1
|
Shaik A, Kondaparthy V, Begum A, Husain A, Manwal DD. Enzyme PTP-1B Inhibition Studies by Vanadium Metal Complexes: a Kinetic Approach. Biol Trace Elem Res 2023; 201:5037-5052. [PMID: 36652102 DOI: 10.1007/s12011-023-03557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The medical field now needs more novel drugs to treat obesity and type-2 diabetes mellitus (T2D) than ever before. Obesity and T2D are both characterized by resistance to the hormones leptin and insulin. PTP-1B is a promising target for drug growth, as strong genetic, pharmacological, and biochemical evidence points to the possibility of treating diabetes and obesity by blocking the PTP-1B enzyme. Studies have also found that PTP-1B is overexpressed in patients with diabetes and obesity, suggesting that inhibiting PTP-1B may be a useful technique in their care. There are no clinically used PTP-1B inhibitors, despite the fact that numerous naturally occurring PTP-1B inhibitors have demonstrated great therapeutic promise. This is most likely due to their low activity or lack of selectivity. It is still important to look for more effective and focused PTP-1B inhibitors. A few organovanadium metal complexes were synthesized and characterized, and binding studies on vanadium complexes with PTP-B were also performed using fluorescence emission spectroscopy. Additionally, we theoretically (molecular modeling) and experimentally (enzyme kinetics) examined the PTP-1B inhibitory effects of these vanadium metal complexes and found that they have excellent PTP-1B inhibitory properties.
Collapse
Affiliation(s)
- Ayub Shaik
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India.
| | - Vani Kondaparthy
- Department of Chemistry, Tara Government College (A), Sangareddy, Telangana, India
| | - Alia Begum
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India
| | - Ameena Husain
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India
| | - Deva Das Manwal
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| |
Collapse
|
2
|
Rivas-García L, López-Varela A, Quiles JL, Montes-Bayón M, Aranda P, Llopis J, Sánchez-González C. Elucidating the Therapeutic Potential of Bis(Maltolato)OxoVanadium(IV): The Protective Role of Copper in Cellular Metabolism. Int J Mol Sci 2023; 24:ijms24119367. [PMID: 37298322 DOI: 10.3390/ijms24119367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Vanadium (V) is a trace mineral whose biological activity, role as a micronutrient, and pharmacotherapeutic applications remain unknown. Over the last years, interest in V has increased due to its potential use as an antidiabetic agent mediated by its ability to improve glycemic metabolism. However, some toxicological aspects limit its potential therapeutic application. The present study aims to evaluate the effect of the co-treatment with copper (Cu) and bis(maltolato)oxovanadium(IV) (BMOV) as a possible strategy to reduce the toxicity of BMOV. Treating hepatic cells with BMOV reduced cell viability under the present conditions, but cell viability was corrected when cells were co-incubated with BMOV and Cu. Additionally, the effect of these two minerals on nuclear and mitochondrial DNA was evaluated. Co-treatment with both metals reduced the nuclear damage caused by BMOV. Moreover, treatment with these two metals simultaneously tended to reduce the ND1/ND4 deletion of the mitochondrial DNA produced with the treatment using BMOV alone. In conclusion, these results showed that combining Cu and V could effectively reduce the toxicity associated with V and enhance its potential therapeutic applications.
