1
|
Fan X, Zhang Z, Hu Y, Richel A, Wang F, Zhang L, Ren G, Zou L. Current research status on the structure, physicochemical properties, bioactivities, and mechanism of soybean-derived bioactive peptide lunasin. Food Chem 2025; 479:143836. [PMID: 40090200 DOI: 10.1016/j.foodchem.2025.143836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Since the 21st century, chronic diseases have become a worldwide health problem due to their high morbidity and mortality. Soybean bioactive substances, especially soybean peptides, are considered to have health benefits beyond nutritional effects. As the most studied peptide in soybean, lunasin has been proven to exert beneficial effects on various chronic disorders. This review summarizes the content of lunasin in soybeans, soy derived foods, and other crops, as well as its structural characteristics and bioavailability. Moreover, we focused on the relationship between the physicochemical characteristics and structural composition of lunasin, and its significance for the bioactivities of lunasin. Ultimately, the therapeutic effects of lunasin on cancer, oxidative stress, inflammation, immune response, and hyperlipidemia were described, as well as the molecular mechanisms involved in these impacts. In conclusion, lunasin is a promising multifunctional bioactive peptide, yet further research is required to optimize and expedite its application in the food industry.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan 030006, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Zhuo Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Aurore Richel
- Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Fangzhou Wang
- Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Lizhen Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Guixing Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Chengdu Agricultural College, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Soh BXP, Vignes M, Smith NW, von Hurst PR, McNabb WC. Evaluation of protein intake and protein quality in New Zealand vegans. PLoS One 2025; 20:e0314889. [PMID: 40238722 PMCID: PMC12002464 DOI: 10.1371/journal.pone.0314889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Dietary protein provides indispensable amino acids (IAAs) that the body cannot synthesise. Past assessments of total protein intake from vegan populations in western, developed countries were found to be low but not necessarily below daily requirements. However, plant-sourced proteins generally have lower quantities of digestible IAAs as compared to animal-sourced proteins. Simply accounting for protein intake without considering AA profile and digestibility could overestimate protein adequacy among vegans. This study quantified protein intake and quality, as compared to reference intake values among 193 NZ vegans using a four-day food diary. Protein and IAA composition of all foods were derived from New Zealand FoodFiles and the United States Department of Agriculture and adjusted for True Ileal Digestibility (TID). Mean protein intakes for males and females were 0.98 and 0.80 g/kg/day, respectively with 78.8% of males and 73.0% of females meeting the Estimated Average Requirement for protein. Plant-sourced proteins provided 52.9 mg of leucine and 35.7 mg of lysine per gram of protein and were below the reference scoring patterns (leucine: 59mg/g, lysine: 45mg/g). When adjusted to individual body weight, average IAA intakes were above daily requirements, but lysine just met requirements at 31.0 mg/kg of body weight/day (reference: 30 mg/kg/day). Upon TID adjustment, the percentage of vegans meeting adequacy for protein and IAA decreased and only approximately 50% of the cohort could meet lysine and leucine requirements. Hence, lysine and leucine were the most limiting IAAs in the vegan cohort's diet. Legumes and pulses contributed most to overall protein and lysine intake. An increased proportion of legumes and pulses can potentially increase these intakes but must be considered in the context of the whole diet. AA composition and digestibility are important aspects of protein quality when assessing protein adequacy and is of particular importance in restrictive diets.
Collapse
Affiliation(s)
- Bi Xue Patricia Soh
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Matthieu Vignes
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - Nick W. Smith
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Pamela R. von Hurst
- School of Sport Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Warren C. McNabb
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Manguy J, Papoutsidakis GI, Doyle B, Trajkovic S. Quantification of Peptides in Food Hydrolysate from Vicia faba. Foods 2025; 14:1180. [PMID: 40238385 PMCID: PMC11988565 DOI: 10.3390/foods14071180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The hydrolysis of raw food sources by commercially available food-grade enzymes releases thousands of peptides. The full characterization of bioactive hydrolysates requires robust methods to identify and quantify key peptides in these food sources. For this purpose, the absolute quantification of specific peptides, part of a complex peptide network, is necessary. Protein quantification with synthetic tryptic peptides as internal standards is a well-known approach, yet the quantification of non-tryptic peptides contained in food hydrolysates is still largely unaddressed. Similarly, data analyses focus on proteomic applications, thus adding challenges to the study of specific peptides of interest. This paper presents an in-sample calibration curve methodology for the identification of three non-tryptic peptides present in a Vicia faba food hydrolysate (PeptiStrong™) using heavy synthetic peptides as both calibrants and internal standards.
Collapse
Affiliation(s)
| | | | | | - Sanja Trajkovic
- Nuritas Limited, Joshua Dawson House, 19B Dawson Street, Dublin 2, D02 RY95 Dublin, Ireland; (J.M.); (G.I.P.)
| |
Collapse
|
4
|
Nosworthy MG, Yu B, Zaharia LI, Medina G, Patterson N. Pulse protein quality and derived bioactive peptides. FRONTIERS IN PLANT SCIENCE 2025; 16:1429225. [PMID: 40007962 PMCID: PMC11850359 DOI: 10.3389/fpls.2025.1429225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
There is a growing consumer interest in sources of dietary protein that are plant-based. Pulse crops, such as lentils, beans, chickpeas, and peas, are gaining popularity due to their environmental sustainability, nutrient density, and functional attributes. The protein content and quality of pulses vary across different pulse classes and processing methods. The biological properties of the protein and the physiologically active peptides make pulse crops attractive as potentially functional or health-promoting foods. This review highlights the nutritional quality of pulse proteins as determined by the Protein Efficiency Ratio and Protein Digestibility Corrected Amino Acid Score as well as bioactive properties of specific bioactive peptides related to amelioration of hypertension and diabetes. Additionally, the use of proteomics platforms, such as mass spectrometry, in combination with bioinformatics tools, enables the identification and characterization of bioactive peptides in pulse crops. These technologies facilitate the development of pulse-derived products with enhanced nutritional values. Overall, the high nutritional quality of pulse-based proteins supports the benefits of pulse inclusion in the diet, which can also exert beneficial bioactivities resulting in improving outcomes in non-communicable diseases.
Collapse
Affiliation(s)
- Matthew G. Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bianyun Yu
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK, Canada
| | - L. Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK, Canada
| | - Gerardo Medina
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Chen M, Li Y, Liu X. A review of the role of bioactive components in legumes in the prevention and treatment of cardiovascular diseases. Food Funct 2025; 16:797-814. [PMID: 39785824 DOI: 10.1039/d4fo04969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases (CVD) represent a primary global health challenge. Poor dietary choices and lifestyle factors significantly increase the risk of developing CVD. Legumes, recognized as functional foods, contain various bioactive components such as active peptides, protease inhibitors, saponins, isoflavones, lectins, phytates, and tannins. Studies have demonstrated that several of these compounds are associated with the prevention and treatment of cardiovascular diseases, notably active peptides, saponins, isoflavones, and tannins. This review aims to analyze and summarize the relationship between bioactive compounds in legumes and cardiovascular health. It elaborates on the mechanisms through which active ingredients in legumes interact with risk factors for cardiovascular diseases, such as hypertension, hypercholesterolemia, endothelial dysfunction, and atherosclerosis. These mechanisms include, but are not limited to, lowering blood pressure, regulating lipid levels, promoting anticoagulation, enhancing endothelial function, and modulating TLR4 and NF-κB signaling pathways. Together, these mechanisms emphasize the potential of legumes in improving cardiovascular health. Additionally, the limitations of bioactive components in legumes and their practical applications, with the goal of fostering further advancements in this area were discussed.
Collapse
Affiliation(s)
- Mengqian Chen
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - You Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
6
|
Psarianos M, Aghababaei F, Schlüter OK. Bioactive compounds in edible insects: Aspects of cultivation, processing and nutrition. Food Res Int 2025; 203:115802. [PMID: 40022332 DOI: 10.1016/j.foodres.2025.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
The increasing interest in edible insects, driven by projected global population growth and environmental concerns, has led to the exploration of their potential in the food sector. Edible insects are abundant in macronutrients, such as proteins, lipids and chitin, as well as micronutrients, such as minerals, vitamins and phenolic compounds. Considering their content of bioactive compounds, they offer a sustainable solution to meet future food demands while providing potential health benefits. This review identifies bioactive peptides, phenolic compounds, chitosan, and vitamins as major bioactive ingredients derived from insects. It discusses their presence in various edible insect species, their primary bioactive properties, and methods for production and isolation. Bioactive compounds sourced from edible insects exhibit antioxidant, antimicrobial, and disease-preventing properties. Insects also serve as rich sources of vitamins A, B2, B6, B12, D, and E, albeit with variations in content among species and life stages. However, the consumption of insects poses risks related to their biological and chemical contaminants, as well as their allergenicity. Managed diets in farm-bred insects ensure controlled nutrient levels, highlighting their potential as sustainable sources of bioactive compounds for human health. Adequate processing and labeling of insect-derived products can reduce the risk of insect consumption. In conclusion, the bioactive compound profile of edible insects complements their nutritional richness and highlights their potential to address future nutrition and food security.
