1
|
Liu W, Zhang Y, Zheng M, Ye Y, Shi M, Wang X, Cao L, Wang L. Polysaccharides in Medicinal and Food Homologous Plants regulate intestinal flora to improve type 2 diabetes: Systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156027. [PMID: 39270592 DOI: 10.1016/j.phymed.2024.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Medicinal and food homologous plants (MFHPs) which can improve Type 2 Diabetes Mellitus (T2DM) draw significant attention among the public due to their low toxicity and more safety. Polysaccharides, one of the various active components of MFHPs, are recognized as effective modulators of the intestinal flora. By altering the composition of intestinal flora and affecting their metabolic products, polysaccharides can improve T2DM, making them a central focus of anti-diabetic research. PURPOSE The purpose of this study is to systematically review the mechanism by which polysaccharides from MFHPs (MFHPPs) regulate the composition of intestinal flora and its metabolic products to improve T2DM. METHODS This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and conducts a comprehensive search on the PubMed, Web of Science and Embase databases. All experimental articles published up to March 4, 2024, are included in the search. RESULTS Among the 5733 articles reviewed, 29 were selected, covering 22 different MFHPs. MFHPPs can improve T2DM, particularly in lowering blood glucose levels, with consistent results. MFHPPs can regulate the diversity of intestinal flora in T2DM animal models, primarily affecting four phyla: decreasing Firmicutes and Proteobacteria while increasing Bacteroidetes and Actinobacteriota. At the genus level, the improvement of T2DM by MFHPPs is associated with the modulation of 12 key genera: Allobaculum, Akkermansia, Bifidobacterium, Lactobacillus, Helicobacter, Halomonas, Olsenella, Oscillospira, Shigella, Escherichia-Shigella, Romboutsia and Bacteroides. At the molecular level, MFHPPs primarily act by modulating the intestinal flora to increase short-chain fatty acid levels, promote the secretion of glucagon-like peptide-1, influence the IGF1/PI3K/AKT signaling pathway, or the PI3K/AKT/GSK-3β pathway, to lower blood glucose levels. They may also improve T2DM by working in glucose metabolism through the "microbiota-gut-organ" axis. MFHPPs can also alleviate T2DM by mitigating inflammation and oxidative stress: MFHPPs regulate intestinal flora to reduce lipopolysaccharide "leakage" and enhance intestinal mucosal permeability to tackle the inflammation associated with T2DM; MFHPPs enhance the expression of oxidative stress-related enzymes to alleviate oxidative stress and improve T2DM. Lastly, from a metabolic pathway perspective, MFHPPs are primarily involved in the metabolism of amino acids and their derivatives, carbohydrate metabolism and glutathione metabolism. CONCLUSION MFHPPs can improve T2DM by enhancing the composition of intestinal flora, regulating its metabolic products to promote insulin secretion, inhibiting glucagon-like peptide secretion, facilitating glycogen synthesis, reducing inflammation levels and alleviating oxidative stress. Furthermore, MFHPPs demonstrate potential protective effects on critical organs such as the pancreas, liver, kidneys and heart. Therefore, MFHPPs demonstrate significant clinical potential. However, most studies can only indicate the potential of MFHPPs intervention in improving T2DM through the intestinal flora. The causality between MFHPPs regulating the intestinal flora and T2DM requires further investigation.
Collapse
Affiliation(s)
- Wanting Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yikai Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yixiao Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mujia Shi
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou, Zhejiang, 311231, China.
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
2
|
Ali A, Ullah Z, Ullah R, Kazi M. Barley a nutritional powerhouse for gut health and chronic disease defense. Heliyon 2024; 10:e38669. [PMID: 39640645 PMCID: PMC11619984 DOI: 10.1016/j.heliyon.2024.e38669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Background Digestive issues are recognized as significant contributors to various chronic diseases, including obesity, diabetes, and cardiovascular disease. Barley, a traditional grain, offers considerable promise in addressing these health challenges due to unique nutritional and bioactive compounds. Objective This review examines the therapeutic potential of various parts of barley, underutilized resource, for chronic disease prevention and management. Method ology: A comprehensive literature search was conducted across multiple databases like Google Scholar, PubMed, and ISI Web of Science, to identify nutritional components and functional ingredients in barley that contribute to gut health and chronic disease mitigation. Results The finding suggests that humans digest barley starch more slowly than wheat and rice, which benefits chronic disease management. Barley's high-molecular-weight β-glucan high content acts as a prebiotic, promotes gut health through microbiome modulation and short-chain fatty acid production, potentially preventing colon cancer and boosting immunity. Recent studies on exploring barley grass of high land showed functional ingredients such as flavonoids, saponarin lutonarin, superoxide dismutase, gamma-aminobutyric acid, polyphenols K, Ca, Se, tryptophan chlorophyll, and vitamins, suggesting potential for enhanced antioxidant activity and improved management of chronic conditions like diabetes, cholesterol, hypertension, cardiovascular health, liver protection, and even boosted immunity. Conclusion This review underscores the therapeutic potential of barley and its components in chronic disease management, highlighting the need for well-designed clinical trials to translate these findings into effective interventions.