Collapse
Affiliation(s)
- Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Alfonso López-Varela
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| | - María Montes-Bayón
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Pilar Aranda
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| |
Collapse
|
3
|
Xing D, Zhou Q, Wang Y, Xu J. Effects of Tauroursodeoxycholic Acid and 4-Phenylbutyric Acid on Selenium Distribution in Mice Model with Type 1 Diabetes. Biol Trace Elem Res 2023; 201:1205-1213. [PMID: 35303254 PMCID: PMC9898396 DOI: 10.1007/s12011-022-03193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
The effect of selenium on diabetes is significant. As pharmaceutical chaperones, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA) can effectively improve the oxidative stress of the endoplasmic reticulum. This study established a mice model with type 1 diabetes (T1D) to evaluate the effects of pharmaceutical chaperones on selenium distribution. Streptozotocin was used to induce Friend virus B-type mice to establish a T1D mice model. Mice were administered with TUDCA or 4-PBA. Selenium levels in different tissues were measured by inductively coupled plasma-mass spectroscopy (ICP-MS). After treatment with TUDCA and 4-PBA, related laboratory findings such as glucose and glycated serum protein were significantly reduced and were closer to normal levels. At 2 weeks, 4-PBA normalized selenium levels in the heart, and 4-PBA and TUDCA maintained the selenium in the liver, kidney, and muscle at normal. At 2 months, 4-PBA and TUDCA maintained the selenium in the heart, liver, and kidney at normal levels. The serum selenium had a positive correlation with zinc and copper in the diabetes group and the control group, while the serum selenium had no significant association with magnesium and calcium at 2 weeks and 2 months. TUDCA and 4-PBA have crucial effects on selenium distribution in diabetic mice, and further research is needed to research their internal mechanisms.
Collapse
Affiliation(s)
- Dongyang Xing
- Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China
| | - Yiting Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
4
|
Effect of Bis(maltolato)oxovanadium(IV) on Zinc, Copper, and Manganese Homeostasis and DMT1 mRNA Expression in Streptozotocin-Induced Hyperglycemic Rats. BIOLOGY 2022; 11:biology11060814. [PMID: 35741335 PMCID: PMC9219771 DOI: 10.3390/biology11060814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
Our aim was to examine whether vanadium (IV) corrects alterations in zinc, copper and manganese homeostasis, observed in streptozotocin-induced hyperglycemic rats, and whether such changes are related to divalent metal transporter 1 (DMT1) mRNA expression, and antioxidant and proinflammatory parameters. Four groups of Wistar rats were examined: control; hyperglycemic (H); hyperglycemic treated with 1 mg V/day (HV); and hyperglycemic treated with 3 mg V/day (HVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(IV) for five weeks. Zinc, copper and manganese were measured in food, excreta, serum and tissues. DMT1 mRNA expression was quantified in the liver. Hyperglycemic rats showed increased Zn and Cu absorption and content in the liver, serum, kidneys and femurs; DMT1 expression also increased (p < 0.05 in all cases). HV rats showed no changes compared to H rats other than decreased DMT1 expression (p < 0.05). In the HVH group, decreased absorption and tissular content of studied elements (p < 0.05 in all cases) and DMT1 expression compared to H (p < 0.05) were observed. Liver zinc, copper and manganese content correlated positively with glutathione peroxidase activity and negatively with catalase activity (p < 0.05 in both cases). In conclusion, treatment with 3 mg V/d reverted the alterations in zinc and copper homeostasis caused by hyperglycemia, possibly facilitated by decreased DMT1 expression.