Collapse
Affiliation(s)
- Marios Psarianos
- System Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Department de Ciència Animal i dels Aliments, UAB-Campus, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Oliver K Schlüter
- System Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Bologna, Department of Agricultural and Food Sciences, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
7
|
Mitchell PL, Pilon G, Bazinet L, Gagnon C, Weisnagel SJ, Jacques H, Vohl MC, Marette A. Translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients-it takes a village. Appl Physiol Nutr Metab 2024; 49:1600-1605. [PMID: 39137439 DOI: 10.1139/apnm-2024-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
People use dietary supplements to offset nutritional deficiencies and manage metabolic dysfunction. While the beneficial effect of fish proteins on glucose homeostasis is well established, the ability of fish peptides to replicate the protein findings is less clear. With financial support from a programmatic Canadian Institutes of Health Research (CIHR) Team grant, we aimed to identify salmon peptide fractions (SPFs) with the potential to mitigate metabolic dysfunction. Additionally, the grant aims included assessing whether vitamin D, a nutrient commonly found in salmon, could potentiate the beneficial effects of salmon peptides. In parallel, technologies were developed to separate and filter the isolated peptides. We employed an integrative approach that combined nutritional interventions in animal models and human subjects to identify metabolic pathways regulated by salmon peptides and other fish nutrients. This combination of interdisciplinary expertise revealed that a SPF could be a therapeutic tool used in the prevention and management of cardiometabolic diseases. Herein, we present a perspective of our CIHR funded grant that utilized a translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients: from animal models to clinical trials.
Collapse
Affiliation(s)
- Patricia L Mitchell
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche nutrition, santé et société (NUTRISS) de l'Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Geneviève Pilon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche nutrition, santé et société (NUTRISS) de l'Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Laurent Bazinet
- Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences des aliments, Université Laval, Québec, QC, Canada
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires, Université Laval, Québec, QC, Canada
- Centre de recherche en sciences et technologie du lait (STELA), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Claudia Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, Canada
- Faculté de Médecine, Département de médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et néphrologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - S John Weisnagel
- Faculté de Médecine, Département de médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et néphrologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Hélène Jacques
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche nutrition, santé et société (NUTRISS) de l'Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC, Canada
- Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences des aliments, Université Laval, Québec, QC, Canada
| | - Marie-Claude Vohl
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche nutrition, santé et société (NUTRISS) de l'Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC, Canada
- Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences des aliments, Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche nutrition, santé et société (NUTRISS) de l'Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC, Canada
- Faculté de Médecine, Département de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Grigorean G, Du X, Kuhfeld R, Haberl EM, Lönnerdal B. Effect of In Vitro Digestion on Bioactive Peptides Related to Immune and Gut Health in Intact Cow's Milk and Hydrolyzed Protein-Based Infant Formulas. Nutrients 2024; 16:3268. [PMID: 39408235 PMCID: PMC11479043 DOI: 10.3390/nu16193268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Human milk is the optimal source of nutrition and protection against infection for infants. If breastfeeding is not possible, standard and hydrolyzed infant formulas (IF) are an alternative. Extensively hydrolyzed IFs (eHFs) contain bioactive peptides, but their activities have rarely been evaluated. The aim of this study was to characterize and compare the bioactive peptide profiles of different eHFs and standard IFs before and after in vitro digestion. Methods: Two forms, liquid and powder, of intact protein formula (iPF) and eHF were subjected to in vitro gastrointestinal digestion, mimicking a young infant's gut (age 0-4 months) and an older infant's gut (>6 months). Bioactive peptides of in vitro digested and undigested formulas were analysed with Liquid Chromatography-Mass Spectrometry (LC-MS). Results: In all samples, a variety of peptides with potential bioactive properties were found. Immuno-regulatory peptides, followed by antimicrobial and antioxidative peptides were most frequent, as were peptides promoting wound healing, increasing mucin secretion, regulating cholesterol metabolism, and preventing bacterial infection. Peptides typically found in yoghurt and colostrum were identified in some formula samples. Conclusions: The high amounts of bioactive peptides with various properties in eHFs and iPFs indicate a possible contribution to infection protection, healthy gut microbiomes, and immunological development of infants. eHFs showed similar compositions of bioactive peptides to iPFs, with intermittently increased peptide variety and quantity.
Collapse
Affiliation(s)
- Gabriela Grigorean
- Proteomics Core Facility, University of California, Davis, CA 95616, USA;
| | - Xiaogu Du
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| | - Russell Kuhfeld
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA;
| | | | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
9
|
Wijesekara T, Abeyrathne EDNS, Ahn DU. Effect of Bioactive Peptides on Gut Microbiota and Their Relations to Human Health. Foods 2024; 13:1853. [PMID: 38928795 PMCID: PMC11202804 DOI: 10.3390/foods13121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut microbiota. Gut microbiota is a diverse microbial community that significantly influences the overall well-being and homeostasis of the body. Factors such as diet, age, lifestyle, medication, and environmental circumstances can affect the composition and diversity of the gut microbiota. The disturbances or imbalances in the gut microbiota have been associated with various health problems. The interplays between bioactive peptides and gut microbiota are not fully understood, but bioactive peptides hold promise as modulators of the gut microbiota to promote gut health. Almost all the bioactive research on human health, including the development of therapeutics and nutritional interventions, uses cell culture, even though their direct biofunctional activities can only occur when absorbed in the intestine and into the blood system. This review focuses on the current understanding of bioactive peptides in gut microbiota and their impact and mechanisms on gut and human health. The novelty of this review lies in its comprehensive analysis of the multifaceted interactions between bioactive peptides and gut microbiota, integrating knowledge from diverse disciplines between microbiology and nutrition. By elucidating the underlying mechanisms and identifying current research gaps, this review offers an outlook on the potential of bioactive peptides in promoting gut health and shaping future therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | | | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Dibdiakova J, Matic J, Wubshet SG, Uhl W, Manamperuma LD, Rusten B, Vik EA. Membrane Separation of Chicken Byproduct Hydrolysate for Up-Concentration of Bioactive Peptides. MEMBRANES 2024; 14:28. [PMID: 38392655 PMCID: PMC10889955 DOI: 10.3390/membranes14020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Membrane processes, such as microfiltration, ultrafiltration, and nanofiltration, are increasingly used for various applications in both upstream and downstream processing. Membrane-based processes play a critical role in the field of separation/purification of biotechnological products, including protein production/purification. The possibility of using membranes to separate peptides from a chicken byproduct hydrolysate and the effect of the performed downstream processing on the DPP-IV dipeptidyl peptidase IV (DPP-IV) inhibitory activity of mechanical deboning chicken residue (MDCR) has been investigated. The chicken byproduct hydrolysate was prepared by enzymatic hydrolysis followed by microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) separation. Comparing all separation treatments, hydrolysates processed only by MF and UF show the best DPP-IV inhibition (59.5-60.0% at 1 mg/mL and 34.2-40.7% at 0.5 mg/mL). These samples show dose-responsive behavior. Bioactivity was correlated with molecular weight distribution profiles and average molecular weights. The nanofiltration process notably decrease the inhibitory activity, and these permeates show low DPP-IV inhibition (9.5-21.8% at 1 mg/mL and 3.6-12.1% at 0.5 mg/mL). The size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND) analysis confirms that NF and RO would retain the bioactive peptides in the concentrate in comparison to MF and UF. Bioactivity was correlated with molecular weight distribution profiles and average molecular weights. Permeates after ultrafiltration show an IC50 value of 0.75 mg/mL, comparable to other potent DPP-IV inhibitors derived from various food sources, and significantly more potent compared to the microfiltration sample, which shows an IC50 value of 1.04 mg/mL. The average molecular weight of the permeates calculated from the SEC chromatograms was 883 g/mol for UF and 1437 g/mol for MF. Of the four membranes studied, the UF membrane shows the best separation properties with respect to maximizing the yield and up-concentration of the bioactive peptides. Overall, UF was demonstrated to be a feasible technology for the removal of the undesired high-molecular-weight substances and up-concentration of small-molecular-weight bioactive peptides from chicken byproduct hydrolysate. These peptides might exhibit biological activity and could offer several health benefits. There is a high potential for the use of bioactive peptides, and more research in this field can lead to promising results that have significant effects in the food and medical industries.
