1
|
Milan AM, Menting GGA, Barnett MPG, Liu Y, McNabb WC, Roy NC, Hutchings SC, Mungure T, Weeks M, Li S, Hort J, Calder S, O'Grady G, Mithen RF. The impact of heat-set milk protein gel textures modified by pH on circulating amino acid appearance and gastric function in healthy female adults: a randomised controlled trial. Food Funct 2024; 15:5613-5626. [PMID: 38722062 DOI: 10.1039/d3fo04474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Modification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 μmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 μmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 μmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 μmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.
Collapse
Affiliation(s)
- Amber M Milan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- AgResearch Limited, Palmerston North, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | | | - Matthew P G Barnett
- AgResearch Limited, Palmerston North, New Zealand.
- The Riddet Institute, Palmerston North, New Zealand.
| | - Yutong Liu
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
| | - Warren C McNabb
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
| | - Nicole C Roy
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
- Department of Human Nutrition, The University of Otago, Otago, New Zealand.
| | | | - Tanyaradzwa Mungure
- AgResearch Limited, Palmerston North, New Zealand.
- The University of Melbourne, Melbourne, Australia.
| | - Mike Weeks
- AgResearch Limited, Palmerston North, New Zealand.
| | - Siqi Li
- The Riddet Institute, Palmerston North, New Zealand.
| | - Joanne Hort
- The Riddet Institute, Palmerston North, New Zealand.
- Food Experience and Sensory Testing Lab, Massey University, Palmerston North, New Zealand.
| | - Stefan Calder
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Greg O'Grady
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Richard F Mithen
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
2
|
Brown JE, Pham T, Burden H, Braakhuis AJ. Specific Genotypes Associated with Differences in Fasting Insulin Levels and Body Mass Index in Healthy Young Males: Implications for Gene-Nutrient Interactions-an Exploratory Study. Curr Dev Nutr 2023; 7:102018. [PMID: 38026570 PMCID: PMC10663744 DOI: 10.1016/j.cdnut.2023.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Genetic variation may significantly impact an individual's susceptibility to diseases, particularly when combined with specific nutrients. Additionally, genetic variations can lead to interindividual differences in metabolic responses. Objective The present study explores the association between gene variants and observed interindividual differences in metabolic responses. Methods The study included 30 healthy males (aged 20-34) who underwent a fasting period and subsequently consumed a standardized meal. Blood samples were collected both before and after the meal to assess metabolic changes. BMI served as an indirect measure for assessing physiological responses associated with body composition. Appetite changes were assessed using an online Visual Analog 100-point Scale. Buccal swabs were collected to analyze genetic variants in single nucleotide polymorphisms (SNPs). Results The data underwent multiple regression analysis, revealing significant associations with 3 SNPs and their metabolic status: the insulin-receptor substrate 1 (IRS1) gene variant rs2943641, genotypes CT and CC, with elevated fasting insulin levels (R2 = 0.639, P = < 0.0001); the mitochondrial uncoupling protein 1 (UCP1) gene variant rs1800592, genotypes GG and GA, with increased BMI (R2 = 0.261, P = 0.007); and the peroxisome proliferator-activated receptor γ2 (PPARγ2) gene variant rs1801282, genotypes GG and GC, with increased BMI (R2 = 0.200, P = 0.024). Conclusions Therefore, our study established significant associations between these 3 SNPs and differences in fasting insulin levels and BMI within our cohort.