Collapse
|
5
|
Farwa U, Raza MA. Heterocyclic compounds as a magic bullet for diabetes mellitus: a review. RSC Adv 2022; 12:22951-22973. [PMID: 36105949 PMCID: PMC9379558 DOI: 10.1039/d2ra02697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world. From the last two decades, the use of synthetic agents has risen due to their major involvement in curing of chronic diseases including DM. The core skeleton of drugs has been studied such as thiazolidinone, azole, chalcone, pyrrole and pyrimidine along with their derivatives. Diabetics assays have been performed in consideration of different enzymes such as α-glycosidase, α-amylase, and α-galactosidase against acarbose standard drug. The studied moieties were depicted in both models: in vivo as well as in vitro. Molecular docking of the studied compounds as antidiabetic molecules was performed with the help of Auto Dock and molecular operating environment (MOE) software. Amino acid residues Asp349, Arg312, Arg439, Asn241, Val303, Glu304, Phe158, His103, Lys422 and Thr207 that are present on the active sites of diabetic related enzymes showed interactions with ligand molecules. In this review data were organized for the synthesis of heterocyclic compounds through various routes along with their antidiabetic potential, and further studies such as pharmacokinetic and toxicology studies should be executed before going for clinical trials. Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world.![]()
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | |
Collapse
|
6
|
Sánchez-González C, Rivas-García L, Rodríguez-Nogales A, Algieri F, Gálvez J, Aranda P, Montes-Bayón M, Llopis J. Vanadium Decreases Hepcidin mRNA Gene Expression in STZ-Induced Diabetic Rats, Improving the Anemic State. Nutrients 2021; 13:nu13041256. [PMID: 33920401 PMCID: PMC8069891 DOI: 10.3390/nu13041256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes is a disease with an inflammatory component that courses with an anemic state. Vanadium (V) is an antidiabetic agent that acts by stimulating insulin signaling. Hepcidin blocks the intestinal absorption of iron and the release of iron from its deposits. We aim to investigate the effect of V on hepcidin mRNA expression and its consequences on the hematological parameters in streptozotocin-induced diabetic Wistar rats. Control healthy rats, diabetic rats, and diabetic rats treated with 1 mgV/day were examined for five weeks. The mineral levels were measured in diet and serum samples. Hepcidin expression was quantified in liver samples. Inflammatory and hematological parameters were determined in serum or whole blood samples. The inflammatory status was higher in diabetic than in control rats, whereas the hematological parameters were lower in the diabetic rats than in the control rats. Hepcidin mRNA expression was significantly lower in the V-treated diabetic rats than in control and untreated diabetic rats. The inflammatory status remained at a similar level as the untreated diabetic group. However, the hematological profile improved after the V-treatment, reaching similar levels to those found in the control group. Serum iron level was higher in V-treated than in untreated diabetic rats. We conclude that V reduces gene expression of hepcidin in diabetic rats, improving the anemic state caused by diabetes.
Collapse
Affiliation(s)
- Cristina Sánchez-González
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
- Correspondence: ; Tel.: +34-958241000 (ext. 20320)
| | - Lorenzo Rivas-García
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| | - Alba Rodríguez-Nogales
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Francesca Algieri
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Julio Gálvez
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Pilar Aranda
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain;
| | - Juan Llopis
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| |
Collapse
|
7
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
8
|
Sanchez-Gonzalez C, Moreno L, Lopez-Chaves C, Nebot E, Pietschmann P, Rodriguez-Nogales A, Galvez J, Montes-Bayon M, Sanz-Medel A, Llopis J. Effect of vanadium on calcium homeostasis, osteopontin mRNA expression, and bone microarchitecture in diabetic rats. Metallomics 2017; 9:258-267. [PMID: 28194470 DOI: 10.1039/c6mt00272b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine whether alterations caused by diabetes in calcium homeostasis, expression of osteopontin and the microarchitecture of bone are corrected by exposure to vanadium. Four study groups were examined over a period of five weeks: control (C), diabetic (DM), diabetic treated with 1 mg V per d (DMV), and diabetic treated with 3 mg V per d (DMVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(iv). Calcium was measured in the food, faeces, urine, serum, kidneys, liver, muscles, and femur. Osteopontin gene expression was determined in the liver, and the bone microarchitecture was studied with the aid of micro-computed tomography. In the DM group, food intake as well as calcium absorbed and retained and liver osteopontin mRNA increased, while Ca in the serum and femur decreased, and the bone microarchitecture worsened, in comparison with the control. In the DMV group, the amount of Ca absorbed and retained was similar to DM rats. Although the Ca content in the femur increased and osteopontin mRNA decreased, there were no significant changes in the bone microarchitecture, in comparison to the DM rats. In the DMVH group, the amount of Ca absorbed and retained, and the serum and femur content were equivalent to the control. The levels of osteopontin mRNA decreased and bone mineralization improved, compared to the DM group. We conclude that treatment with 3 mg V per d of the glucose lowering agent bis(maltolato)oxovanadium(iv) causes a decrease in osteopontin mRNA, which could favour the normalization of changes in Ca homeostasis and bone microarchitecture, both at the cortical and trabecular levels, caused by diabetes.