Collapse
Affiliation(s)
| | | | | | - Wolfgang Uhl
- Aquateam COWI AS, Karvesvingen 2, 0579 Oslo, Norway
| | | | - Bjørn Rusten
- Aquateam COWI AS, Karvesvingen 2, 0579 Oslo, Norway
| | | |
Collapse
|
11
|
Jin A, Kan Z, Tan Q, Shao J, Han Q, Chang Y, An N, Yi M. Supplementation with food-derived oligopeptides promotes lipid metabolism in young male cyclists: a randomized controlled crossover trial. J Int Soc Sports Nutr 2023; 20:2254741. [PMID: 37674290 PMCID: PMC10486287 DOI: 10.1080/15502783.2023.2254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Accumulation of body fat and dyslipidemia are associated with the development of obesity and cardiometabolic diseases. Moreover, the degree to which lipids can be metabolized has been cited as a determinant of cardiometabolic health and prolonged endurance capacity. In the backdrop of increasing obesity and cardiometabolic diseases, lipid metabolism and its modulation by physical activity, dietary adjustments, and supplementation play a significant role in maintaining health and endurance. Food-derived oligopeptides, such as rice and soybean peptides, have been shown to directly regulate abnormal lipid metabolism or promote hypolipidemia and fat oxidation in cell culture models, animal models, and human studies. However, whether supplementation with oligopeptides derived from multiple food sources can promote lipid degradation and fat oxidation in athletes remains unclear. Therefore, in a randomized controlled crossover trial, we investigated the impact of food-derived oligopeptide supplementation before and during exercise on lipid metabolism in young male cyclists. METHODS Sixteen young male cyclists (age: 17.0 ± 1.0 years; height: 178.4 ± 6.9 cm; body mass: 68.7 ± 12.7 kg, body mass index: 21.5 ± 3.4 kg/m2; maximum oxygen uptake: 56.3 ± 5.8 mL/min/kg) participated in this randomized controlled crossover trial. Each participant drank two beverages, one containing a blend of three food-derived oligopeptides (treatment, 0.5 g/kg body weight in total) and the other without (control), with a 2-week washout period between two experiments. The cyclists completed a one-day pattern protocol that consisted of intraday fasting, 30 min of sitting still, 85 min of prolonged exercise plus a 5-min sprint (PE), a short recovery period of 60 min, a 20-min time trial (TT), and recovery till next morning. Blood samples were collected for biochemical analyses of serum lipids and other biomarkers. We analyzed plasma triglyceride species (TGs), free amino acids (FAAs), and tricarboxylic acid (TCA) cycle intermediates using omics methods. In addition, exhaled gas was collected to assess the fat oxidation rate. RESULTS Five of 20 plasma FAAs were elevated pre-exercise (pre-Ex) only 20 min after oligopeptide ingestion, and most FAAs were markedly increased post PE and TT. Serum levels of TG and non-esterified fatty acids were lower in the experimental condition than in the control condition at the post PE and TT assessments, respectively. Further, the omics analysis of plasma TGs for the experimental condition demonstrated that most TGs were lower post PE and at the next fasting when compared with control levels. Simultaneously, the fat oxidation rate began to increase only 20 min after ingestion and during the preceding 85 min of PE. Levels of TCA cycle intermediates did not differ between the conditions. CONCLUSIONS The study noted that continuous ingestion of food-derived oligopeptides accelerated total body triglyceride breakdown, non-esterified fatty acid uptake, and fat oxidation during both sedentary and exercise states. Elevated circulating and intracellular FAA flux may modulate the selection of substrates for metabolic pathways in conjunction with the release of neuroendocrinological factors that slow down carbohydrate metabolism via acetyl coenzyme A feedback inhibition. This may increase the availability of fatty acids for energy production, with FAAs supplying more substrates for the TCA cycle. The findings of this study provide novel insight into strategies for promoting lipid metabolism in populations with dyslipidemia-related metabolic disorders such as obesity and for improving physiological functioning during endurance training. However, the absence of a non-exercising control group and verification of long-term supplementation effects was a limitation. Future studies will emphasize the impacts of whole protein supplementation as a control and of combined food-derived peptides or oligopeptides with probiotics and healthy food components on lipid metabolism in individuals who exercise.
Collapse
Affiliation(s)
- Aina Jin
- Beijing Sport University, Exercise Biochemistry, Beijing, China
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Zhaobo Kan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qiushi Tan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Jing Shao
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qi Han
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Yashan Chang
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Nan An
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| |
Collapse
|
12
|
Mu J, Lin Q, Liang Y. An update on the effects of food-derived active peptides on the intestinal microecology. Crit Rev Food Sci Nutr 2023; 63:11625-11639. [PMID: 35791779 DOI: 10.1080/10408398.2022.2094889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The intestinal microecology is a research hotspot, and neologisms related to the gut such as gut-brain axis, gut-lung axis, gut-bone axis, gut-skin axis, gut-renal axis, and gut-liver axis have emerged from recent research. Meticulous investigation has discovered that food-derived active peptides (FDAPs) are bioactive substances that optimize the structure of the gut microbiota to improve human health. However, few reviews have summarized and emphasized the nutritional value of FDAPs and their mechanisms of action in regulating the composition of the gut microbiota. We aim to provide an update on the latest research on FDAPs by comparing, summarizing, and discussing the potential food sources of FDAPs, their physiological functions, and regulatory effects on the intestinal microecology. The key findings are that few studies have analyzed the potential mechanisms and molecular pathways through which FDAPs maintain intestinal microecological homeostasis. We found that an imbalance in the ratio of Bacteroidetes and Firmicutes in the gut microbiota and abnormal production of short-chain fatty acids are key to the occurrence and development of various diseases. This review provides theoretical support for future comprehensive research on the digestion, distribution, metabolism, and excretion of FDAPs and the mechanisms underlying the interactions between FDAPs and the intestinal microecology.
Collapse
Affiliation(s)
- Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
13
|
Zhang Y, Liu L, Zhang M, Li S, Wu J, Sun Q, Ma S, Cai W. The Research Progress of Bioactive Peptides Derived from Traditional Natural Products in China. Molecules 2023; 28:6421. [PMID: 37687249 PMCID: PMC10489889 DOI: 10.3390/molecules28176421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Traditional natural products in China have a long history and a vast pharmacological repertoire that has garnered significant attention due to their safety and efficacy in disease prevention and treatment. Among the bioactive components of traditional natural products in China, bioactive peptides (BPs) are specific protein fragments that have beneficial effects on human health. Despite many of the traditional natural products in China ingredients being rich in protein, BPs have not received sufficient attention as a critical factor influencing overall therapeutic efficacy. Therefore, the purpose of this review is to provide a comprehensive summary of the current methodologies for the preparation, isolation, and identification of BPs from traditional natural products in China and to classify the functions of discovered BPs. Insights from this review are expected to facilitate the development of targeted drugs and functional foods derived from traditional natural products in China in the future.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Shani Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Jini Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Qiuju Sun
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Shengjun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| |
Collapse
|
14
|
Newton A, Majumder K. Germination and Simulated Gastrointestinal Digestion of Chickpea ( Cicer arietinum L.) in Exhibiting In Vitro Antioxidant Activity in Gastrointestinal Epithelial Cells. Antioxidants (Basel) 2023; 12:antiox12051114. [PMID: 37237980 DOI: 10.3390/antiox12051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Plant-based proteins, in particular pulse proteins, have grown in popularity worldwide. Germination, or sprouting, is an effective method to release peptides and other dietary compounds. However, the combination of germination and gastrointestinal digestion in enhancing the release of dietary compounds with potential health-beneficial biological activity has yet to be entirely elucidated. The present study illustrates the impact of germination and gastrointestinal digestion on the release of dietary compounds with antioxidant activity from chickpeas (Cicer arietinum L.). Germination up to 3 days (D0 to D3) increased the peptide content by denaturing chickpea storage proteins and increased the degree of hydrolysis (DH) in the gastric phase. The antioxidant activity was measured at three different dosages (10, 50, and 100 μg/mL) and compared between D0 and D3 on human colorectal adenocarcinoma cells (HT-29). A significant increase in antioxidant activity was observed in the D3 germinated samples in all three tested dosages. Further analysis identified 10 peptides and 7 phytochemicals differentially expressed between the D0 and D3 germinated samples. Among the differentially expressed compounds, 3 phytochemicals (2',4'-dihydroxy-3,4-dimethoxychalcone, isoliquiritigenin 4-methyl ether, and 3-methoxy-4,2',5'-trihydroxychalcone) and 1 peptide (His-Ala-Lys) were identified only in the D3 samples, indicating their potential contribution towards the observed antioxidant activity.