Collapse
Affiliation(s)
- Julie E. Brown
- The Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Toan Pham
- The Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Hannah Burden
- The Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Andrea J. Braakhuis
- The Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Gillies NA, Sharma P, Han SM, Teh R, Fraser K, Roy NC, Cameron-Smith D, Milan AM. The acute postprandial response of homocysteine to multivitamin and mineral supplementation with a standard meal is not impaired in older compared to younger adults. Eur J Nutr 2023; 62:1309-1322. [PMID: 36539620 DOI: 10.1007/s00394-022-03068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE B vitamins are required for the complex regulation of homocysteine and one-carbon (1C) metabolism. Nutritional supplements are frequently used by older adults to counter nutritional inadequacies. However, the postprandial use of B vitamins from supplements in 1C metabolism may be altered with age owing to impaired nutrient absorption and metabolic regulation. Despite implications for health and nutritional status, postprandial 1C metabolite responses have not been characterised in older adults. METHODS Healthy older (n = 20, 65-76 years) and younger (n = 20, 19-30 years) participants were recruited through online and printed advertisements in Auckland, New Zealand. Participants consumed a multivitamin and mineral supplement with a standard breakfast meal. Blood samples were collected at baseline and hourly for 4 h following ingestion. Plasma 1C metabolites (betaine, choline, cysteine, dimethylglycine, glycine, methionine, serine) were quantified using liquid chromatography coupled with mass spectrometry. Serum homocysteine, folate and vitamin B12 were quantified on a Cobas e411 autoanalyzer. RESULTS Older adults had higher fasting homocysteine concentrations (older: 14.0 ± 2.9 µmol/L; younger: 12.2 ± 2.5 µmol/L; p = 0.036) despite higher folate (older: 36.7 ± 17.4 nmol/L; younger: 21.6 ± 7.6 nmol/L; p < 0.001) and similar vitamin B12 concentrations (p = 0.143) to younger adults. However, a similar postprandial decline in homocysteine was found in older and younger subjects in response to the combined meal and supplement. Except for a faster decline of cystathionine in older adults (p = 0.003), the postprandial response of other 1C metabolites was similar between young and older adults. CONCLUSION Healthy older adults appear to maintain postprandial responsiveness of 1C metabolism to younger adults, supported by a similar postprandial decline in homocysteine concentrations.
Collapse
Affiliation(s)
- Nicola A Gillies
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
| | - Pankaja Sharma
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
| | - Soo Min Han
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ruth Teh
- School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Karl Fraser
- The Riddet Institute, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Nicole C Roy
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, The University of Otago, Dunedin, New Zealand
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
- College of Health, Medicine, and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Amber M Milan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand.
| |
Collapse
|
4
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
5
|
Braakhuis A, Gillies N, Worthington A, Knowles S, Conner T, Roy R, Pham T, Bermingham E, Cameron-Smith D. A Modern Flexitarian Dietary Intervention Incorporating Web-Based Nutrition Education in Healthy Young Adults: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2021; 10:e30909. [PMID: 34931994 PMCID: PMC8734916 DOI: 10.2196/30909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The trend of flexitarian eating patterns is on the rise, with young adults among the biggest adopters claiming health and environmental reasons to reduce red meat intake. Nutrient-dense meat and animal products are often the lynchpin of these diets, even when consumed only occasionally and in moderate amounts. Red meat provides forms and concentrations of essential proteins, lipids, and micronutrients that are scarce in exclusively vegetarian regimens. OBJECTIVE The aim of this study is to consider the effects of moderate consumption of lean red meat as part of an otherwise vegetarian balanced diet and its impact on biomarkers of sustained health and well-being. METHODS A cohort of healthy, young (20-34 years old, n=80) male and female participants will take part in a 2-arm, parallel randomized controlled trial (RCT) for a duration of 12 weeks, with a 3-month posttrial follow-up. The trial will commence with a 2-week assessment period followed by allocation to the intervention arms. The intervention will include the consumption of red meat or meat alternatives 3 times per week for 10 weeks. Blood samples of the participants will be collected to measure changes in erythrocyte fatty acid distribution, circulating amino acids, neurotransmitters, markers of mineral status, and inflammatory markers. Questionnaires to assess well-being and mental health will be undertaken every 2 weeks. Body composition, physical function, and blood parameters will be assessed at allocation (t0), week 5 into the intervention (t5), and post intervention (t10). RESULTS The protocol has been developed using the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) checklist and the outcomes will be reported in accordance with the CONSORT (Consolidated Standards of Reporting Trials) guidelines. The trial was approved by the New Zealand Ministry of Health's Health and Disability Ethics Committees (protocol 20/STH/157). The results of this study will be communicated via publication. CONCLUSIONS To our knowledge, this is the first RCT investigating the overarching health consequences of consuming pasture-fed red meat or no meat as part of a healthy diet. TRIAL REGISTRATION ClinicalTrials.gov NCT04869163; https://clinicaltrials.gov/ct2/show/NCT04869163. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/30909.