Collapse
Affiliation(s)
- Arif Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Rehman Ullah
- Department of Botany, University of Peshawar, Peshawar, 25100, Pakistan
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, POBOX- 2457, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Li Z, Zhang C, Li B, Zhang S, Haj FG, Zhang G, Lee Y. The modulatory effects of alfalfa polysaccharide on intestinal microbiota and systemic health of Salmonella serotype (ser.) Enteritidis-challenged broilers. Sci Rep 2021; 11:10910. [PMID: 34035347 PMCID: PMC8149654 DOI: 10.1038/s41598-021-90060-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Salmonella serotype (ser.) Enteritidis infection in broilers is a main foodborne illness that substantially threatens food security. This study aimed to examine the effects of a novel polysaccharide isolated from alfalfa (APS) on the intestinal microbiome and systemic health of S. ser. Enteritidis-infected broilers. The results indicated that broilers receiving the APS-supplemented diet had the improved (P < 0.05) growth performance and gut health than those fed no APS-supplemented diet. Supplementation with APS enhanced (P < 0.05) the richness of gut beneficial microbes such as Bacteroidetes, Barnesiella, Parabacteroides, Butyricimonas, and Prevotellaceae, while decreased (P < 0.05) the abundance of facultative anaerobic bacteria including Proteobacteria, Actinobacteria, Ruminococcaceae, Lachnospiraceae, and Burkholderiaceae in the S. ser. Enteritidis-infected broilers. The Bacteroides and Odoribacter were identified as the two core microbes across all treatments and combined with their syntrophic microbes formed the hub in co-occurrence networks linking microbiome structure to performance of broilers. Taken together, dietary APS supplementation improved the systemic health of broilers by reshaping the intestinal microbiome regardless of whether S. ser. Enteritidis infection was present. Therefore, APS can be employed as a potential functional additives to inhibit the S. ser. Enteritidis and enhance the food safety in poultry farming.
Collapse
Affiliation(s)
- Zemin Li
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China
| | - Chongyu Zhang
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China
| | - Bo Li
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China
| | - Shimin Zhang
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Guiguo Zhang
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China. .,Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
4
|
Zhang B, Xu Y, Liu S, Lv H, Hu Y, Wang Y, Li Z, Wang J, Ji X, Ma H, Wang X, Wang S. Dietary Supplementation of Foxtail Millet Ameliorates Colitis-Associated Colorectal Cancer in Mice via Activation of Gut Receptors and Suppression of the STAT3 Pathway. Nutrients 2020; 12:nu12082367. [PMID: 32784751 PMCID: PMC7468867 DOI: 10.3390/nu12082367] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Coarse cereal intake has been reported to be associated with reduced risk of colorectal cancer. However, evidence from intervention studies is absent and the molecular basis of this phenomenon remains largely unexplored. This study sought to investigate the effects of foxtail millet and rice, two common staple grains in Asia, on the progression of colitis-associated colorectal cancer (CAC) and define the mechanism involved. In total, 40 BALB/c mice were randomized into four groups. The Normal and azoxymethane/dextran sodium sulfate (AOM/DSS) groups were supplied with an AIN-93G diet, while the millet- and rice-treated groups were supplied with a modified AIN-93G diet. Compared to the AOM/DSS-induced CAC mice supplemented with rice, an increased survival rate, suppressed tumor burden, and reduced disease activity index were observed in the millet-treated group. The levels of IL-6 and IL-17 were decreased in the millet-treated group compared to both the AOM/DSS and AOM/DSS + rice groups. Millet treatment inhibited the phosphorylation of STAT3 and the related signaling proteins involved in cell proliferation, survival and angiogenesis. These beneficial effects were mediated by the activation of gut receptors AHR and GPCRs via the microbial metabolites (indole derivates and short-chain fatty acids) of foxtail millet. Moreover, millet-treatment increased the abundance of Bifidobacterium and Bacteroidales_S24-7 compared to the rice-treated mice. This study could help researchers to develop better dietary patterns that work against inflammatory bowel disease (IBD) and for CAC patients.