Collapse
Affiliation(s)
- Ashley Newton
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Kaustav Majumder
- 256 Food Innovation Center, Nebraska Innovation Campus, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| |
Collapse
|
15
|
Hu S, Liu C, Liu X. The Beneficial Effects of Soybean Proteins and Peptides on Chronic Diseases. Nutrients 2023; 15:nu15081811. [PMID: 37111030 PMCID: PMC10144650 DOI: 10.3390/nu15081811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
With lifestyle changes, chronic diseases have become a public health problem worldwide, causing a huge burden on the global economy. Risk factors associated with chronic diseases mainly include abdominal obesity, insulin resistance, hypertension, dyslipidemia, elevated triglycerides, cancer, and other characteristics. Plant-sourced proteins have received more and more attention in the treatment and prevention of chronic diseases in recent years. Soybean is a low-cost, high-quality protein resource that contains 40% protein. Soybean peptides have been widely studied in the regulation of chronic diseases. In this review, the structure, function, absorption, and metabolism of soybean peptides are introduced briefly. The regulatory effects of soybean peptides on a few main chronic diseases were also reviewed, including obesity, diabetes mellitus, cardiovascular diseases (CVD), and cancer. We also addressed the shortcomings of functional research on soybean proteins and peptides in chronic diseases and the possible directions in the future.
Collapse
Affiliation(s)
- Sumei Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Caiyu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
16
|
Haghighatdoost F, Mohammadifard N, Zakeri P, Najafian J, Sadeghi M, Roohafza H, Sarrafzadegan N. Differences in all-cause mortality risk associated with animal and plant dietary protein sources consumption. Sci Rep 2023; 13:3396. [PMID: 36854962 PMCID: PMC9974986 DOI: 10.1038/s41598-023-30455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The relationship between protein intake and mortality is still controversial. We prospectively examined the associations of dietary protein sources with all-cause mortality risk in the Isfahan cohort study (ICS). A total of 5431 participants, aged ≥ 35 years, were enrolled in the ICS, in 2001 and followed through 2013. The frequency of protein intakes from different sources was estimated through a validated food frequency questionnaire at baseline. Any new case of death was recorded over the follow-up duration. Hazard ratio (HR)s and 95% confidence interval (CI)s were estimated through Cox proportional hazards regression models. During a median follow-up of 11.3 years, 483 deaths were documented. Higher intakes of plant proteins (HR = 0.64, 95% CI 0.46, 0.91) and animal proteins (HR = 1.52, 95% CI 1.13, 2.05) were associated with a decreased and increased risk of mortality, respectively. Additional adjustment for some mediators did not considerably affect the associations for animal protein (HR = 1.55, 95% CI 1.15, 2.09), whereas led to a tendency towards lower risk for plant protein in the top quintile compared with the bottom one (HR = 0.67, 95% CI 0.48, 0.95; P trend = 0.06). Among specific major sources, higher intakes of nuts and fish were associated with a 27% (95% CI 0.58, 0.93) and 21% (95% CI 0.62, 1.01) lower risk of mortality, respectively. The inverse association between plant protein and mortality risk might be mediated by some metabolic disorders. However, our results suggest an independent positive association for animal protein and all-cause mortality.
Collapse
Affiliation(s)
- Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Parisa Zakeri
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Najafian
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Roohafza
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Balshaw TG, Funnell MP, McDermott E, Maden-Wilkinson TM, Abela S, Quteishat B, Edsey M, James LJ, Folland JP. The effect of specific bioactive collagen peptides on function and muscle remodeling during human resistance training. Acta Physiol (Oxf) 2023; 237:e13903. [PMID: 36433662 PMCID: PMC10078466 DOI: 10.1111/apha.13903] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
AIM Bioactive collagen peptides (CP) have been suggested to augment the functional, structural (size and architecture), and contractile adaptations of skeletal muscle to resistance training (RT), but with limited evidence. This study aimed to determine if CP vs. placebo (PLA) supplementation enhanced the functional and underpinning structural, and contractile adaptations after 15 weeks of lower body RT. METHODS Young healthy males were randomized to consume either 15 g of CP (n = 19) or PLA (n = 20) once every day during a standardized program of progressive knee extensor, knee flexor, and hip extensor RT 3 times/wk. Measurements pre- and post-RT included: knee extensor and flexor isometric strength; quadriceps, hamstrings, and gluteus maximus volume with MRI; evoked twitch contractions, 1RM lifting strength, and architecture (with ultrasound) of the quadriceps. RESULTS Percentage changes in maximum strength (isometric or 1RM) did not differ between-groups (0.684 ≤ p ≤ 0.929). Increases in muscle volume were greater (quadriceps 15.2% vs. 10.3%; vastus medialis (VM) 15.6% vs. 9.7%; total muscle volume 15.7% vs. 11.4%; [all] p ≤ 0.032) or tended to be greater (hamstring 16.5% vs. 12.8%; gluteus maximus 16.6% vs. 12.9%; 0.089 ≤ p ≤ 0.091) for CP vs. PLA. There were also greater increases in twitch peak torque (22.3% vs. 12.3%; p = 0.038) and angle of pennation of the VM (16.8% vs. 5.8%, p = 0.046), but not other muscles, for CP vs. PLA. CONCLUSIONS CP supplementation produced a cluster of consistent effects indicating greater skeletal muscle remodeling with RT compared to PLA. Notably, CP supplementation amplified the quadriceps and total muscle volume increases induced by RT.
Collapse
Affiliation(s)
- Thomas G Balshaw
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Mark P Funnell
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Emmet McDermott
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Thomas M Maden-Wilkinson
- Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Collegiate Campus, Sheffield Hallam University, Sheffield, UK
| | - Sean Abela
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Btool Quteishat
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Max Edsey
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Lewis J James
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Jonathan P Folland
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK.,Versus Arthritis, Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, UK
| |
Collapse
|
18
|
Ribeiro JVV, Graziani D, Carvalho JHM, Mendonça MM, Naves LM, Oliveira HF, Campos HM, Fioravanti MCS, Pacheco LF, Ferreira PM, Pedrino GR, Ghedini PC, Fernandes KF, Batista KDA, Xavier CH. A peptide fraction from hardened common beans ( Phaseolus vulgaris) induces endothelium-dependent antihypertensive and renal effects in rats. Curr Res Food Sci 2022; 6:100410. [PMID: 36545514 PMCID: PMC9762200 DOI: 10.1016/j.crfs.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Beans reached the research spotlight as a source of bioactive compounds capable of modulating different functions. Recently, we reported antioxidant and oxidonitrergic effect of a low molecular weight peptide fraction (<3 kDa) from hardened bean (Phaseolus vulgaris) in vitro and ex vivo, which necessitate further in vivo assessments. This work aimed to evaluate the hypotensive effect and the involved physiological mechanisms of the hardened common bean peptide (Phaseolus vulgaris) in normotensive (Wistar) and hypertensive (SHR) animals. Bean flour was combined with a solution containing acetonitrile, water and formic acid (25: 24: 1). Protein extract (PV3) was fractioned (3 kDa membrane). We assessed PV3 effects on renal function and hemodynamics of wistar (WT-normotensive) and spontaneously hypertensive rats (SHR) and measured systemic arterial pressure and flow in aortic and renal beds. The potential endothelial and oxidonitrergic involvements were tested in isolated renal artery rings. As results, we found that PV3: I) decreased food consumption in SHR, increased water intake and urinary volume in WT, increased glomerular filtration rate in WT and SHR, caused natriuresis in SHR; II) caused NO- and endothelium-dependent vasorelaxation in renal artery rings; III) reduced arterial pressure and resistance in aortic and renal vascular beds; IV) caused antihypertensive effects in a dose-dependent manner. Current findings support PV3 as a source of bioactive peptides and raise the potential of composing nutraceutical formulations to treat renal and cardiovascular diseases.
Collapse
Key Words
- ABF, Aortic blood flow
- AVR, Aortic vascular resistance
- Bioactive peptides
- Common beans
- GFR, Glomerular filtration rate
- HTC, Hard-to-Cook effects
- Hard-to-cook
- Hydroelectrolytic balance
- Hypertension
- L-NAME, nitroarginine methyl ester
- NO, Nitric oxide
- PV3, Phaseolus vulgaris extract with peptides smaller than 3 kDa
- Phaseolus vulgaris
- RBF, Renal blood flow
- RVR, Renal vascular resistance
- Renal function
- SHR, Spontaneously hypertensive rat
- WT, Wistar rat
Collapse
Affiliation(s)
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | | | | | - Lara Marques Naves
- Center of Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Helton Freires Oliveira
- Molecule, Cell and Tissue Analysis Laboratory, School of Veterinary and Animal Science, Federal University of Goiás, Brazil
| | - Hericles Mesquita Campos
- Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | | | | | - Patricia Maria Ferreira
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Center of Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Paulo César Ghedini
- Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Kátia Flávia Fernandes
- Polymer Chemistry Laboratory, Institute of Biological of Sciences, Federal University of Goiás, Brazil
| | | | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil,Corresponding author. Systems Neurobiology Laboratory. Department of Physiological Sciences, room 203, Institute of Biological Sciences. Federal University of Goiás, Esperança Avenue, Campus II, Goiania, GO, 74690-900, Brazil.
