where each subject consumed each of the three preload meals. Energy intake at the ad libitum test meal and total energy intakes (preload+test meal) did not differ between the three preload meals (p>0.05). There were no significant differences observed for the VAS scores and net incremental area under the curve (net iAUC) during the 120min following consumption of the three preload meals for subjective ratings of appetite (p>0.05). The findings show that the satiating effect of whey protein was similar to that of BL or AL individually and suggest that the major whey protein components BL and AL do not mediate the satiating effect of whey protein. The present human trial was registered with the Australian New Zealand Clinical Trials Registry (www.anzctr.org.au) as ACTRN12615000344594.
Collapse
Affiliation(s)
| | - Sharon J Henare
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Siva Ganesh
- AgResearch Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
16
|
Onvani S, Haghighatdoost F, Surkan PJ, Azadbakht L. Dairy products, satiety and food intake: A meta-analysis of clinical trials. Clin Nutr 2017; 36:389-398. [DOI: 10.1016/j.clnu.2016.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/06/2016] [Accepted: 01/24/2016] [Indexed: 11/18/2022]
|
17
|
Du K, Markus E, Fecych M, Rhodes JS, Beverly JL. Satiety and memory enhancing effects of a high-protein meal depend on the source of protein. Nutr Neurosci 2017; 21:257-267. [PMID: 28091281 DOI: 10.1080/1028415x.2016.1277055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE High- protein diets have become increasingly popular with various touted benefits. However, the extent to which protein quantity and source affects cognitive functioning through altering postprandial amino acid profiles has not been investigated. Further, whether all protein sources are similarly anorexigenic is uncertain. The objective of this study was to determine the influence of protein level and source on Barnes maze performance, satiety and plasma amino acid levels in male Sprague-Dawley rats. METHODS Rats were entrained to a meal-feeding schedule consisting of a 30 minutes meal, equivalent to 20% of average daily intake, one hour into the dark phase then ad libitum access to food for 5 h. On test days, rats received one of three isocaloric diets as their first meal, hereafter referred to as Egg White (EW), Wheat Gluten (WG), or Basal, and then were measured for cognitive performance, feeding behavior, or plasma amino acid levels via jugular catheter. Percentage energy from protein was 35% for both EW and WG and 20% for Basal with equal amounts provided by EW and WG proteins. RESULTS Rats provided EW performed similarly to Basal on the Barnes maze, whereas WG performed worse. EW increased satiety, whereas WG reduced satiety relative to Basal. Both EW and WG increased postprandial concentrations of large neutral and branched chain amino acids relative to Basal, but in EW, concentrations were slower to peak, and peaked to a higher level than WG. DISCUSSION Results demonstrate the importance of protein source for cognition and satiety enhancing effects of a high-protein meal.
Collapse
Affiliation(s)
- Kristy Du
- a Beckman Institute for Advanced Science and Technology , Urbana, IL , USA.,b Division of Nutritional Sciences , University of Illinois at Urbana-Champaign , Urbana, IL , USA
| | - Edward Markus
- c Department of Nutrition , University of North Carolina Greensboro , Greensboro, NC , USA
| | - Mariel Fecych
- c Department of Nutrition , University of North Carolina Greensboro , Greensboro, NC , USA
| | - Justin S Rhodes
- a Beckman Institute for Advanced Science and Technology , Urbana, IL , USA.,b Division of Nutritional Sciences , University of Illinois at Urbana-Champaign , Urbana, IL , USA.,d Department of Psychology , University of Illinois at Urbana-Champaign , Champaign, IL USA
| | - J Lee Beverly
- b Division of Nutritional Sciences , University of Illinois at Urbana-Champaign , Urbana, IL , USA.,c Department of Nutrition , University of North Carolina Greensboro , Greensboro, NC , USA.,e Department of Animal Sciences , University of Illinois at Urbana-Champaign , Champaign, IL USA
| |
Collapse
|
18
|
Dietary whey reduces energy intake and alters hypothalamic gene expression in obese phyto-oestrogen-deprived male rats. Br J Nutr 2016; 116:1125-33. [PMID: 27469930 DOI: 10.1017/s0007114516002865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Removing dietary phyto-oestrogens in adult male rats causes obesity and diabetes. As whey proteins have been reported to reduce food intake and improve glucose homoeostasis, we investigated whether they could attenuate susceptibility to obesity and diabetes due to phyto-oestrogen deprivation. To this end, thirty male Wistar rats were fed a high-phyto-oestrogen (HP) or a phyto-oestrogen-free (PF) diet for 10 weeks; six rats from each group were killed. The remaining HP animals (six animals) continued receiving the HP diet for 6 weeks. The remaining PF rats (twelve rats) were divided in two groups: one was given the PF diet and the other a variation of the PF diet plus whey protein (PF-W). Body weight, food intake and adipose tissue weights were recorded. Hypothalamic mRNA expressions of orexigenic (neuropeptide Y, agouti-related protein (AgRP)) and anorexigenic (pro-opiomelanocortin (POMC), cocaine-amphetamine-related transcript (CART)) neuropeptides were quantified by real-time PCR. Serum glucose, insulin and total thyroxine (T4), thyroid-stimulating hormone, testosterone and oestradiol were assessed. After 10 weeks of PF diet, increased body weight, adiposity and energy intake, with up-regulation of AgRP and down-regulation of POMC', were observed. Longer treatment exacerbated these results, increased total T4 levels, reduced oestradiol levels and impaired glucose homoeostasis. PF-W reduced energy intake and increased POMC expression; however, body weight and adiposity remained unchanged. PF-W could not prevent the hormonal changes or the high circulating glucose levels induced by phyto-oestrogen deprivation, but reduced fasting insulin. These data demonstrate that, although 6 weeks of whey administration could not prevent obesity in phyto-oestrogen-deprived rats, the reduction in energy intake and circulating insulin could be beneficial with longer treatments.