Collapse
Affiliation(s)
- Andrea Braakhuis
- Discipline of Nutrition, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Nicola Gillies
- Discipline of Nutrition, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Anna Worthington
- Discipline of Nutrition, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Scott Knowles
- AgResearch Ltd, Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Tamlin Conner
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Rajshri Roy
- Discipline of Nutrition, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Toan Pham
- Discipline of Nutrition, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Emma Bermingham
- AgResearch Ltd, Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - David Cameron-Smith
- Agency for Science, Technology and Research, Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
6
|
Delgado-Alarcón JM, Hernández Morante JJ, Aviles FV, Albaladejo-Otón MD, Morillas-Ruíz JM. Effect of the Fat Eaten at Breakfast on Lipid Metabolism: A Crossover Trial in Women with Cardiovascular Risk. Nutrients 2020; 12:nu12061695. [PMID: 32517188 PMCID: PMC7352537 DOI: 10.3390/nu12061695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/03/2022] Open
Abstract
Recent studies point out that not only the daily intake of energy and nutrients but the time of day when they are ingested notably regulates lipid metabolism and cardiovascular risk (CVR). Therefore, the aim of the study was to assess if the type of fat ingested at breakfast can modify lipid metabolism in women with CVR. A randomized, crossover clinical trial was performed. Sixty volunteers were randomly assigned to a (A) polyunsaturated fatty acid (PUFA)-rich breakfast, (B) saturated fatty acid (SFA)-rich breakfast, or (C) monounsaturated fatty acid (MUFA)-rich breakfast. Plasma lipoprotein and apolipoprotein subfractions were determined. Our data showed that the PUFA-rich breakfast decreased lipoprotein (a) (Lp(a)), very low-density lipoproteins (VLDL), and intermediate-density lipoproteins (IDL), and increased high-density lipoproteins (HDL). A similar trend was observed for the MUFA-rich breakfast, whereas the SFA-rich breakfast, although it decreased VLDL, also increased IDL and reduced HDL. The PUFA-rich breakfast also decreased β-lipoproteins and apolipoprotein-B. In summary, varying the type of fat eaten at breakfast is enough to significantly modify the lipid metabolism of women with CVR, which can be of great relevance to establish new therapeutic strategies for the treatment of these subjects.
Collapse
Affiliation(s)
| | - Juan José Hernández Morante
- Eating Disorder Research Unit., Catholic University of Murcia, 30107 Murcia, Spain
- Correspondence: (J.J.H.M.); (J.M.M.-R.)
| | - Francisco V. Aviles
- Service of Biochemistry, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia, Spain;
| | | | - Juana M. Morillas-Ruíz
- Food Technology and Nutrition Department, Catholic University of Murcia, 30107 Murcia, Spain
- Correspondence: (J.J.H.M.); (J.M.M.-R.)
| |
Collapse
|
7
|
Maranhão RC, Pala D, Freitas FR. Lipoprotein removal mechanisms and aging: implications for the cardiovascular health of the elderly. Curr Opin Endocrinol Diabetes Obes 2020; 27:104-109. [PMID: 32011347 DOI: 10.1097/med.0000000000000529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The speed of removal from the plasma of apolipoprotein B-containing lipoproteins, for example, chylomicrons, VLDL and LDL is determinant of the plasma concentration of these lipoproteins, is influenced by genetic features and ambient factors, and has implications in atherogenesis. As aging increases the clinical complications of atherosclerosis, it is important to appraise the status of the removal mechanisms in elderly individuals. RECENT FINDINGS Removal of triglyceride-rich lipoproteins remnants is delayed but the triglyceride breakdown is unchanged in elderly individuals. The discovery of PCSK9, enzyme that degrades LDL receptors, and the recent observation that PCSK9 is elevated in the elderly raises another hypothesis to account for the increased LDL-cholesterol levels in the elderly. The removal of cholesterol from cells by HDL, the first step of cholesterol reverse transport is also less efficient in the elderly, which may compromise the body cholesterol homeostasis. SUMMARY Aging determines reduction of the efficiency of lipoprotein plasma removal mechanisms, which is implicated in increased incidence of cardia complications. Moreover, aging is frequently accompanied by physical activity reduction, weight gain, and metabolic disturbances that can further decrease the efficacy of the removal mechanisms. This knowledge is important for promoting cardiovascular health in the elderly and prolonging survival.
Collapse
Affiliation(s)
- Raul C Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
- Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Pala
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| | - Fatima R Freitas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| |
Collapse
|
8
|
Acute whole apple consumption did not influence postprandial lipaemia: a randomised crossover trial. Br J Nutr 2020; 123:807-817. [DOI: 10.1017/s0007114519003441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWhole apples are a source of pectin and polyphenols, both of which show potential to modulate postprandial lipaemia (PPL). The present study aimed to explore the effects of whole apple consumption on PPL, as a risk factor for CVD, in generally healthy but overweight and obese adults. A randomised, crossover acute meal trial was conducted with seventeen women and nine men (mean BMI of 34·1 (sem0·2) kg/m2). Blood samples were collected for 6 h after participants consumed an oral fat tolerance test meal that provided 1 g fat/kg body weight and 1500 mg acetaminophen per meal for estimating gastric emptying, with and without three whole raw Gala apples (approximately 200 g). Plasma TAG (with peak postprandial concentration as the primary outcome), apoB48, chylomicron-rich fraction particle size and fatty acid composition, glucose, insulin and acetaminophen were analysed. Differences between with and without apples were identified by ANCOVA. Apple consumption did not alter postprandial TAG response, chylomicron properties, glucose or acetaminophen (P> 0·05), but did lead to a higher apoB48 peak concentration and exaggerated insulin between 20 and 180 min (P< 0·05). Overall, as a complex food matrix, apples did not modulate postprandial TAG when consumed with a high-fat meal in overweight and obese adults, but did stimulate insulin secretion, potentially contributing to an increased TAG-rich lipoprotein production.