| |
Collapse
|
19
|
Buey B, Layunta E, Latorre E, Mesonero JE. Potential role of milk bioactive peptides on the serotonergic system and the gut-brain axis. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Salekeen R, Haider AN, Akhter F, Billah MM, Islam ME, Didarul Islam KM. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2022; 14:200143. [PMID: 36060286 PMCID: PMC9434419 DOI: 10.1016/j.ijcrp.2022.200143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
A marked increase in the global prevalence of ischemic heart disease demands focused research for novel and more effective therapeutic strategies. At present, atherosclerotic cardiovascular disease (ACVD) is the leading cause of the global incidence of heart attacks and a major contributor to many peripheral cardiac diseases. Decades of research have unearthed the complex and multidimensional pathophysiology of ACVD encompassing oxidative stress, redox imbalance, lipid peroxidation, pro-inflammatory signaling, hyperglycemic stress and diabetes mellitus, chronic low-grade inflammation and aging, immune dysregulation, vascular dysfunction, loss of hemostasis, thrombosis, and fluid shear stress. However, the scientific basis of therapeutic interventions using conventional understandings of the disease mechanisms has been subject to renewed scrutiny with novel findings in recent years. This critical review attempts to revise the pathophysiological mechanisms of atherosclerosis using a recent body of literature, with a focus on lipid metabolism and associated cellular and biochemical processes. The comprehensive study encompasses different molecular perspectives in the development and progression of coronary atherosclerosis. The review also summarizes currently prescribed small molecule therapeutics in inflammation and ACVD, and overviews prospective management measures under development including peptides and microRNA therapeutics. The study provides updated insights into the current knowledge of coronary atherosclerosis, and highlights the need for effective prevention, management and development of novel intervention approaches to overcome this chronic epidemic.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Abu Nasim Haider
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Fouzia Akhter
- Khulna Medical College Hospital, Khulna, 9000, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
21
|
Zhi T, Li X, Sadiq FA, Mao K, Gao J, Mi S, Liu X, Deng W, Chitrakar B, Sang Y. Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods: Preparation, purification, identification and characterization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113636] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
23
|
Comparative evaluation of pseudocereals peptides: A review of their nutritional contribution. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2022; 148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
25
|
Exogenous Bioactive Peptides Have a Potential Therapeutic Role in Delaying Aging in Rodent Models. Int J Mol Sci 2022; 23:ijms23031421. [PMID: 35163342 PMCID: PMC8835817 DOI: 10.3390/ijms23031421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, some exogenous bioactive peptides have been shown to have promising anti-aging effects. These exogenous peptides may have a mechanism similar to endogenous peptides, and some can even regulate the release of endogenous active peptides and play a synergistic role with endogenous active peptides. Most aging studies use rodents that are easy to maintain in the laboratory and have relatively homogenous genotypes. Moreover, many of the anti-aging studies using bioactive peptides in rodent models only focus on the activity of single endogenous or exogenous active peptides, while the regulatory effects of exogenous active peptides on endogenous active peptides remain largely under-investigated. Furthermore, the anti-aging activity studies only focus on the effects of these bioactive peptides in individual organs or systems. However, the pathological changes of one organ can usually lead to multi-organ complications. Some anti-aging bioactive peptides could be used for rescuing the multi-organ damage associated with aging. In this paper, we review recent reports on the anti-aging effects of bioactive peptides in rodents and summarize the mechanism of action for these peptides, as well as discuss the regulation of exogenous active peptides on endogenous active peptides.
Collapse
|
26
|
Dugardin C, Fleury L, Touche V, Ahdach F, Lesage J, Tenenbaum M, Everaert N, Briand O, Lestavel S, Ravallec R, Cudennec B. An Exploratory Study of the Role of Dietary Proteins in the Regulation of Intestinal Glucose Absorption. Front Nutr 2022; 8:769773. [PMID: 35127780 PMCID: PMC8808719 DOI: 10.3389/fnut.2021.769773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Several studies have demonstrated that high protein diets improve glucose homeostasis. Nevertheless, the mechanisms underlying this effect remain elusive. This exploratory study aims to screen and compare the acute effects of dietary proteins from different sources on intestinal glucose absorption. Six dietary proteins from various sources were thus selected and digested thanks to the INFOGEST static gastrointestinal digestion protocol. The digested proteins were able to decrease intestinal glucose absorption in vitro and ex vivo. Moreover, acute ingestion of casein and fish gelatin led to improved glucose tolerance in Wistar rats without significant effect on insulin secretion. In parallel, GLUT2 mRNA expression in enterocytes was decreased following short-term incubation with some of the digested proteins. These results strengthen the evidence that digested protein-derived peptides and amino acids are key regulators of glucose homeostasis and highlight their role in intestinal glucose absorption.
Collapse
Affiliation(s)
- Camille Dugardin
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- *Correspondence: Camille Dugardin
| | - Léa Fleury
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Véronique Touche
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Farah Ahdach
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE, Lille, France
| | - Mathie Tenenbaum
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Nadia Everaert
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- Animal and Human Health Engineering, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Olivier Briand
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Rozenn Ravallec
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Benoit Cudennec
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- Benoit Cudennec
| |
Collapse
|
27
|
Zheng J, Zhu T, Yang G, Zhao L, Li F, Park YM, Tabung FK, Steck SE, Li X, Wang H. The Isocaloric Substitution of Plant-Based and Animal-Based Protein in Relation to Aging-Related Health Outcomes: A Systematic Review. Nutrients 2022; 14:nu14020272. [PMID: 35057453 PMCID: PMC8781188 DOI: 10.3390/nu14020272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Plant-based and animal-based protein intake have differential effects on various aging-related health outcomes, but less is known about the health effect of isocaloric substitution of plant-based and animal-based protein. This systematic review summarized current evidence of the isocaloric substitutional effect of plant-based and animal-based protein on aging-related health outcomes. PubMed and Embase databases were searched for epidemiologic observational studies published in English up to 15 March 2021. Studies that included adults ≥18 years old; use of a nutritional substitution model to define isocaloric substitution of plant protein and animal protein; health outcomes covering mortality, aging-related diseases or indices; and reported association estimates with corresponding 95% confidence intervals were included. Nine cohort studies and 3 cross-sectional studies were identified, with a total of 1,450,178 subjects included in this review. Consistent and significant inverse association of substituting plant protein for various animal proteins on all-cause mortality was observed among 4 out of 5 studies with relative risks (RRs) from 0.54 to 0.95 and on cardiovascular disease (CVD) mortality among all 4 studies with RRs from 0.58 to 0.91. Among specific animal proteins, the strongest inverse association on all-cause and CVD mortality was identified when substituting plant protein for red and/or processed meat protein, with the effect mainly limited to bread, cereal, and pasta protein when replacing red meat protein. Isocaloric substitution of plant-based protein for animal-based protein might prevent all-cause and CVD-specific mortality. More studies are needed on this topic, particularly for cancer incidence and other specific aging-related diseases.
Collapse
Affiliation(s)
- Jiali Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (T.Z.); (G.Y.)
| | - Tianren Zhu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (T.Z.); (G.Y.)
| | - Guanghuan Yang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (T.Z.); (G.Y.)
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (L.Z.); (S.E.S.)
| | - Fangyu Li
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yong-Moon Park
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Fred K. Tabung
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Susan E. Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (L.Z.); (S.E.S.)
| | - Xiaoguang Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (T.Z.); (G.Y.)
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (X.L.); (H.W.)
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (T.Z.); (G.Y.)
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (X.L.); (H.W.)
| |
Collapse
|
28
|
ALaerjani WMA, Abu-Melha SA, Khan KA, Ghramh HA, Alalmie AYA, Alshareef RMH, AL-Shehri BM, Mohammed MEA. Presence of short and cyclic peptides in Acacia and Ziziphus honeys may potentiate their medicinal values. OPEN CHEM 2021; 19:1162-1173. [DOI: 10.1515/chem-2021-0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Abstract
Acacia honey is characterized by high nutritional, antioxidant, antibacterial and immuno-modulatory values. This work investigated the presence of short and cyclic peptides in Acacia and Ziziphus honey samples. Acacia honey samples (Acacia tortilis and Acacia hamulosa) and three Ziziphus honeys (Ziziphus spina-christi) were screened for their short and cyclic peptide contents using the LC-MS and the chemical structure databases. Moreover, the total protein content was determined using the Bradford method. The A. tortilis honey contained three short peptides; HWCC, DSST, and ECH, and the A. hamulosa honey sample contained five short peptides and one cyclic peptide. The short peptides of the A. hamulosa honey were Ac-GMGHG-OH (Ac-MGGHG-OH), Boc-R(Aloc)2-C(Pal)-OH, H-C (1)-NEt2·H-C (1)-NEt2, APAP (AAPP), and GAFQ (deamino-2-pyrid-4-yl-glycyl-dl-alanyl-dl-norvalyl-dl-asparagine). The cyclic peptide of the A. hamulosa honey was cyclo[Aad-RGD-d-F] (cyclo[Aad-Arg-Gly-Asp-d-Phe]). The Ziziphus honey was characterized by the presence of either Almiramide B or Auristatin-6-AQ. A. tortilis, A. hamulosa, and Ziziphus honeys are characterized by the presence of short and cyclic peptides which may contribute to their medicinal values.