Collapse
|
19
|
Azzout-Marniche D, Chalvon-Demersay T, Pimentel G, Chaumontet C, Nadkarni NA, Piedcoq J, Fromentin G, Tomé D, Gaudichon C, Even PC. Obesity-prone high-fat-fed rats reduce caloric intake and adiposity and gain more fat-free mass when allowed to self-select protein from carbohydrate:fat intake. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1169-76. [DOI: 10.1152/ajpregu.00391.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/27/2016] [Indexed: 12/11/2022]
Abstract
We tested the hypothesis that, for rats fed a high-fat diet (HFD), a prioritization of maintaining protein intake may increase energy consumption and hence result in obesity, particularly for individuals prone to obesity (“fat sensitive,” FS, vs. “fat resistant,” FR). Male Wistar rats ( n = 80) first received 3 wk of HFD (protein 15%, fat 42%, carbohydrate 42%), under which they were characterized as being FS ( n = 18) or FR ( n = 20) based on body weight gain. They then continued on the same HFD but in which protein (100%) was available separately from the carbohydrate:fat (50:50%) mixture. Under this second regimen, all rats maintained their previous protein intake, whereas intake of fat and carbohydrate was reduced by 50%. This increased protein intake to 26% and decreased fat intake to 37%. Adiposity gain was prevented in both FR and FS rats, and gain in fat-free mass was increased only in FS rats. At the end of the study, the rats were killed 2 h after ingestion of a protein meal, and their tissues and organs were collected for analysis of body composition and measurement of mRNA levels in the liver, adipose tissue, arcuate nucleus, and nucleus accumbens. FS rats had a higher expression of genes encoding enzymes involved in lipogenesis in the liver and white adipose tissue. These results show that FS rats strongly reduced food intake and adiposity gain through macronutrient selection, despite maintenance of a relatively high-fat intake and overexpression of genes favoring lipogenesis.
Collapse
Affiliation(s)
- Dalila Azzout-Marniche
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Tristan Chalvon-Demersay
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Grégory Pimentel
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Catherine Chaumontet
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Nachiket A. Nadkarni
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Julien Piedcoq
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Gilles Fromentin
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Daniel Tomé
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Claire Gaudichon
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| | - Patrick C. Even
- UMR Nutrition Physiology and Ingestive Behavior (PNCA), AgroParisTech, INRA, University Paris-Saclay, Paris, France
| |
Collapse
|
20
|
Campbell CL, Foegeding EA, Harris GK. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety. J Med Food 2016; 19:219-27. [DOI: 10.1089/jmf.2015.0044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Caroline L. Campbell
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - E. Allen Foegeding
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - G. Keith Harris
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
21
|
Fromentin G, Darcel N, Chaumontet C, Even P, Tomé D, Gaudichon C. Control of Food Intake by Dietary Amino Acids and Proteins. THE MOLECULAR NUTRITION OF AMINO ACIDS AND PROTEINS 2016:221-232. [DOI: 10.1016/b978-0-12-802167-5.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Pezeshki A, Fahim A, Chelikani PK. Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats. J Nutr 2015; 145:2236-44. [PMID: 26311811 DOI: 10.3945/jn.115.213843] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dietary whey and casein proteins decrease food intake and body weight and improve glycemic control; however, little is known about the underlying mechanisms. OBJECTIVE We determined the effects of dietary whey, casein, and a combination of the 2 on energy balance, hormones, glucose metabolism, and taste preference in rats. METHODS In Expt. 1, Obesity Prone CD (OP-CD) rats were fed a high-fat control diet (33% fat energy) for 8 wk, and then randomly assigned to 4 isocaloric dietary treatments (n = 12/group): the control treatment (CO; 14% protein energy from egg white), the whey treatment (WH; 26% whey + 14% egg white), the casein treatment (CA; 26% casein + 14% egg white), or the whey plus casein treatment (WHCA; 13% whey + 13% casein + 14% egg white) for 28 d. Measurements included food intake, energy expenditure, body composition, metabolic hormones, glucose tolerance and key tissue markers of glucose and energy metabolism. In Expt. 2, naïve OP-CD rats were randomly assigned to 3 groups (n = 8/group). During an 8 d conditioning period, each group received on alternate days either the CO or WH, CO or CA, or CO or WHCA. Subsequently, preferences for the test diets were assessed on 2 consecutive days with food intake measurements at regular intervals. RESULTS In Expt. 1, food intake was decreased by 17-37% for the first 14 d in the WH and CA rats, and by 18-34% only for the first 4 d in the WHCA compared with the CO rats. Fat mass decreased by 21-28% for the WH rats and 17-33% for the CA rats from day 14 onward, but by 30% only on day 28 in WHCA rats, relative to CO rats. Thus, food intake, body weight, and fat mass decreased more rapidly in WH and CA rats than in WHCA rats. Energy expenditure in WH rats decreased for the first 4 d compared with CA and WHCA rats, and for the first 7 d compared with the CO rats. Circulating leptin, glucose-dependent insulinotropic polypeptide, interleukin 6, and glucose concentrations were lower in WH, CA, and WHCA rats than in CO rats. Plasma glucagon-like peptide 1 concentrations were greater in WH than in CA or WHCA rats. The improvements in glucose tolerance were greater in WH than in WHCA rats. The plasma membrane glucose transporter 4 (GLUT4)-to-total GLUT4 ratio in skeletal muscle was greater in CA and WHCA rats than in CO rats; other markers of glucose and energy metabolism in the adipose and cardiac tissues did not differ. In Expt. 2, during 4 conditioning trials, daily food intake was decreased in WH, CA, and WHCA rats by 26-37%, 30-43%, and 23-33%, respectively, compared with CO rats. Preferences for WH and CA rats were 45% and 31% lower, respectively, than those for CO rats, but that for WHCA rats did not differ. CONCLUSION Together, these data demonstrate that in obese rats, whey, casein, and their combination improve energy balance through differential effects on food intake, taste preference, energy expenditure, glucose tolerance, and gut hormone secretion.