Collapse
Affiliation(s)
- Cristina Sanchez-Gonzalez
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Laura Moreno
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Carlos Lopez-Chaves
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Elena Nebot
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain. and Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | | | - Julio Galvez
- CIBERehd, Department of Pharmacology, University of Granada, 18071 Granada, Spain
| | - María Montes-Bayon
- Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain.
| | - Juan Llopis
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| |
Collapse
|
9
|
Fernández B, Gómez-Vílchez A, Sánchez-González C, Bayón J, San Sebastián E, Gómez-Ruiz S, López-Chaves C, Aranda P, Llopis J, Rodríguez-Diéguez A. Novel anti-diabetic and luminescent coordination compounds based on vanadium. NEW J CHEM 2016. [DOI: 10.1039/c5nj02907d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel vanadium coordination compounds have been synthesized. Both compounds exhibit intense photoluminescence emission and showin vivoantidiabetic activity.
Collapse
Affiliation(s)
- Belén Fernández
- Departamento de Química Inorgánica
- Universidad de Granada
- Granada
- Spain
| | - Alejandro Gómez-Vílchez
- Departamento de Química Inorgánica
- Universidad de Granada
- Granada
- Spain
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
| | - Cristina Sánchez-González
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
- Campus Cartuja
- Universidad de Granada
- Granada
- Spain
| | - Jakelhyne Bayón
- Departamento de Química Inorgánica
- Universidad de Granada
- Granada
- Spain
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
| | - Eider San Sebastián
- Departamento de Química Aplicada
- Facultad de Químicas de San Sebastián
- Euskal HerrikoUnibertsitatea UPV/EHU
- San Sebastián
- Spain
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología
- física y Química Inorgánica
- E.S.C.E.T
- Universidad Rey Juan Carlos
- 28933 Móstoles
| | - Carlos López-Chaves
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
- Campus Cartuja
- Universidad de Granada
- Granada
- Spain
| | - Pilar Aranda
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
- Campus Cartuja
- Universidad de Granada
- Granada
- Spain
| | - Juan Llopis
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
- Campus Cartuja
- Universidad de Granada
- Granada
- Spain
| | | |
Collapse
|
10
|
Navarro-Alarcon M, Ruiz-Ojeda FJ, Blanca-Herrera RM, Kaki A, Adem A, Agil A. Melatonin administration in diabetes: regulation of plasma Cr, V, and Mg in young male Zucker diabetic fatty rats. Food Funct 2014; 5:512-6. [PMID: 24441643 DOI: 10.1039/c3fo60389j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of melatonin, a neurohormone present in plants, represents an exciting approach for the maintenance of optimum health conditions. Melatonin administration ameliorates glucose homeostasis in Zucker diabetic fatty (ZDF) rats. The objective of this study was to investigate the effects of melatonin in diabetes in relation to the levels and regulation of plasma chromium (Cr), vanadium (V), and magnesium (Mg) in Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats. At the age of 6 weeks, ZDF (n = 30) and ZL (n = 30) groups were each subdivided into three groups: control (C) (n = 10), vehicle-treated (V') (n = 10) and melatonin-treated (M) (10 mg kg(-1) per day; n = 10) groups for a 6 week period. After treatment, plasma mineral concentrations were measured by flame (Mg) and electrothermal (Cr and V) atomic absorption spectrometry. No significant differences were found between the C and V' groups (p > 0.05). Plasma Mg levels were significantly lower in C-ZDF vs. C-ZL rats, demonstrating the presence of hypomagnesemia in this diabetes mellitus model. Plasma V and Cr levels were significantly higher in M-ZDF vs. C-ZDF rats. Plasma Mg levels in ZDF rats were not affected by melatonin treatment (p > 0.05). Melatonin administration ameliorates the diabetic status of ZDF rats by enhancing plasma Cr and V concentrations. This appears to be the first report of a beneficial effect of melatonin treatment on plasma Cr and V regulation in ZDF rats.