Collapse
Affiliation(s)
| | | | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, King Khalid University , Abha , Saudi Arabia
- Department of Biology, Faculty of Science, King Khalid University , Abha , Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University , Abha , Saudi Arabia
| | - Hamed A. Ghramh
- Unit of Bee Research and Honey Production, King Khalid University , Abha , Saudi Arabia
- Department of Biology, Faculty of Science, King Khalid University , Abha , Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University , Abha , Saudi Arabia
| | - Ali Yahya A. Alalmie
- The Poison Control and Medical Forensic Chemistry Centre , Asir Region , Saudi Arabia
| | | | - Badria M. AL-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University , Abha , Saudi Arabia
- Unit of Bee Research and Honey Production, King Khalid University , Abha , Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University , Abha , Saudi Arabia
| | - Mohammed Elimam Ahamed Mohammed
- Department of Chemistry, Faculty of Science, King Khalid University , Abha , Saudi Arabia
- Unit of Bee Research and Honey Production, King Khalid University , Abha , Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
29
|
Palma-Albino C, Intiquilla A, Jiménez-Aliaga K, Rodríguez-Arana N, Solano E, Flores E, Zavaleta AI, Izaguirre V, Hernández-Ledesma B. Albumin from Erythrina edulis (Pajuro) as a Promising Source of Multifunctional Peptides. Antioxidants (Basel) 2021; 10:1722. [PMID: 34829593 PMCID: PMC8615073 DOI: 10.3390/antiox10111722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
Multifunctional peptides, capable of acting on different body systems through multiple mechanisms of action, offer many advantages over monofunctional peptides, including lower adverse side effects and costs. Erythrina edulis (pajuro) is a legume with a large number of high-quality proteins, of which their potential as a source of antioxidant peptides has been recently reported. In this study, the behavior of these proteins under a sequential enzymatic hydrolysis with digestive and microbial enzymes was investigated by evaluating the multi-functionality of the hydrolyzates. The albumin hydrolyzates obtained after the action of pepsin, pancreatin, and Alcalase showed antioxidant, angiotensin-converting enzyme (ACE), α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory activities. The radical scavenging properties of the hydrolyzate could be responsible for the potent protective effects observed in FeSO4-induced neuroblastoma cells. The findings support the role of pajuro protein as an ingredient of functional foods or nutraceuticals for health promotion and the prevention of oxidative stress, hypertension, and metabolic alteration-associated chronic diseases.
Collapse
Affiliation(s)
- Cleni Palma-Albino
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Arturo Intiquilla
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 946, Santiago de Chile 8380492, Chile
| | - Karim Jiménez-Aliaga
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Nathaly Rodríguez-Arana
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Estela Solano
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Eduardo Flores
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Amparo Iris Zavaleta
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Víctor Izaguirre
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
30
|
Zhang X, Li H, Wang L, Zhang S, Wang F, Lin H, Gao S, Li X, Liu K. Anti-inflammatory peptides and metabolomics-driven biomarkers discovery from sea cucumber protein hydrolysates. J Food Sci 2021; 86:3540-3549. [PMID: 34268766 DOI: 10.1111/1750-3841.15834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
The hydrolysates from Apostichopus japonicus sea cucumber are an important source of nitrogen that may be added to foods. We evaluated the effect of A. japonicus hydrolysates on inflammation-associated leukocyte recruitment. The results revealed that leukocyte migration to the site of injury was significantly blocked by AJH-1 (<10 kDa), suggesting a protective effect against CuSO4 -induced neuromast damage in a zebrafish model. Based on liquid chromatography/time-of-flight/mass spectrometry, and metabolomic analysis, the nine biomarker candidates in AJH-1 were Val, Ala-Pro-Arg, Gly-Lys, Asp propyl ester, Glu methyl ester, His butyl ester, Ile-Ala-Ala-Lys, Tyr-Lys, and Asn-Pro-Gly-Lys. We used molecular docking to predict the binding affinity and docked position of the peptides onto the angiotensin converting enzyme (ACE). All the identified peptides had adequate binding affinity toward ACE, especially peptides Ala-Pro-Arg and Gly-Lys. These peptides may be used in the development of therapeutic foods. PRACTICAL APPLICATION: The study revealed the anti-inflammatory properties of the fractionated sea cucumber protein hydrolysate (<10 kDa). The characteristic peptides may be used as functional ingredients in nutraceutical foods and beverages.
Collapse
Affiliation(s)
- Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haonan Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lizhen Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fengxia Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Gao
- Weihai Kanghao Biology Technological Co., Ltd., Weihai, China
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
31
|
Berger MT, Hemmler D, Walker A, Rychlik M, Marshall JW, Schmitt-Kopplin P. Molecular characterization of sequence-driven peptide glycation. Sci Rep 2021; 11:13294. [PMID: 34168180 PMCID: PMC8225897 DOI: 10.1038/s41598-021-92413-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Peptide glycation is an important, yet poorly understood reaction not only found in food but also in biological systems. The enormous heterogeneity of peptides and the complexity of glycation reactions impeded large-scale analysis of peptide derived glycation products and to understand both the contributing factors and how this affects the biological activity of peptides. Analyzing time-resolved Amadori product formation, we here explored site-specific glycation for 264 peptides. Intensity profiling together with in-depth computational sequence deconvolution resolved differences in peptide glycation based on microheterogeneity and revealed particularly reactive peptide collectives. These peptides feature potentially important sequence patterns that appear in several established bio- and sensory-active peptides from independent sources, which suggests that our approach serves system-wide applicability. We generated a pattern peptide map and propose that in peptide glycation the herein identified molecular checkpoints can be used as indication of sequence reactivity.
Collapse
Affiliation(s)
- Michelle T Berger
- Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany. .,Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Daniel Hemmler
- Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.,Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - James W Marshall
- The Waltham Pet Science Institute, Mars Petcare UK, Waltham-on-the-Wolds, Leicestershire, LE14 4RT, UK
| | - Philippe Schmitt-Kopplin
- Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany. .,Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
32
|
Mahgoub S, Alagawany M, Nader M, Omar SM, Abd El-Hack ME, Swelum A, Elnesr SS, Khafaga AF, Taha AE, Farag MR, Tiwari R, Marappan G, El-Sayed AS, Patel SK, Pathak M, Michalak I, Al-Ghamdi ES, Dhama K. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samir Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig Egypt
| | - Maha Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Safaa M. Omar
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ayman Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig’ Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Up Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Gopi Marappan
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ashraf S. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shailesh K. Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Izabela Michalak
- Department of Advanced Material Technologies,Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław’, Poland
| | - Etab S. Al-Ghamdi
- Department of Food and Nutrition, College of Human Sciences and Design, King Abdualziz University, Jeddah, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| |
Collapse
|
33
|
Pugliese R, Arnoldi A, Lammi C. Nanostructure, Self-Assembly, Mechanical Properties, and Antioxidant Activity of a Lupin-Derived Peptide Hydrogel. Biomedicines 2021; 9:biomedicines9030294. [PMID: 33805635 PMCID: PMC8000348 DOI: 10.3390/biomedicines9030294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring food peptides are frequently used in the life sciences due to their beneficial effects through their impact on specific biochemical pathways. Furthermore, they are often leveraged for applications in areas as diverse as bioengineering, medicine, agriculture, and even fashion. However, progress toward understanding their self-assembling properties as functional materials are often hindered by their long aromatic and charged residue-enriched sequences encrypted in the parent protein sequence. In this study, we elucidate the nanostructure and the hierarchical self-assembly propensity of a lupin-derived peptide which belongs to the α-conglutin (11S globulin, legumin-like protein), with a straightforward N-terminal biotinylated oligoglycine tag-based methodology for controlling the nanostructures, biomechanics, and biological features. Extensive characterization was performed via Circular Dichroism (CD) spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), rheological measurements, and Atomic Force Microscopy (AFM) analyses. By using the biotin tag, we obtained a thixotropic lupin-derived peptide hydrogel (named BT13) with tunable mechanical properties (from 2 to 11 kPa), without impairing its spontaneous formation of β-sheet secondary structures. Lastly, we demonstrated that this hydrogel has antioxidant activity. Altogether, our findings address multiple challenges associated with the development of naturally occurring food peptide-based hydrogels, offering a new tool to both fine tune the mechanical properties and tailor the antioxidant activities, providing new research directions across food chemistry, biochemistry, and bioengineering.