Collapse
Affiliation(s)
- Adel Pezeshki
- Department of Production Animal Health, Faculty of Veterinary Medicine, Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Andrew Fahim
- Department of Production Animal Health, Faculty of Veterinary Medicine, Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
23
|
Whey protein isolate decreases murine stomach weight and intestinal length and alters the expression of Wnt signalling-associated genes. Br J Nutr 2015; 113:372-9. [PMID: 25582423 DOI: 10.1017/s0007114514004024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study examined the underlying mechanisms by which whey protein isolate (WPI) affects energy balance. C57BL/6J mice were fed a diet containing 10% energy from fat, 70% energy from carbohydrate (35% energy from sucrose) and 20% energy from casein or WPI for 15 weeks. Mice fed with WPI had reduced weight gain, cumulative energy intake and dark-phase VO2 compared with casein-fed mice (P< 0.05); however, WPI intake had no significant effects on body composition, meal size/number, water intake or RER. Plasma levels of insulin, TAG, leptin, glucose and glucagon-like peptide 1 remained unchanged. Notably, the intake of WPI reduced stomach weight and both length and weight of the small intestine (P< 0.05). WPI intake reduced the gastric expression of Wingless/int-1 5a (Wnt5a) (P< 0.01) and frizzled 4 (Fzd4) (P< 0.01), with no change in the expression of receptor tyrosine kinase-like orphan receptor 2 (Ror2) and LDL receptor-related protein 5 (Lrp5). In the ileum, WPI increased the mRNA expression of Wnt5a (P< 0.01) and caused a trend towards an increase in the expression of Fzd4 (P= 0.094), with no change in the expression of Ror2 and Lrp5. These genes were unresponsive in the duodenum. Among the nutrient-responsive genes, WPI specifically reduced ileal mRNA expression of peptide YY (P< 0.01) and fatty acid transporter protein 4 (P< 0.05), and decreased duodenal mRNA expression of the insulin receptor (P= 0.05), with a trend towards a decreased expression of Na-glucose co-transporter 1 (P= 0.07). The effects of WPI on gastrointestinal Wnt signalling may explain how this protein affects gastrointestinal structure and function and, in turn, energy intake and balance.
Collapse
|
24
|
McAllan L, Skuse P, Cotter PD, Connor PO, Cryan JF, Ross RP, Fitzgerald G, Roche HM, Nilaweera KN. Protein quality and the protein to carbohydrate ratio within a high fat diet influences energy balance and the gut microbiota in C57BL/6J mice. PLoS One 2014; 9:e88904. [PMID: 24520424 PMCID: PMC3919831 DOI: 10.1371/journal.pone.0088904] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/13/2014] [Indexed: 01/17/2023] Open
Abstract
Macronutrient quality and composition are important determinants of energy balance and the gut microbiota. Here, we investigated how changes to protein quality (casein versus whey protein isolate; WPI) and the protein to carbohydrate (P/C) ratio within a high fat diet (HFD) impacts on these parameters. Mice were fed a low fat diet (10% kJ) or a high fat diet (HFD; 45% kJ) for 21 weeks with either casein (20% kJ, HFD) or WPI at 20%, 30% or 40% kJ. In comparison to casein, WPI at a similar energy content normalised energy intake, increased lean mass and caused a trend towards a reduction in fat mass (P = 0.08), but the protein challenge did not alter oxygen consumption or locomotor activity. WPI reduced HFD-induced plasma leptin and liver triacylglycerol, and partially attenuated the reduction in adipose FASN mRNA in HFD-fed mice. High throughput sequence-based analysis of faecal microbial populations revealed microbiota in the HFD-20% WPI group clustering closely with HFD controls, although WPI specifically increased Lactobacillaceae/Lactobacillus and decreased Clostridiaceae/Clostridium in HFD-fed mice. There was no effect of increasing the P/C ratio on energy intake, but the highest ratio reduced HFD-induced weight gain, fat mass and plasma triacylglycerol, non-esterified fatty acids, glucose and leptin levels, while it increased lean mass and oxygen consumption. Similar effects were observed on adipose mRNA expression, where the highest ratio reduced HFD-associated expression of UCP-2, TNFα and CD68 and increased the diet-associated expression of β3-AR, LPL, IR, IRS-1 and GLUT4. The P/C ratio also impacted on gut microbiota, with populations in the 30/40% WPI groups clustering together and away from the 20% WPI group. Taken together, our data show that increasing the P/C ratio has a dramatic effect on energy balance and the composition of gut microbiota, which is distinct from that caused by changes to protein quality.
Collapse
Affiliation(s)
- Liam McAllan
- Food Biosciences Department, Teagasc, Fermoy, County Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Peter Skuse
- Food Biosciences Department, Teagasc, Fermoy, County Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paula O' Connor
- Food Biosciences Department, Teagasc, Fermoy, County Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - R. Paul Ross
- Food Biosciences Department, Teagasc, Fermoy, County Cork, Ireland
| | | | - Helen M. Roche
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
25
|
Jordi J, Herzog B, Camargo SMR, Boyle CN, Lutz TA, Verrey F. Specific amino acids inhibit food intake via the area postrema or vagal afferents. J Physiol 2013; 591:5611-21. [PMID: 23897232 DOI: 10.1113/jphysiol.2013.258947] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To maintain nutrient homeostasis the central nervous system integrates signals that promote or inhibit eating. The supply of vital amino acids is tuned by adjusting food intake according to its dietary protein content. We hypothesized that this effect is based on the sensing of individual amino acids as a signal to control food intake. Here, we show that food intake was most potently reduced by oral L-arginine (Arg), L-lysine (Lys) and L-glutamic acid (Glu) compared to all other 17 proteogenic amino acids in rats. These three amino acids induced neuronal activity in the area postrema and the nucleus of the solitary tract. Surgical lesion of the area postrema abolished the anorectic response to Arg and Glu, whereas vagal afferent lesion prevented the response to Lys. These three amino acids also provoked gastric distension by differentially altering gastric secretion and/or emptying. Importantly, these peripheral mechanical vagal stimuli were dissociated from the amino acids' effect on food intake. Thus, Arg, Lys and Glu had a selective impact on food processing and intake suggesting them as direct sensory input to assess dietary protein content and quality in vivo. Overall, this study reveals novel amino acid-specific mechanisms for the control of food intake and of gastrointestinal function.