Collapse
Affiliation(s)
- Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Yingchuan Xu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Zhi Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China;
- Shanxi Functional Food Research Institute, Taigu 030801, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (B.Z.); (Y.X.); (S.L.); (H.L.); (Y.H.); (Y.W.); (Z.L.); (J.W.); (X.J.); (H.M.)
- Correspondence: ; Tel.: +86-22-85358445
| |
Collapse
|
5
|
Extract Methods, Molecular Characteristics, and Bioactivities of Polysaccharide from Alfalfa ( Medicago sativa L.). Nutrients 2019; 11:nu11051181. [PMID: 31137802 PMCID: PMC6567097 DOI: 10.3390/nu11051181] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022] Open
Abstract
The polysaccharide isolated from alfalfa was considered to be a kind of macromolecule with some biological activities; however, its molecular structure and effects on immune cells are still unclear. The objectives of this study were to explore the extraction and purifying methods of alfalfa (Medicago sativa L.) polysaccharide (APS) and decipher its composition and molecular characteristics, as well as its activation to lymphocytes. The crude polysaccharides isolated from alfalfa by water extraction and alcohol precipitation methods were purified by semipermeable membrane dialysis. Five batches of alfalfa samples were obtained from five farms (one composite sample per farm) and three replicates were conducted for each sample in determination. The results from ion chromatography (IC) analysis showed that the APS was composed of fucose, arabinose, galactose, glucose, xylose, mannose, galactose, galacturonic acid (GalA), and glucuronic acid (GlcA) with a molar ratio of 2.6:8.0:4.7:21.3:3.2:1.0:74.2:14.9. The weight-average molecular weight (Mw), number-average molecular weight (Mn), and Z-average molecular weight (Mz) of APS were calculated to be 3.30 × 106, 4.06 × 105, and 1.43 × 108 g/mol, respectively, according to the analysis by gel permeation chromatography-refractive index-multiangle laser light scattering (GPC-RI-MALS). The findings of electron ionization mass spectrometry (EI-MS) suggest that APS consists of seven linkage residues, namely 1,5-Araf, galactose (T-D-Glc), glucose (T-D-Gal), 1,4-Gal-Ac, 1,4-Glc, 1,6-Gal, and 1,3,4-GalA, with molar proportions of 10.30%, 4.02%, 10.28%, 52.29%, 17.02%, 3.52%, and 2.57%, respectively. Additionally, APS markedly increased B-cell proliferation and IgM secretion in a dose- and time-dependent manner but not the proliferation and cytokine (IL-2, -4, and IFN-γ) expression of T cells. Taken together, the present results suggest that APS are macromolecular polymers with a molar mass (indicated by Mw) of 3.3 × 106 g/mol and may be a potential candidate as an immunopotentiating pharmaceutical agent or functional food.
Collapse
|
6
|
Fotschki B, Jurgonski A, Fotschki J, Majewski M, Ognik K, Juskiewicz J. Dietary Chicory Inulin-Rich Meal Exerts Greater Healing Effects than Fructooligosaccharide Preparation in Rats with Trinitrobenzenesulfonic Acid-Induced Necrotic Colitis. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns-2019-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
7
|
Zhang T, Yang Y, Liang Y, Jiao X, Zhao C. Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients 2018; 10:E1055. [PMID: 30096921 PMCID: PMC6116026 DOI: 10.3390/nu10081055] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of modern society, many chronic diseases are increasing including diabetes, obesity, cardiovascular diseases, etc., which further cause an increased death rate worldwide. A high caloric diet with reduced natural polysaccharides, typically indigestible polysaccharides, is considered a health risk factor. With solid evidence accumulating that indigestible polysaccharides can effectively prevent and/or ameliorate symptoms of many chronic diseases, we give a narrative review of many natural polysaccharides extracted from various food resources which mainly contribute their health beneficial functions via intestinal fermentation.