Collapse
Affiliation(s)
- Raffaele Pugliese
- NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
- Correspondence: (R.P.); (C.L.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
- Correspondence: (R.P.); (C.L.)
| |
Collapse
|
34
|
Antioxidant properties of peptides obtained from the split gill mushroom ( Schizophyllum commune). Journal of Food Science and Technology 2021; 58:680-691. [PMID: 33568862 DOI: 10.1007/s13197-020-04582-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/10/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022]
Abstract
This study sought to assess the ideal conditions under which hydrolysate can be produced from the split gill mushroom proteins through the microbial protease, Alcalase. The research employed a central composite design and response surface methodology. Three specific parameters were varied for the purposes of the experimental process, while a fixed pH value of 8 was used in all cases. The variables were hydrolysis temperature (set as 45 °C, 50 °C, or 55 °C), hydrolysis time (set as 60 min, 120 min, or 180 min), and the ratio of enzyme to substrate (set as 2%, 4%, or 6% w/v). The variables under investigation exert a significant influence upon degree of hydrolysis (DH) in addition to 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity (p < 0.05). Fractionation of the hydrolysate was accomplished using molecular weight (MW) cut-off membranes, while the greatest radical-scavenging capability was observed in the < 0.65 kDa fraction. The MW < 0.65 kDa fraction underwent separation through RP-HPLC in order to create five sub-fractions. Among these, the greatest ABTS radical-scavenging capability was observed in the F5 sub-fraction, which was therefore chosen to undergo additional examination using quadrupole-time-of-flight-electron spin induction-mass spectrometry-based de novo peptide sequencing. Via this process it was possible to determine five antioxidant peptides. Furthermore, the MW < 0.65 kDa fraction was able to demonstrating cellular antioxidant activity in the context of a human intestinal cancer cell line (HT-29). The extent of this activity was shown to depend upon the concentration levels of the peptide.
Collapse
|
35
|
Albracht-Schulte K, Islam T, Johnson P, Moustaid-Moussa N. Systematic Review of Beef Protein Effects on Gut Microbiota: Implications for Health. Adv Nutr 2021; 12:102-114. [PMID: 32761179 PMCID: PMC7850003 DOI: 10.1093/advances/nmaa085] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/10/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
The influence of diet on the gut microbiota is an emerging research area with significant impact on human health and disease. However, the effects of beef, the most consumed red meat in the United States, on gut microbial profile are not well studied. Following Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, the objective of this systematic review was to conduct a rigorous and thorough review of the current scientific literature regarding the effects of beef protein and the resulting bioactivity of beef protein and amino acids on the gut microbiota, with the goal of identifying gaps in the literature and guiding future research priorities. Utilizing MEDLINE Complete, PubMed, ScienceDirect, Scopus, and Google Scholar databases, we conducted searches including terms and combinations of the following: animal protein, amino acid, beef, bioactive compounds, diet, health, microbiome, peptide, processed beef, and protein. We identified 131 articles, from which 15 were included in our review. The effects of beef on mouse and rat models were mostly consistent for the bacterial phylum level. Short-term (1-4-wk) beef intakes had little to no effect on microbial profiles in humans. Most studies utilized high beef feeding (240-380 g/d), and no study examined recommended amounts of protein [∼3.71 oz/d (105 g/d) meats, poultry, and eggs, or ∼26 oz/week (737 g/wk) from these food sources] according to US dietary guidelines. Additionally, the majority of animal and human studies with adverse findings examined the impact of beef in the context of a diet high in fat or sugar. In conclusion, an extensive gap exists in the literature regarding beef and the microbiota. More studies are necessary to elucidate the role of the microbiota following the consumption of beef, especially in interaction with other dietary compounds, and how beef preparation, processing, and cooking methods differentially influence the biological effects of beef on human health.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Tariful Islam
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Paige Johnson
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
36
|
Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020; 19:1488-1520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Due to the digestible refractory and absorbable structures of bioactive peptides (BPs), they could induce notable biological impacts on the living organism. In this regard, the current study was devoted to providing an overview regarding the available methods for BPs generation by the aid of a systematic review conducted on the published articles up to April 2019. In this context, the PubMed and Scopus databases were screened to retrieve the related publications. According to the results, although the characterization of BPs mainly has been performed using enzymatic and microbial in-vitro methods, they cannot be considered as suitable techniques for further stimulation of digestion in the gastrointestinal tract. Therefore, new approaches for both in-vivo and in-silico methods for BPs identification should be developed to overcome the obstacles that belonged to the current methods. The purpose of this review was to compile the recent analytical methods applied for studying various aspects of food-derived biopeptides, and emphasizing generation at in vitro, in vivo, and in silico.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
37
|
Explorative Screening of Bioactivities Generated by Plant-Based Proteins after In Vitro Static Gastrointestinal Digestion. Nutrients 2020; 12:nu12123746. [PMID: 33291464 PMCID: PMC7762166 DOI: 10.3390/nu12123746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
The gastrointestinal digestion of food proteins can generate peptides with a wide range of biological activities. In this study, we screened various potential bioactivities generated by plant-based proteins. Whey protein as an animal protein reference, five grades of pea protein, two grades of wheat protein, and potato, fava bean, and oat proteins were submitted to in vitro SGID. They were then tested in vitro for several bioactivities including measures on: (1) energy homeostasis through their ability to modulate intestinal hormone secretion, to inhibit DPP-IV activity, and to interact with opioid receptors; (2) anti-hypertensive properties through their ability to inhibit ACE activity; (3) anti-inflammatory properties in Caco-2 cells; (4) antioxidant properties through their ability to inhibit production of reactive oxygen species (ROS). Protein intestinal digestions were able to stimulate intestinal hormone secretion by enteroendocrine cells, to inhibit DPP-IV and ACE activities, to bind opioid receptors, and surprisingly, to decrease production of ROS. Neither pro- nor anti-inflammatory effects have been highlighted and some proteins lost their pro-inflammatory potential after digestion. The best candidates were pea, potato, and fava bean proteins.
Collapse
|
38
|
Tyagi A, Daliri EBM, Kwami Ofosu F, Yeon SJ, Oh DH. Food-Derived Opioid Peptides in Human Health: A Review. Int J Mol Sci 2020; 21:E8825. [PMID: 33233481 PMCID: PMC7700510 DOI: 10.3390/ijms21228825] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
World Health Organization data suggest that stress, depression, and anxiety have a noticeable prevalence and are becoming some of the most common causes of disability in the Western world. Stress-related disorders are considered to be a challenge for the healthcare system with their great economic and social impact. The knowledge on these conditions is not very clear among many people, as a high proportion of patients do not respond to the currently available medications for targeting the monoaminergic system. In addition, the use of clinical drugs is also associated with various side effects such as vomiting, dizziness, sedation, nausea, constipation, and many more, which prevents their effective use. Therefore, opioid peptides derived from food sources are becoming one of the safe and natural alternatives because of their production from natural sources such as animals and plant proteins. The requirement for screening and considering dietary proteins as a source of bioactive peptides is highlighted to understand their potential roles in stress-related disorders as a part of a diet or as a drug complementing therapeutic prescription. In this review, we discussed current knowledge on opioid endogenous and exogenous peptides concentrating on their production, purification, and related studies. To fully understand their potential in stress-related conditions, either as a drug or as a therapeutic part of a diet prescription, the need to screen more dietary proteins as a source of novel opioid peptides is emphasized.
Collapse
Affiliation(s)
| | | | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (A.T.); (E.B.-M.D.); (F.K.O.); (S.-J.Y.)
| |
Collapse
|
39
|
Assessment of the Bioactive Potential of Cheese Whey Protein Hydrolysates Using Immobilized Alcalase. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02552-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Digestion of micellar casein in duodenum cannulated pigs. Correlation between in vitro simulated gastric digestion and in vivo data. Food Chem 2020; 343:128424. [PMID: 33127229 DOI: 10.1016/j.foodchem.2020.128424] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022]
Abstract
Correlation and validation of the results of simulated gastrointestinal digestion of food compounds towards in vivo data is essential. The objective of this work was to monitor the digestion of milk micellar casein in the porcine upper intestinal tract and to match the outcome with the gastric in vitro digestion following the Infogest harmonized protocol. In pig duodenum, small amounts of intact caseins were present in all samples, while caseins were observed up to 60 min of gastric in vitro digestion. The peptide profile generated after in vitro and in vivo digestion showed clear similarities with specific overrepresented regions rich in proline and other hydrophobic residues. The statistical comparison of the in vivo and in vitro peptidome resulted in satisfactory correlation coefficients, up to 0.8. Therefore, the in vitro protocol used was a robust and simple model that provides a similar peptide profile than that found in porcine duodenum.