Collapse
Affiliation(s)
- Josua Jordi
- F. Verrey: Institute of Physiology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
26
|
Whey protein isolate counteracts the effects of a high-fat diet on energy intake and hypothalamic and adipose tissue expression of energy balance-related genes. Br J Nutr 2013; 110:2114-26. [PMID: 23731955 DOI: 10.1017/s0007114513001396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The intake of whey protein isolate (WPI) is known to reduce high-fat diet (HFD)-induced body-weight gain and adiposity. However, the molecular mechanisms are not fully understood. To this end, we fed C57BL/6J mice for 8 weeks with diets containing 10 % energy as fat (low-fat diet, LFD) or 45 % energy as fat (HFD) enriched with either 20 % energy as casein (LFD and HFD) or WPI (high-fat WPI). Metabolic parameters and the hypothalamic and epididymal adipose tissue expression of energy balance-related genes were investigated. The HFD increased fat mass and plasma leptin levels and decreased the dark-phase energy intake, meal number, RER, and metabolic (VO₂ and heat) and locomotor activities compared with the LFD. The HFD increased the hypothalamic tissue mRNA expression of the leptin receptor, insulin receptor (INSR) and carnitine palmitoyltransferase 1b (CPT1b). The HFD also reduced the adipose tissue mRNA expression of GLUT4 and INSR. In contrast, WPI reduced fat mass, normalised dark-phase energy intake and increased meal size in HFD-fed mice. The dietary protein did not have an impact on plasma leptin, insulin, glucose or glucagon-like peptide 1 levels, but increased plasma TAG levels in HFD-fed mice. At a cellular level, WPI significantly reduced the HFD-associated increase in the hypothalamic tissue mRNA expression of the leptin receptor, INSR and CPT1b. Also, WPI prevented the HFD-induced reduction in the adipose tissue mRNA expression of INSR and GLUT4. In comparison with casein, the effects of WPI on energy intake and hypothalamic and adipose tissue gene expression may thus represent a state of reduced susceptibility to weight gain on a HFD.
Collapse
|
27
|
Davidenko O, Darcel N, Fromentin G, Tomé D. Control of protein and energy intake - brain mechanisms. Eur J Clin Nutr 2013; 67:455-61. [DOI: 10.1038/ejcn.2013.73] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
The effects of native whey and α-lactalbumin on the social and individual behaviour of C57BL/6J mice. Br J Nutr 2013; 110:1336-46. [PMID: 23507076 DOI: 10.1017/s0007114513000238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Milk proteins are the main components of everyday feeding and demonstrate a promising potential to change the mental condition. However, the effects of milk proteins after prolonged use remain poorly understood. The aim of the present study was to compare the effects of two whey proteins (alpha-lactalbumin (alpha-lac) and native whey) with casein on social and individual behaviour in mice. During a 30 d-long dietary intervention, male C57BL/6J mice had ad libitum access to an experimental diet containing 17% (w/w) of one of three protein sources: a-lac, native whey or casein. Mice had voluntary access to a running wheel. Social behaviour (group and resident-intruder activity) was tested at baseline and at the end of the intervention. Half of each dietary group was then withdrawn from the diet and running wheel for 7 d, and social activity and individual behaviour tests (open field, elevated-plus maze, light–dark box and forced swimming) were performed, to evaluate anxiety and depression-like status. The study shows that the long-term ingestion of whey proteins may modulate behaviour when compared with casein. Diet enriched with a-lac exhibited anxiolytic and antidepressive activities while the whey diet improved sociability. The differences between the diet groups were pronounced under the running wheel and the withdrawal of the experimental diet, suggesting that the beneficial effects of the milk proteins are clearer in stressful situations. Diet-induced behavioural changes remained visible for a week after feeding, which suggests that the proteins of the milk whey fraction have prolonged efficacy on the mental state of mice.
Collapse
|
29
|
The whey fermentation product malleable protein matrix decreases TAG concentrations in patients with the metabolic syndrome: a randomised placebo-controlled trial. Br J Nutr 2012; 107:1694-706. [PMID: 21996130 DOI: 10.1017/s0007114511004843] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Animal and human studies suggest that a malleable protein matrix (MPM) from whey decreases plasma lipid concentrations and may positively influence other components of the metabolic syndrome such as glucose metabolism and blood pressure (BP). The primary objective of this double-blind, multi-centre trial was to investigate the effects of a low-fat yoghurt supplemented with whey MPM on fasting TAG concentrations in patients with the metabolic syndrome. A total of 197 patients were randomised to receive MPM or a matching placebo yoghurt identical in protein content (15 g/d). Patients were treated during 3 months with two daily servings of 150 g yoghurt each to compare changes from baseline in efficacy variables. MPM treatment resulted in a significantly larger reduction of TAG concentrations in comparison to placebo (relative change -16%, P=0·004). The difference was even more pronounced in subjects with elevated fasting TAG (≥200 mg/dl) at baseline (-18%, P=0·005). The relative treatment difference in fasting plasma glucose was -7·1 mg/dl (P=0·089). This effect was also more pronounced in subjects with impaired fasting glucose at baseline (-11 mg/dl, P=0·03). In patients with hypertension, the relative treatment difference in systolic BP reached -5·9 mmHg (P=0·054). The relative treatment difference in body weight was -1·7 kg (P=0·015). The most common adverse events were gastrointestinal in nature. Conclusions from the present study are that consumption of a low-fat yoghurt supplemented with whey MPM twice a day over 3 months significantly reduces fasting TAG concentrations in patients with the metabolic syndrome and improves multiple other cardiovascular risk factors.