Collapse
Affiliation(s)
- Miguel Navarro-Alarcon
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Exposure to bis(maltolato)oxovanadium(IV) increases levels of hepcidin mRNA and impairs the homeostasis of iron but not that of manganese. Food Chem Toxicol 2014; 73:113-8. [PMID: 25168077 DOI: 10.1016/j.fct.2014.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine whether alterations in iron homeostasis, caused by exposure to vanadium, are related to changes in the gene expression of hepatic hepcidin. Two groups of rats were examined: control and vanadium-exposed. Vanadium, as bis(maltolato)oxovanadium(IV) was supplied in the drinking water. The experiment had a duration of five weeks. Iron and manganese were measured in excreta, serum and tissues. Leptin, ferritin, IL-1β, IL-6, TNF-α, red blood cells, haemoglobin and haematocrit were determined. Protein carbonyl group levels and hepcidin gene expression were determined in the liver. In the vanadium-exposed rats, iron absorption, serum iron and leptin and all haematological parameters decreased. Levels of IL-6, TNF-α and ferritin in serum and of iron in the liver, spleen and heart increased. In the liver, levels of protein carbonyl groups and hepcidin mRNA were also higher in the vanadium-exposed group. Exposure to vanadium did not modify manganese homeostasis. The results obtained from this study provide the first evidence that bis(maltolato)oxovanadium(IV) produces an increase in the gene expression of the hepcidin, possibly caused by an inflammatory process. Both factors could be the cause of alterations in Fe homeostasis and the appearance of anaemia. However, Mn homeostasis was not affected.
Collapse
|
12
|
Changes in iron metabolism and oxidative status in STZ-induced diabetic rats treated with bis(maltolato) oxovanadium (IV) as an antidiabetic agent. ScientificWorldJournal 2014; 2014:706074. [PMID: 24511298 PMCID: PMC3913100 DOI: 10.1155/2014/706074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/08/2013] [Indexed: 01/24/2023] Open
Abstract
The role of vanadium as a micronutrient and hypoglycaemic agent has yet to be fully clarified. The present study was undertaken to investigate changes in the metabolism of iron and in antioxidant defences of diabetic STZ rats following treatment with vanadium. Four groups were examined: control; diabetic; diabetic treated with 1 mgV/day; and Diabetic treated with 3 mgV/day. The vanadium was supplied in drinking water as bis(maltolato) oxovanadium (IV) (BMOV). The experiment had a duration of five weeks. Iron was measured in food, faeces, urine, serum, muscle, kidney, liver, spleen, and femur. Superoxide dismutase, catalase, NAD(P)H: quinone-oxidoreductase-1 (NQO1) activity, and protein carbonyl group levels in the liver were determined. In the diabetic rats, higher levels of Fe absorbed, Fe content in kidney, muscle, and femur, and NQO1 activity were recorded, together with decreased catalase activity, in comparison with the control rats. In the rats treated with 3 mgV/day, there was a significant decrease in fasting glycaemia, Fe content in the liver, spleen, and heart, catalase activity, and levels of protein carbonyl groups in comparison with the diabetic group. In conclusion BMOV was a dose-dependent hypoglycaemic agent. Treatment with 3 mgV/day provoked increased Fe deposits in the tissues, which promoted a protein oxidative damage in the liver.
Collapse
|
13
|
Sanchez-Gonzalez C, Bermudez-Peña C, Trenzado CE, Goenaga-Infante H, Montes-Bayon M, Sanz-Medel A, Llopis J. Changes in the antioxidant defence and in selenium concentration in tissues of vanadium exposed rats. Metallomics 2012; 4:814-9. [DOI: 10.1039/c2mt20066j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|