Collapse
|
9
|
Sharma P, Gillies N, Pundir S, Pileggi CA, Markworth JF, Thorstensen EB, Cameron-Smith D, Milan AM. Comparison of the Acute Postprandial Circulating B-Vitamin and Vitamer Responses to Single Breakfast Meals in Young and Older Individuals: Preliminary Secondary Outcomes of a Randomized Controlled Trial. Nutrients 2019; 11:E2893. [PMID: 31795162 PMCID: PMC6950174 DOI: 10.3390/nu11122893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
B-vitamin deficiency is common in ageing populations either due to altered dietary habits or altered digestive and metabolic functions. There is limited data on the acute circulating concentrations of B-vitamins and their various forms (vitamers), following ingestion of realistic meals. This study compared the acute circulating B-vitamin and vitamer responses to either an energy-dense (ED) or a nutrient-dense (ND) breakfast meal, consumed in a randomized cross-over sequence, in older and younger adults (n = 15 and 15, aged 67.3 ± 1.5 and 22.7 ± 0.5 years (mean ± SEM), respectively). Eleven differing B-vitamins and vitamers were determined in plasma samples by ultra-high-performance liquid chromatography-tandem mass spectrometry, in the fasting and postprandial state (hourly for 5 h). While postprandial thiamine concentration increased following both meals, riboflavin increased only following a ND meal in both age groups. Many vitamins including nicotinic acid, pantothenic acid, pyridoxal, pyridoxamine, pyridoxal-5'phosphate, and 4-pyridoxic acid remained unaltered, and flavin mononucleotide (FMN), nicotinamide and nicotinuric acid concentrations reduced following both meals. Biological age and food composition had minimal impact on postprandial B-vitamin concentrations, yet the differences between the ED and ND meals for riboflavin highlight the importance of riboflavin intake to achieve adequacy.
Collapse
Affiliation(s)
- Pankaja Sharma
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; (P.S.); (N.G.); (S.P.); (C.A.P.); (J.F.M.); (E.B.T.); (D.C.-S.)
- The Riddet Institute, Palmerston North 4442, New Zealand
| | - Nicola Gillies
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; (P.S.); (N.G.); (S.P.); (C.A.P.); (J.F.M.); (E.B.T.); (D.C.-S.)
- The Riddet Institute, Palmerston North 4442, New Zealand
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; (P.S.); (N.G.); (S.P.); (C.A.P.); (J.F.M.); (E.B.T.); (D.C.-S.)
| | - Chantal A. Pileggi
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; (P.S.); (N.G.); (S.P.); (C.A.P.); (J.F.M.); (E.B.T.); (D.C.-S.)
| | - James F. Markworth
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; (P.S.); (N.G.); (S.P.); (C.A.P.); (J.F.M.); (E.B.T.); (D.C.-S.)
| | - Eric B. Thorstensen
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; (P.S.); (N.G.); (S.P.); (C.A.P.); (J.F.M.); (E.B.T.); (D.C.-S.)
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; (P.S.); (N.G.); (S.P.); (C.A.P.); (J.F.M.); (E.B.T.); (D.C.-S.)
- The Riddet Institute, Palmerston North 4442, New Zealand
- Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand
| | - Amber M. Milan
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; (P.S.); (N.G.); (S.P.); (C.A.P.); (J.F.M.); (E.B.T.); (D.C.-S.)