Collapse
|
30
|
Sousa GTD, Lira FS, Rosa JC, de Oliveira EP, Oyama LM, Santos RV, Pimentel GD. Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids Health Dis 2012; 11:67. [PMID: 22676328 PMCID: PMC3393628 DOI: 10.1186/1476-511x-11-67] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/07/2012] [Indexed: 01/05/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (DM) have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1); and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Gabriela T D Sousa
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo-USP, São Paulo/SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Toedebusch RG, Childs TE, Hamilton SR, Crowley JR, Booth FW, Roberts MD. Postprandial leucine and insulin responses and toxicological effects of a novel whey protein hydrolysate-based supplement in rats. J Int Soc Sports Nutr 2012; 9:24. [PMID: 22672725 PMCID: PMC3404932 DOI: 10.1186/1550-2783-9-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/06/2012] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was: aim 1) compare insulin and leucine serum responses after feeding a novel hydrolyzed whey protein (WPH)-based supplement versus a whey protein isolate (WPI) in rats during the post-absorptive state, and aim 2) to perform a thorough toxicological analysis on rats that consume different doses of the novel WPH-based supplement over a 30-day period. In male Wistar rats (~250 g, n = 40), serum insulin and leucine concentrations were quantified up to 120 min after one human equivalent dose of a WPI or the WPH-based supplement. In a second cohort of rats (~250 g, n = 20), we examined serum/blood and liver/kidney histopathological markers after 30 days of feeding low (1human equivalent dose), medium (3 doses) and high (6 doses) amounts of the WPH-based supplement. In aim 1, higher leucine levels existed at 15 min after WPH vs. WPI ingestion (p = 0.04) followed by higher insulin concentrations at 60 min (p = 0.002). In aim 2, liver and kidney histopathology/toxicology markers were not different 30 days after feeding with low, medium, high dose WPH-based supplementation or water only. There were no between-condition differences in body fat or lean mass or circulating clinical chemistry markers following the 30-day feeding intervention in aim 2. In comparison to WPI, acute ingestion of a novel WPH-based supplement resulted in a higher transient leucine response with a sequential increase in insulin. Furthermore, chronic ingestion of the tested whey protein hydrolysate supplement appears safe.
Collapse
Affiliation(s)
- Ryan G Toedebusch
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr Res Rev 2012; 25:29-39. [PMID: 22643031 DOI: 10.1017/s0954422411000175] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present review summarises current knowledge and recent findings on the modulation of appetite by dietary protein, via both peripheral and central mechanisms. Of the three macronutrients, proteins are recognised as the strongest inhibitor of food intake. The well-recognised poor palatability of proteins is not the principal mechanism explaining the decrease in high-protein (HP) diet intake. Consumption of a HP diet does not induce conditioned food aversion, but rather experience-enhanced satiety. Amino acid consumption is detected by multiple and redundant mechanisms originating from visceral (during digestion) and metabolic (inter-prandial period) sources, recorded both directly and indirectly (mainly vagus-mediated) by the central nervous system (CNS). Peripherally, the satiating effect of dietary proteins appears to be mediated by anorexigenic gut peptides, principally cholecystokinin, glucagon-like peptide-1 and peptide YY. In the CNS, HP diets trigger the activation of noradrenergic and adrenergic neurons in the nucleus of the solitary tract and melanocortin neurons in the arcuate nucleus. Additionally, there is evidence that circulating leucine levels may modulate food intake. Leucine is associated with neural mechanisms involving mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), energy sensors active in the control of energy intake, at least in the arcuate nucleus of the hypothalamus. In addition, HP diets inhibit the activation of opioid and GABAergic neurons in the nucleus accumbens, and thus inhibit food intake by reducing the hedonic response to food, presumably because of their low palatability. Future studies should concentrate on studying the adaptation of different neural circuits following the ingestion of protein diets.
Collapse
|
33
|
Journel M, Chaumontet C, Darcel N, Fromentin G, Tomé D. Brain responses to high-protein diets. Adv Nutr 2012; 3:322-9. [PMID: 22585905 PMCID: PMC3649463 DOI: 10.3945/an.112.002071] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Proteins are suspected to have a greater satiating effect than the other 2 macronutrients. After protein consumption, peptide hormones released from the gastrointestinal tract (mainly anorexigenic gut peptides such as cholecystokinin, glucagon peptide 1, and peptide YY) communicate information about the energy status to the brain. These hormones and vagal afferents control food intake by acting on brain regions involved in energy homeostasis such as the brainstem and the hypothalamus. In fact, a high-protein diet leads to greater activation than a normal-protein diet in the nucleus tractus solitarius and in the arcuate nucleus. More specifically, neural mechanisms triggered particularly by leucine consumption involve 2 cellular energy sensors: the mammalian target of rapamycin and AMP-activated protein kinase. In addition, reward and motivation aspects of eating behavior, controlled mainly by neurons present in limbic regions, play an important role in the reduced hedonic response of a high-protein diet. This review examines how metabolic signals emanating from the gastrointestinal tract after protein ingestion target the brain to control feeding, energy expenditure, and hormones. Understanding the functional roles of brain areas involved in the satiating effect of proteins and their interactions will demonstrate how homeostasis and reward are integrated with the signals from peripheral organs after protein consumption.
Collapse
Affiliation(s)
- Marion Journel
- AgroParisTech and,INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Catherine Chaumontet
- INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | | | - Gilles Fromentin
- INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | | |
Collapse
|
34
|
Shi J, Ahlroos-Lehmus A, Pilvi TK, Korpela R, Tossavainen O, Mervaala EM. Metabolic effects of a novel microfiltered native whey protein in diet-induced obese mice. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Xu SP, Mao XY, Ren FZ, Che HL. Attenuating effect of casein glycomacropeptide on proliferation, differentiation, and lipid accumulation of in vitro Sprague-Dawley rat preadipocytes. J Dairy Sci 2011; 94:676-83. [PMID: 21257036 DOI: 10.3168/jds.2010-3827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/13/2010] [Indexed: 11/19/2022]
Abstract
Food components with the ability to suppress preadipocyte proliferation and intracellular lipid accumulation may be helpful in the prevention of obesity, which is a worldwide health concern. Casein glycomacropeptide (GMP), which has pronounced gastric inhibitory activity, could potentially possess fat synthesis inhibition properties and an obesity-alleviating capacity. The objective of the present study was to investigate the effect of GMP on the proliferation and differentiation of preadipocytes as well as triglyceride accumulation and glycerol-3-phosphate dehydrogenase activity in preadipocytes isolated from Sprague-Dawley rats. Different dosages (0, 0.31, 0.625, 1.25, 2.5, and 5.0 mg/mL) of GMP were co-incubated with preadipocytes. The proliferation activity of preadipocytes significantly decreased in the GMP-treated group compared with that of the control group without GMP supplementation. The GMP exhibited an inhibitory effect against preadipocyte proliferation in a dose-dependent manner; the maximal antiproliferative effect was obtained with 2.5 mg/mL. The GMP also attenuated differentiation, as revealed by decreased lipid content, and the effect was more pronounced when cells were treated with GMP before or at the beginning of differentiation induction than at later stages of cell differentiation. Cultured preadipocytes treated with GMP accumulated fewer triglycerides and had lower glycerol-3-phosphate dehydrogenase activity than did the control cells without GMP supplementation. In conclusion, GMP can inhibit the proliferation, differentiation, and lipid accumulation of preadipocytes in vitro.