Collapse
|
41
|
Strategic Preparations of DPP-IV Inhibitory Peptides from Val-Pro-Xaa and Ile-Pro-Xaa Peptide Mixtures. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10122-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020; 64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The gastrointestinal tract represents a specialized interface between the organism and the external environment. Because of its direct contact with lumen substances, the modulation of digestive functions by dietary substances is supported by a growing body of evidence. Food-derived bioactive peptides have demonstrated a plethora of activities in the organism with increasing interest toward their impact over the digestive system and related physiological effects. This review updates the biological effects of food proteins, specifically milk and soybean proteins, associated to gastrointestinal health and highlights the study of digestion products and released peptides, the identification of the active form/s, and the evaluation of the mechanisms of action underlying their relationship with the digestive cells and receptors. The approach toward the modifications that food proteins and peptides undergo during gastrointestinal digestion and their bioavailability is a crucial step for current investigations on the field. The recent literature on the regulation of digestive functions by peptides has been mostly considered in terms of their influence on gastrointestinal motility and signaling, oxidative damage and inflammation, and malignant cellular proliferation. A final section regarding the actual challenges and future perspectives in this scientific topic is critically discussed.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Samuel Fernández-Tomé. Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León, 62, 28006, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Blanca Hernández-Ledesma. Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain
| |
Collapse
|
43
|
Wong CB, Odamaki T, Xiao JZ. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020; 44:369-385. [PMID: 32319522 PMCID: PMC7326374 DOI: 10.1093/femsre/fuaa010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Members of Bifidobacterium are among the first microbes to colonise the human gut, and certain species are recognised as the natural resident of human gut microbiota. Their presence in the human gut has been associated with health-promoting benefits and reduced abundance of this genus is linked with several diseases. Bifidobacterial species are assumed to have coevolved with their hosts and include members that are naturally present in the human gut, thus recognised as Human-Residential Bifidobacteria (HRB). The physiological functions of these bacteria and the reasons why they occur in and how they adapt to the human gut are of immense significance. In this review, we provide an overview of the biology of bifidobacteria as members of the human gut microbiota and address factors that contribute to the preponderance of HRB in the human gut. We highlight some of the important genetic attributes and core physiological traits of these bacteria that may explain their adaptive advantages, ecological fitness, and competitiveness in the human gut. This review will help to widen our understanding of one of the most important human commensal bacteria and shed light on the practical consideration for selecting bifidobacterial strains as human probiotics.
Collapse
Affiliation(s)
- Chyn Boon Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| |
Collapse
|
44
|
A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Res Int 2020; 131:109002. [PMID: 32247480 DOI: 10.1016/j.foodres.2020.109002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Improper nutrition provokes many types of chronic diseases and health problems, which consequently are associated with particularly high costs of treatments. Nowadays, consumer's interest in healthy eating is shifting towards specific foods or food ingredients. As a consequence, bioactive peptides as a promising source of health promoting food additives are currently an intensely debated topic in research. Process design is still on its early stages and is significantly influenced by important preliminary decisions. Thus, parameters like peptide bioactivity within the product, selection of the protein source, enzyme selection for hydrolysis, peptide enrichment method, as well as stability of the peptides within the food matrix and bioavailability are sensitive decision points, which have to be purposefully coordinated, as they are directly linked to amino acid content and structure properties of the peptides. Branched chain amino acids (BCAA) are essential components for humans, possessing various important physiologic functions within the body. Incorporated within peptide sequences, they may induce dual functions, when used as nutraceuticals in functional food, thus preserving the foodstuff and prevent several widespread diseases. Furthermore, there is evidence that consuming this peptide-class can be a nutritional support for elderly people or improve human health to prevent diseases caused by incorrect nutrition. Based on the knowledge about the role of BCAA within various peptide functions, discussed in the review, special attention is given to different approaches for systematic selection of the protein source and enzymes used in hydrolysis, as well as suitable peptide enrichment methods, thereby showing current trends in research.
Collapse
|
45
|
Liu H, Tu M, Cheng S, Xu Z, Xu X, Du M. Anticoagulant Decapeptide Interacts with Thrombin at the Active Site and Exosite-I. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:176-184. [PMID: 31850760 DOI: 10.1021/acs.jafc.9b06450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thrombin can be used as a target for its inhibitors to prevent blood coagulation. A novel peptide (TKLTEEEKNR, PfCN) identified from αS2-casein (fragments 211-220) with high anticoagulant activity was screened and prepared. The activated partial thromboplastin time, prothrombin time, and thrombin time, at the concentration of 4 mM, prolonged about 19, 2.5 and 5.5 s, respectively. At the same concentration, the fibrinogen clotting time prolonged from 25.5 ± 0.7 to 38.3 ± 1.3 s. The thrombin inhibitory efficiency in vitro (IC50 value of 29.27 mM) and antithrombosis effect in vivo were determined. The secondary structure of thrombin, which was influenced by PfCN, indicates that PfCN can bind to thrombin. Isothermal titration calorimetry and the chromogenic substrate test showed that PfCN belongs to the bivalent thrombin inhibitor like bivalirudin. Although the effect was not as good as bivalirudin, in the animal experiment, bleeding occurred in the bivalirudin group but not in the PfCN group. Moreover, molecular docking illustrates the mechanism for the antithrombin activity of PfCN. These results indicated that PfCN could be used as an effective thrombin inhibitor with broad potential for the prevention of thrombotic acute pulmonary embolism and other thrombotic events.
Collapse
Affiliation(s)
- Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| | - ShuZhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| |
Collapse
|
46
|
Sangtitanu T, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Karnchanatat A. Peptides obtained from edible mushrooms: Hericium erinaceus offers the ability to scavenge free radicals and induce apoptosis in lung cancer cells in humans. Food Funct 2020; 11:4927-4939. [DOI: 10.1039/d0fo00227e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This research examined the antioxidant abilities of peptides derived from the Hericium erinaceus mushroom produced via three microbial proteases at varying concentrations.
Collapse
Affiliation(s)
- Taniya Sangtitanu
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics
- Faculty of Tropical Medicine
- Mahidol University
- Bangkok 10400
- Thailand
| | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
47
|
Guo D, Liu W, Zhang X, Zhao M, Zhu B, Hou T, He H. Duck Egg White–Derived Peptide VSEE (Val‐Ser‐Glu‐Glu) Regulates Bone and Lipid Metabolisms by Wnt/β‐Catenin Signaling Pathway and Intestinal Microbiota. Mol Nutr Food Res 2019; 63:e1900525. [DOI: 10.1002/mnfr.201900525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/30/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Danjun Guo
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Weiwei Liu
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Xing Zhang
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Mengge Zhao
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Biyang Zhu
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Tao Hou
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Hui He
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
48
|
Amino Acid Nutrition and Metabolism in Health and Disease. Nutrients 2019; 11:nu11112623. [PMID: 31683948 PMCID: PMC6893825 DOI: 10.3390/nu11112623] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Here an overview of the special issue "Amino acid nutrition and metabolism in health and disease" is given. In addition to several comprehensive and timely reviews, this issue had some original research contributions on fundamental research in animal models as well as human clinical trials exploring how the critical nutrients amino acids affect various traits.
Collapse
|
49
|
Effects on the Caco-2 Cells of a Hypoglycemic Protein from Lupin Seeds in a Solution and Adsorbed on Polystyrene Nanoparticles to Mimic a Complex Food Matrix. Biomolecules 2019; 9:biom9100606. [PMID: 31615064 PMCID: PMC6843813 DOI: 10.3390/biom9100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022] Open
Abstract
The search for bioactivities influencing the human wellbeing of food proteins and peptides is a topic of broad and current interest. γ-Conglutin (γC) is a lupin seed protein drawing remarkable pharmacological and/or nutraceutical interest, as it is able to reduce hyperglycemia in humans and animal models. The present work deepens our investigations to understand the molecular basis of the in vitro effects of γC by testing the possible metabolic effects on cultivated Caco-2 cells. γC and its derived peptides (obtained via simulated gastrointestinal digestion) did not influence the cell viability at incubation times up to 24 h. The incubation of cells with native or digested γC caused no detectable inflammation processes mediated by Nuclear Factor kappa B (NFκB). We checked if treatment with γC or its derived peptides can elicit the expression of two peptide transporters (Pept-1 and Htp-1) by using an RT-qPCR approach. Native γC caused the halving of Pept-1 expression compared to untreated cells, but this effect disappeared when γC was digested. Either native γC or γC peptides reduced the expression levels of Hpt-1. Finally, this work also sheds light on the possible structural modifications of γC that may occur in the gastrointestinal tract, using an in vitro simulated dispersed system with polystyrene nanoparticles (NPs).
Collapse
|
50
|
Teniente-Martínez G, Bernardino-Nicanor A, Cariño-Cortés R, Valadez-Vega MDC, Montañez-Soto JL, Acosta-García G, González-Cruz L. Cytotoxic and genotoxic activity of protein isolate of ayocote beans and anticancer activity of their protein fractions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-0019-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|