| |
Collapse
|
10
|
Vinagre CG, Freitas FR, de Mesquita CH, Vinagre JC, Mariani AC, Kalil-Filho R, Maranhão RC. Removal of Chylomicron Remnants from the Bloodstream is Delayed in Aged Subjects. Aging Dis 2018; 9:748-754. [PMID: 30090662 PMCID: PMC6065288 DOI: 10.14336/ad.2017.1003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
Dietary fats absorbed in the intestine are transported in the circulation as chylomicrons and remnants that have atherogenic potential. Although postprandial lipidemia is increased in older subjects, the specific chylomicron metabolism has not been explored in older subjects nor compared to young subjects, which is the focus of this study. After a 12 h fast, artificially-made emulsions similar to lymph chylomicrons and doubly labeled with radioactive cholesteryl esters and triglycerides were intravenously injected in 23 older (66±4 years) and 20 young (24±3 years) subjects. Sequential blood samples were collected to determine fractional clearance rates (FCR, in min-1) by compartmental analysis. Older subjects had higher LDL-cholesterol (p<0.001) and triglycerides (p<0.0001) than young subjects; HDL-cholesterol presented no difference. The emulsion cholesteryl-ester FCR was lower in older subjects compared to the young (p=0.0001). The emulsion triglyceride FCR did not differ in the two groups. Tested in vitro, however, the lipolysis of the emulsion triglycerides was less intense in the older than in the young subjects. As delayed removal of remnants, indicated by the pronouncedly smaller cholesteryl ester FCR, is related to the presence of cardiovascular diseases, this can be a risk factor which could accelerate atherogenic complications occurring in aged subjects
Collapse
Affiliation(s)
- Carmen G Vinagre
- 1Heart Institute (InCor) of Medical School Hospital, University of São Paulo, São Paulo, Brazil.,2University of Santo Amaro, São Paulo, Brazil
| | - Fatima R Freitas
- 1Heart Institute (InCor) of Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | | | - Juliana C Vinagre
- 1Heart Institute (InCor) of Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | | | - Roberto Kalil-Filho
- 1Heart Institute (InCor) of Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Raul C Maranhão
- 1Heart Institute (InCor) of Medical School Hospital, University of São Paulo, São Paulo, Brazil.,4Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Milan AM, Pundir S, Pileggi CA, Markworth JF, Lewandowski PA, Cameron-Smith D. Comparisons of the Postprandial Inflammatory and Endotoxaemic Responses to Mixed Meals in Young and Older Individuals: A Randomised Trial. Nutrients 2017; 9:E354. [PMID: 28368340 PMCID: PMC5409693 DOI: 10.3390/nu9040354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
Postprandial inflammation and endotoxaemia are determinants of cardiovascular and metabolic disease risk which are amplified by high fat meals. We aimed to examine the determinants of postprandial inflammation and endotoxaemia in older and younger adults following a high fat mixed meal. In a randomised cross-over trial, healthy participants aged 20-25 and 60-75 years (n = 15/group) consumed a high-fat breakfast and a low-fat breakfast. Plasma taken at baseline and post-meal for 5 h was analysed for circulating endotoxin, cytokines (monocyte chemotactic protein-1 (MCP-1), interleukin (IL)-1β, IL-6, and tumour necrosis factor-alpha (TNF-α)), lipopolysaccharide binding protein (LBP), and inflammatory gene expression in peripheral blood mononuclear cells (PBMC). Older subjects had lower baseline PBMC expression of Glutathione peroxidase 1 (GPX-1) but greater insulin-like growth factor-binding protein 3 (IGFBP3) and circulating MCP-1 compared to younger subjects. After either meal, there were no age differences in plasma, chylomicron endotoxin, or plasma LBP concentrations, nor in inflammatory cytokine gene and protein expression (MCP-1, IL-1β, and TNF-α). Unlike younger participants, the older group had decreased superoxide dismutase (SOD)-2 expression after the meals. After a high-fat meal, older adults have no increased inflammatory or endotoxin response, but an altered oxidative stress gene response compared with younger adults. Healthy older adults, without apparent metabolic dysfunction, have a comparable postprandial inflammatory and endotoxaemia response to younger adults.
Collapse
Affiliation(s)
- Amber M Milan
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand.
| | - Shikha Pundir
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand.
| | - Chantal A Pileggi
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand.
| | - James F Markworth
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand.
| | - Paul A Lewandowski
- School of Medicine, Deakin University, 75 Pigdons Road, Warun Ponds, VIC 3216, Australia.
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand.
| |
Collapse
|
12
|
Steenson S, Umpleby AM, Lovegrove JA, Jackson KG, Fielding BA. Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia. Nutrients 2017; 9:nu9040349. [PMID: 28368310 PMCID: PMC5409688 DOI: 10.3390/nu9040349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023] Open
Abstract
Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption.
Collapse
Affiliation(s)
- Simon Steenson
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - A Margot Umpleby
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| | - Julie A Lovegrove
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Kim G Jackson
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| |
Collapse
|