Collapse
Affiliation(s)
- S P Xu
- Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, PO Box 303, Beijing 100083, China
| | | | | | | |
Collapse
|
36
|
Berthold H, Schulte D, Lapointe JF, Lemieux P, Krone W, Gouni-Berthold I. The whey fermentation product malleable protein matrix decreases triglyceride concentrations in subjects with hypercholesterolemia: A randomized placebo-controlled trial. J Dairy Sci 2011; 94:589-601. [DOI: 10.3168/jds.2010-3115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 10/29/2010] [Indexed: 12/14/2022]
|
37
|
Sarr O, Gondret F, Jamin A, Le Huërou-Luron I, Louveau I. A high-protein neonatal formula induces a temporary reduction of adiposity and changes later adipocyte physiology. Am J Physiol Regul Integr Comp Physiol 2011; 300:R387-97. [DOI: 10.1152/ajpregu.00459.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high-protein content of formula offered to low-birth weight babies is suspected to increase the risk of obesity later in life. This study assesses the immediate and subsequent effects of a protein intake in excess during suckling on hormonal and metabolic status and adipose tissue features in a porcine model of intrauterine growth restriction. Piglets were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to day 28. A subset of piglets was killed at day 28. After weaning, the remaining piglets had free access to the same solid high-fat diet until day 160. From day 2 to day 28, HP piglets had a greater daily weight gain ( P < 0.05). Relative weight of perirenal adipose tissue (PAT), adipocyte mean diameters, activities of lipogenic enzymes in PAT and subcutaneous adipose tissue (SCAT), and leptinemia were lower ( P < 0.05) in HP piglets than in AP piglets. Genes related to glucose utilization and lipid anabolism in PAT and SCAT were ( P < 0.05) or tended ( P < 0.1) to be downregulated in HP piglets. At day 160, adipocytes were enlarged, whereas lipogenic rates in adipocytes were reduced ( P < 0.05) in SCAT of HP compared with AP pigs. Percent body fat, mRNA levels of genes controlling lipid metabolism, and plasma concentrations of hormones and metabolites were similar in HP and AP pigs. In conclusion, a HP neonatal formula induced a temporary reduction of adiposity and changed adipocyte physiology at peripubertal age.
Collapse
Affiliation(s)
- Ousseynou Sarr
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| | - Florence Gondret
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| | - Agnès Jamin
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| | - Isabelle Le Huërou-Luron
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| | - Isabelle Louveau
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| |
Collapse
|
38
|
Effects of high-whey-protein intake and resistance training on renal, bone and metabolic parameters in rats. Br J Nutr 2010; 105:836-45. [DOI: 10.1017/s0007114510004393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Consumption of high-protein (HP) diets is postulated to exert a negative influence on bone and renal health. However, no conclusive evidence has been presented related to this issue or to the potential protective action of resistance training on HP-induced systemic effects. We examined the effects of HP diet consumption on food intake, body-weight gain, body composition, and renal, bone and metabolic parameters of rats performing resistance training. A total of ninety-six adult male Wistar rats were randomly distributed in twelve experimental groups (n 8): normal-protein (10 %) or HP (45 %) diets, with or without resistance training, killed for experimental periods of 1, 2 or 3 months. Diets were based on a commercial whey protein hydrolysate. Consumption of HP diets and resistance training significantly affected food intake, body weight and body composition, as well as the plasma levels of total cholesterol, HDL-cholesterol and TAG. The buffering action of resistance training on such diet-induced alterations was especially evident in the levels of plasma TAG. Consumption of HP diets led to a considerable increase in kidney weight, urinary volume and acidity, as well as in the urinary excretion of Ca, with a parallel reduction in the urinary excretion of citrate (P < 0·05). No apparent deleterious effect on bone mineral content was found. In conclusion, consumption of HP diets caused alterations in renal health status and some metabolic parameters, but did not seem to affect bone status. Resistance training had a protective action against alterations of renal health status and some metabolic parameters such as plasma TAG.
Collapse
|
39
|
Effects of a breakfast yoghurt, with additional total whey protein or caseinomacropeptide-depleted alpha-lactalbumin-enriched whey protein, on diet-induced thermogenesis and appetite suppression. Br J Nutr 2009; 103:775-80. [PMID: 19874634 DOI: 10.1017/s0007114509992352] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies have shown effects of high-protein diets, especially whey protein, on energy expenditure and satiety, yet a possible distinction between the effects of whey or alpha-lactalbumin has not been made. The present study assessed the effects of the addition of total whey protein (whey) or caseinomacropeptide-depleted alpha-lactalbumin-enriched whey protein (alpha-lac) to a breakfast yoghurt drink on energy expenditure and appetite suppression in human subjects. A total of eighteen females and seventeen males (aged 20.9 (sd 1.9) years; BMI 23.0 (sd 2.1) kg/m2) participated in an experiment with a randomised, three-arm, cross-over design where diet-induced energy expenditure, respiratory quotient and satiety were measured. Breakfasts were isoenergetic and subject-specific: a normal-protein (NP) breakfast consisting of whole milk (15, 47 and 38 % energy from protein, carbohydrate and fat, respectively), a high-protein (HP) breakfast with additional whey or a HP breakfast containing alpha-lac (41, 47 and 12 % energy from protein, carbohydrate and fat, respectively). Resting energy expenditure did not differ between the three conditions. HP breakfasts (area under the curve: whey, 217.1 (se 10.0) kJ x 4 h; alpha-lac, 234.3 (se 11.6) kJ x 4 h; P < 0.05) increased diet-induced thermogenesis more compared with a NP yoghurt at breakfast (179.7 (se 10.9) kJ x 4 h; P < 0.05). Hunger and desire to eat were significantly more suppressed after alpha-lac (hunger, - 6627 (se 823); desire to eat, - 6750 (se 805) mm visual analogue scale (VAS) x 4 h; P < 0.05) than after the whey HP breakfast (hunger, - 5448 (se 913); desire to eat, - 5070 (se 873) mm VAS x 4 h; P < 0.05). After the HP breakfasts, a positive protein balance occurred (alpha-lac, 0.35 (sd 0.18) MJ/4 h; whey, 0.37 (sd 0.20) MJ/4 h; P < 0.001); after the NP breakfast a positive fat balance occurred (1.03 (sd 0.29) MJ/4 h; P < 0.001). In conclusion, consumption of a breakfast yoghurt drink with added whey or alpha-lac increased energy expenditure, protein balance and decreased fat balance compared with a NP breakfast. The alpha-lac-enriched yoghurt drink suppressed hunger and the desire to eat more than the whey-enriched yoghurt drink.