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yang Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xu Jiao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
8
|
Fortin O, Aguilar-Uscanga BR, Vu KD, Salmieri S, Lacroix M. Effect of Saccharomyces Boulardii Cell Wall Extracts on Colon Cancer Prevention in Male F344 Rats Treated with 1,2-Dimethylhydrazine. Nutr Cancer 2018; 70:632-642. [DOI: 10.1080/01635581.2018.1460672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Olivier Fortin
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Blanca R. Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdG), Jalisco, Mexico
| | - Khanh D. Vu
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Stephane Salmieri
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Monique Lacroix
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| |
Collapse
|
9
|
Prophetic medicine as potential functional food elements in the intervention of cancer: A review. Biomed Pharmacother 2017; 95:614-648. [DOI: 10.1016/j.biopha.2017.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
10
|
Qamar TR, Iqbal S, Syed F, Nasir M, Rehman H, Iqbal MA, Liu RH. Impact of Novel Prebiotic Galacto-Oligosaccharides on Various Biomarkers of Colorectal Cancer in Wister Rats. Int J Mol Sci 2017; 18:E1785. [PMID: 28858205 PMCID: PMC5618473 DOI: 10.3390/ijms18091785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths around the globe. Bioactive food ingredients such as prebiotics have protective potential in colon cancer. Data on galacto-oligosaccharides (GalOS) against CRC are very limited and GalOS used in this study have β-1,6 and β-1,3 as major glycosidic linkages and, to our best knowledge, were never used before against any cancer treatment. This study aims to investigate the protective role of novel GalOS against various biomarkers of CRC including aberrant crypt foci (ACF), bacterial enzymes and short chain fatty acids (SCFA) in a rodent model induced with 1,2-dimethylhydrazine dihydrochloride (DMH). Inulin group was taken as positive control in present study to compare novel GalOS protective effects. GalOS doses of 76-151 mg and inulin doses of 114 mg were given to different groups treated with DMH. Results showed that ACF formation was significantly (p ≤ 0.05) less in high dose GalOS group (27.3%). GalOS also had protective effects against DMH-induced body weight loss and showed higher level of cecal and fecal SCFA (acetate, propionate and butyrate). High doses of GalOS also resulted in significant (p ≤ 0.05) reduction of bacterial enzymatic activities. Increased populations of beneficial bacteria (bifidobacteria and lactobacilli) and decreased concentrations of harmful bacteria were observed in all prebiotics treatment groups. It can be concluded that novel GalOS exhibit robust protective activity against ACF formation in vivo.
Collapse
Affiliation(s)
- Tahir Rasool Qamar
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Punjab 54000, Pakistan.
| | - Sanaullah Iqbal
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Punjab 54000, Pakistan.
| | - Fatima Syed
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Punjab 54000, Pakistan.
| | - Muhammad Nasir
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Punjab 54000, Pakistan.
| | - Habib Rehman
- Department of Physiology, University of Veterinary & Animal Sciences, Punjab 54000, Pakistan.
| | - Muhammad Aamir Iqbal
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Punjab 54000, Pakistan.
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
11
|
Lahouar L, Ghrairi F, El Arem A, Medimagh S, El Felah M, Salem HB, Achour L. BIOCHEMICAL COMPOSITION AND NUTRITIONAL EVALUATION OF BARLEY RIHANE (HORDEUM VULGARE L.). AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2016; 14:310-317. [PMID: 28480409 PMCID: PMC5411883 DOI: 10.21010/ajtcam.v14i1.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Many experimental studies have suggested an important role for barley Rihane(BR)in the prevention of colon cancer and cardiovascular diseases. The objective of this study was to evaluate the physico-chemical properties and nutritional characterizations of BR compared to other varieties grown in Tunisia (Manel, Roho and Tej). MATERIAL AND METHODS Total, insoluble and soluble dietary fiber(β-glucan), total protein, ash and some minerals of BR and Tunisian barley varieties were determined. RESULTS The results revealed that BR is good source of dietary fiber mainly β-glucan compared to the other varieties. This variety is a relatively rich source of phosphorous and potassium and it contains many important unsaturated fatty acids. BR has higher nutritional value than other varieties. CONCLUSION Barley Rihane has significant nutritional characterizations compared to others Tunisian barleys varieties. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber; DM, Dry Matter.
Collapse
Affiliation(s)
- Lamia Lahouar
- Laboratoire de recherche Bioressources : Biologie Integrative & Valorisation “Biolival” de l’Institut Supérieur de Biotechnologie de Monastir-Tunisie
| | - Fatma Ghrairi
- Laboratoire de Biochimie, Faculté de Médecine de Sousse, Tunisie
| | - Amira El Arem
- Laboratoire de recherche Bioressources : Biologie Integrative & Valorisation “Biolival” de l’Institut Supérieur de Biotechnologie de Monastir-Tunisie
| | | | | | - Hichem Ben Salem
- International Center for Agricultural Research in Dry Areas (ICARDA), Jordan
| | - Lotfi Achour
- Laboratoire de recherche Bioressources : Biologie Integrative & Valorisation “Biolival” de l’Institut Supérieur de Biotechnologie de Monastir-Tunisie
| |
Collapse
|
12
|
Elucidation of phenolic antioxidants in barley seedlings ( Hordeum vulgare L.) by UPLC-PDA-ESI/MS and screening for their contents at different harvest times. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Feregrino-Perez AA, Piñol-Felis C, Gomez-Arbones X, Guevara-González RG, Campos-Vega R, Acosta-Gallegos J, Loarca-Piña G. A non-digestible fraction of the common bean (Phaseolus vulgaris L.) induces cell cycle arrest and apoptosis during early carcinogenesis. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:248-254. [PMID: 24952025 DOI: 10.1007/s11130-014-0428-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have previously demonstrated that the non-digestible fraction (NDF) from common cooked beans (P. vulgaris L., cv Negro 8025) inhibits azoxymethane (AOM)-induced colon cancer and influences the expression of genes involved in the induction of apoptosis and cell cycle arrest through the action of butyrate. The objective of this study was to identify cell cycle alterations and morphological changes induced by treatment with AOM and to examine the formation of colonic aberrant crypt foci (ACF) in male Sprague Dawley rats fed with these beans. Rats were fed control diets upon arrival and were randomly placed into four groups after one week of acclimatization: control, NDF (intragastric administration), NDF + AOM and AOM. Rats treated with NDF + AOM exhibited a significantly lower number of total colonic ACF with a notable increase in the number of cells present in the G1 phase (83.14%); a decreased proliferation index was observed in the NDF + AOM group when compared to AOM group. NDF + AOM also displayed a higher number of apoptotic cells compared to AOM group. NDF of cooked common beans inhibited colon carcinogenesis at an early stage by inducing cell cycle arrest of colon cells and morphological changes linked to apoptosis, thus confirming previous results obtained with gene expression studies.
Collapse
|
14
|
Watanabe T, Shimada R, Matsuyama A, Yuasa M, Sawamura H, Yoshida E, Suzuki K. Antitumor activity of the β-glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice. Food Funct 2014; 4:1685-90. [PMID: 24104447 DOI: 10.1039/c3fo60256g] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present study, the effects of β-glucans isolated from Euglena on the formation of preneoplastic aberrant crypt foci (ACF) in the colon were examined in mice. Mice were fed a semi-purified AIN-93M diet containing cellulose or the same diet but with the cellulose replaced with β-glucans in the form of Euglena, paramylon, or amorphous paramylon, for 11 weeks. After consuming these dietary supplements for 8 days, half of the mice were intraperitoneally administered 1,2-dimethylhydrazine (DMH) at a dose of 20 mg kg(-1) body weight every week for 6 weeks. Among the DMH-treated groups, the paramylon- and amorphous paramylon-fed mice displayed a significantly lower number of ACF than the control group. Also, the liver weight of the paramylon group was markedly decreased compared with those of the control and Euglena groups, whereas the cecal content weight and fecal volume of the paramylon group were significantly increased. As for the levels of organic acids in the cecal contents, the paramylon group displayed significantly increased lactic acid levels compared with the control and Euglena groups. From these findings, although the mechanism of the ACF-inhibiting effects of paramylon remains unclear, it is considered that β-glucans, such as paramylon and its isomer amorphous paramylon, have preventive effects against colon cancer and are more effective against the condition than Euglena.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Department of Dietary Environment Analysis, School of Human Science and Environment, Himeji Institute of Technology, University of Hyogo, Sinzaike Honcho 1-1-12, Himeji 6700092, Japan.
| | | | | | | | | | | | | |
Collapse
|