Collapse
|
40
|
Tomé D, Schwarz J, Darcel N, Fromentin G. Protein, amino acids, vagus nerve signaling, and the brain. Am J Clin Nutr 2009; 90:838S-843S. [PMID: 19640948 DOI: 10.3945/ajcn.2009.27462w] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary protein and amino acids, including glutamate, generate signals involved in the control of gastric and intestinal motility, pancreatic secretion, and food intake. They include postprandial meal-induced visceral and metabolic signals and associated nutrients (eg, amino acids and glucose), gut neuropeptides, and hormonal signals. Protein reduces gastric motility and stimulates pancreatic secretions. Protein and amino acids are also more potent than carbohydrate and fat in inducing short-term satiety in animals and humans. High-protein diets lead to activation of the noradrenergic-adrenergic neuronal pathway in the brainstem nucleus of the solitary tract and in melanocortin neurons of the hypothalamic arcuate nucleus. Moreover, some evidence indicates that circulating concentrations of certain amino acids could influence food intake. Leucine modulates the activity of energy and nutrient sensor pathways controlled by AMP-activated protein kinase and mammalian target of rapamycin in the hypothalamus. At the brain level, 2 afferent pathways are involved in protein and amino acid monitoring: the indirect neural (mainly vagus-mediated) and the direct humoral pathways. The neural pathways transfer preabsorptive and visceral information through the vagus nerve that innervates part of the orosensory zone (stomach, duodenum, and liver). Localized in the brainstem, the nucleus of the solitary tract is the main projection site of the vagus nerve and integrates sensory information of oropharyngeal, intestinal, and visceral origins. Ingestion of protein also activates satiety pathways in the arcuate nucleus, which is characterized by an up-regulation of the melanocortin pathway (alpha-melanocyte-stimulating, hormone-containing neurons) and a down-regulation of the neuropeptide Y pathway.
Collapse
Affiliation(s)
- Daniel Tomé
- AgroParisTech and INRA, UMR Nutrition Physiology and Ingestive Behavior, Paris, France.
| | | | | | | |
Collapse
|
41
|
Westerterp-Plantenga M, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp K. Dietary Protein, Weight Loss, and Weight Maintenance. Annu Rev Nutr 2009; 29:21-41. [DOI: 10.1146/annurev-nutr-080508-141056] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M.S. Westerterp-Plantenga
- Department of Human Biology, Nutrim, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands;
- TIFN, 6700 AN Wageningen, The Netherlands
| | - A. Nieuwenhuizen
- Department of Human Biology, Nutrim, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands;
- TIFN, 6700 AN Wageningen, The Netherlands
| | - D. Tomé
- AgroParisTech, Department of Life Sciences and Health, UMR914 Nutrition Physiology and Ingestive Behavior, F75005, Paris, France
| | - S. Soenen
- Department of Human Biology, Nutrim, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands;
- TIFN, 6700 AN Wageningen, The Netherlands
| | - K.R. Westerterp
- Department of Human Biology, Nutrim, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands;
- TIFN, 6700 AN Wageningen, The Netherlands
| |
Collapse
|
42
|
Long-term oral administration of cows' milk improves insulin sensitivity in rats fed a high-sucrose diet. Br J Nutr 2009; 102:1324-33. [PMID: 19566967 DOI: 10.1017/s0007114509990365] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We evaluated the effects of long-term daily cows' milk (CM) administration on insulin resistance induced by a high-sucrose diet. F344 rats, aged 3 weeks, were divided into two groups according to diet (dextrin-fed v. sucrose-fed). These groups were further divided into two groups receiving either CM or artificial milk (AM; isoenergetic emulsion of egg white protein, maltose, lard and minerals). Rats were fed a sucrose- or dextrin-based diet for 7 weeks and orally administered CM or AM at 25 ml/kg following an 8 h fast on a daily basis. Insulin sensitivity was evaluated via postprandial changes in serum glucose and insulin, oral glucose tolerance tests, and fasting serum insulin and fructosamine concentrations. The sucrose-fed rats showed an overall decrease in insulin sensitivity, but postprandial insulin levels were lower in the CM-treated subgroup than in the AM-treated subgroup. Peak serum glucose and insulin concentrations were highest in the sucrose-fed rats, but CM administration reduced peak glucose and insulin values in comparison with AM administration. By area under the curve analysis, insulin levels after feeding and glucose loads were significantly lower in the CM-treated groups than in the AM-treated groups. The CM-treated groups also demonstrated lower fasting insulin and fructosamine levels than the AM-treated groups. Improved insulin sensitivity due to CM administration seemed to be associated with reduced duodenal GLUT2 mRNA levels and increased propionate production within the caecum.
Collapse
|
43
|
Dove ER, Hodgson JM, Puddey IB, Beilin LJ, Lee YP, Mori TA. Skim milk compared with a fruit drink acutely reduces appetite and energy intake in overweight men and women. Am J Clin Nutr 2009; 90:70-5. [PMID: 19474132 DOI: 10.3945/ajcn.2008.27411] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Several studies show that proteins, including whey and casein, are more satiating than carbohydrates. It follows that skim milk would be more satiating than sugar-rich beverages. However, this has yet to be shown. OBJECTIVE The objective was to investigate the effects of drinking skim milk in comparison with a fruit drink at breakfast on self-reported postmeal satiety and energy intake at lunch. DESIGN In a randomized crossover trial, 34 overweight women (n = 21) and men (n = 13) attended 2 sessions 1 wk apart. At each session, participants consumed a fixed-energy breakfast together with either 600 mL skim milk (25 g protein, 36 g lactose, <1 g fat; 1062 kJ) or 600 mL fruit drink (<1 g protein, 63 g sugar, <1 g fat; approximately 1062 kJ). Participants provided satiety ratings throughout the morning. Four hours after breakfast they consumed an ad libitum lunch, and energy intake was assessed. RESULTS Participants consumed significantly less energy at lunch after consuming skim milk (mean: 2432 kJ; 95% CI: 2160, 2704 kJ) than after consuming the fruit drink (mean: 2658 kJ; 95% CI: 2386, 2930 kJ), with a mean difference of approximately 8.5% (P < 0.05). In addition, self-reports of satiety were higher throughout the morning after consumption of skim milk than after consumption of the fruit drink (P < 0.05) with the differences becoming larger over the 4 h (P < 0.05). CONCLUSION Consumption of skim milk, in comparison with a fruit drink, leads to increased perceptions of satiety and to decreased energy intake at a subsequent meal. This trial was registered with the Australian New Zealand Clinical Trials Registry at (www.anzctr.org.au) as ACTRN12608000510347.
Collapse
Affiliation(s)
- Emma R Dove
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Hursel R, Westerterp-Plantenga MS. Green tea catechin plus caffeine supplementation to a high-protein diet has no additional effect on body weight maintenance after weight loss. Am J Clin Nutr 2009; 89:822-30. [PMID: 19176733 DOI: 10.3945/ajcn.2008.27043] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Green tea (epigallocatechin gallate + caffeine) and protein each were shown to improve body weight maintenance after weight loss. OBJECTIVE We investigated the effect of a green tea-caffeine mixture added to a high-protein (HP) diet on weight maintenance (WM) after body weight loss in moderately obese subjects. DESIGN A randomized, placebo-controlled, double-blind parallel trial was conducted in 80 overweight and moderately obese subjects [age (mean +/- SD): 44 +/- 2 y; body mass index (BMI; in kg/m(2)): 29.6 +/- 2.0] matched for sex, age, BMI, height, body mass, and with a habitually low caffeine intake. A very-low-energy diet intervention during 4 wk was followed by 3 mo of WM; during the WM period, the subjects received a green tea-caffeine mixture (270 mg epigallocatechin gallate + 150 mg caffeine/d) or placebo, both in addition to an adequate protein (AP) diet (50-60 g protein/d) or an HP diet (100-120 g protein/d). RESULTS Subjects lost 7.0 +/- 1.6 kg, or 8.2 +/- 2.0%, body weight (P < 0.001). During the WM phase, WM, resting energy expenditure, and fat-free mass (FFM) increased relatively in both the HP groups and in the AP + green tea-caffeine mixture group (P < 0.05), whereas respiratory quotient and body fat mass decreased, all compared with the AP + placebo group. Satiety increased only in both HP groups (P < 0.05). The green tea-caffeine mixture was only effective with the AP diet. CONCLUSION The green tea-caffeine mixture, as well as the HP diet, improved WM independently through thermogenesis, fat oxidation, sparing FFM, and, for the HP diet, satiety; a possible synergistic effect failed to appear.
Collapse
Affiliation(s)
- Rick Hursel
- Maastricht University, Maastricht, The Netherlands.
| | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The present review presents recent findings on peripheral and central pathways involved in protein and amino acid-induced satiety. RECENT FINDINGS A high-protein load leads to a higher decrease of energy intake at the next meal than carbohydrate and fat. A protein-enriched diet induces satiety, improves body composition and results in weight loss. At the peripheral level, proteins seem to induce the release of anorexigenic gut hormones cholecystokinin, glucagon-like peptide-1 and peptide YY, whereas the involvement of ghrelin remains uncertain. Energy expenditure and glucose are probably involved as metabolic signals in protein-induced satiety. Moreover, there is some evidence that the circulating level of leucine could impact food intake. Leucine has been shown to modulate the activity of the energy and nutrient sensor pathways controlled by AMPK and mTOR in the hypothalamus. Moreover, high-protein diets lead to activation of the noradrenergic/adrenergic neuronal pathway in the nucleus of the solitary tract and in melanocortin neurons in the arcuate nucleus. SUMMARY Complex and redundant pathways are involved in protein and amino acid-induced satiety. Significant advances have recently allowed a better understanding of the involved cellular and molecular mechanisms. The involvement of some specific area of the brain including the hypothalamus and the nucleus of the solitary tract has to be further analyzed.
Collapse
|
46
|
Current world literature. Ageing: biology and nutrition. Curr Opin Clin Nutr Metab Care 2009; 12:95-100. [PMID: 19057195 DOI: 10.1097/mco.0b013e32831fd97a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Abstract
PURPOSE OF REVIEW To highlight the satiating background and effects of proteins and their implications for weight management. RECENT FINDINGS The satiating effect of protein is the key player in body-weight loss and body-weight maintenance thereafter. Specific high-protein meals or high-protein diets induced satiety require a realistic bandwidth of energy intake, protein concentrations, texture, and timing of assessment of effects. Satiety is nutrient specifically supported by elevated amino acid concentrations, responses of anorexigenic hormones or protein-induced energy expenditure. During long-term high-protein diets sustained satiety, energy expenditure, and sparing fat-free body mass are essential. For effects due to satiety, ad libitum energy intake conditions are necessary. Adverse events related to kidney damage may occur with sulphur-containing amino acids; individuals with obesity, metabolic syndrome and diabetes mellitus II may be susceptible groups. SUMMARY Highly controlled medium-term studies overcoming possible differences due to texture, timing and macronutrient exchange, and assessing satiety, energy expenditure and substrate oxidation at the same time, need to be executed with a realistic bandwidth of different types of proteins in overweight individuals in different energy balances.
Collapse
Affiliation(s)
- Stijn Soenen
- Department of Human Biology, Nutrim, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|